- Thread starter
- #1

#### karush

##### Well-known member

- Jan 31, 2012

- 2,657

$\tiny{370.14.2.}$

For the matrix

$A=\left[

\begin{array}{rrrr}

1&0&1\\0&1&3

\end{array}\right]$

find a basis for NS(A) and $\dim{NS(A)}$

-----------------------------------------------------------

altho it didn't say I assume the notation means Null Space of A

Reducing the augmented matrix for the system $$AX=0$$ to reduced row-echelon form.

$\left[

\begin{array}{ccc}

1 & 0 & 1 \\ 0 & 1 & 3

\end{array} \right]

\left[ \begin{array}{c}

x_{1} \\ x_{2} \\ x_{3}

\end{array} \right]

=\left[ \begin{array}{c}

0 \\ 0

\end{array}

\right]$

OK just seeing if I am going in the right direction

For the matrix

$A=\left[

\begin{array}{rrrr}

1&0&1\\0&1&3

\end{array}\right]$

find a basis for NS(A) and $\dim{NS(A)}$

-----------------------------------------------------------

altho it didn't say I assume the notation means Null Space of A

Reducing the augmented matrix for the system $$AX=0$$ to reduced row-echelon form.

$\left[

\begin{array}{ccc}

1 & 0 & 1 \\ 0 & 1 & 3

\end{array} \right]

\left[ \begin{array}{c}

x_{1} \\ x_{2} \\ x_{3}

\end{array} \right]

=\left[ \begin{array}{c}

0 \\ 0

\end{array}

\right]$

OK just seeing if I am going in the right direction

Last edited: