- Thread starter
- #1

#### karush

##### Well-known member

- Jan 31, 2012

- 2,678

$\tiny{213(DOY)}$

$\displaystyle\int \sec x \tan x \: dx =$

(A) $\sec x + C$

(B) $\tan x + C$

(C) $\dfrac{\sec^2 x}{2}+ C$

(D) $\dfrac {tan^2 x}{2}+C $

(E) $\dfrac{\sec^2 x \tan^2 x }{2}+ C$

$(\sec x)'=\sec x \tan x$ so the answer is $\sec x +C$ (A)

$\displaystyle\int \sec x \tan x \: dx =$

(A) $\sec x + C$

(B) $\tan x + C$

(C) $\dfrac{\sec^2 x}{2}+ C$

(D) $\dfrac {tan^2 x}{2}+C $

(E) $\dfrac{\sec^2 x \tan^2 x }{2}+ C$

$(\sec x)'=\sec x \tan x$ so the answer is $\sec x +C$ (A)

Last edited: