- Thread starter
- #1
DigitalComputer
New member
- Feb 10, 2012
- 5
Let $A_r(r \in \mathbb{N})$ be the area of the bounded region whose boundary is defined by $(6y^2r-x)(6\pi^2 y-x)=0$ then find the value of
$$ \lim_{n \to \infty}(\sqrt{A_1 A_2 A_3}+\sqrt{A_2 A_3 A_4}+\cdots \text{n terms})$$
$$ \lim_{n \to \infty}(\sqrt{A_1 A_2 A_3}+\sqrt{A_2 A_3 A_4}+\cdots \text{n terms})$$