- Thread starter
- #1

#### karush

##### Well-known member

- Jan 31, 2012

- 2,886

$\tiny{28.1}$

Find the general solution to the system of differential equations

\begin{align*}\displaystyle

y'_1&=y_1+5y_2\\

y'_2&=-2y_1+-y_2

\end{align*}

why is there a $+-y_2$ in the given

ok going to take this a step at a time... so..

$A=\left[\begin{array}{c}1 & 5 \\ -2 & -1 \end{array}\right]$

then

$\left[\begin{array}{c}1-\lambda & 5 \\ -2 & -1-\lambda \end{array}\right]

=\lambda^2+9$ ????

Find the general solution to the system of differential equations

\begin{align*}\displaystyle

y'_1&=y_1+5y_2\\

y'_2&=-2y_1+-y_2

\end{align*}

why is there a $+-y_2$ in the given

ok going to take this a step at a time... so..

$A=\left[\begin{array}{c}1 & 5 \\ -2 & -1 \end{array}\right]$

then

$\left[\begin{array}{c}1-\lambda & 5 \\ -2 & -1-\lambda \end{array}\right]

=\lambda^2+9$ ????

Last edited: