What is Kepler's third law: Definition and 52 Discussions

In astronomy, Kepler's laws of planetary motion, published by Johannes Kepler between 1609 and 1619, describe the orbits of planets around the Sun. The laws modified the heliocentric theory of Nicolaus Copernicus, replacing its circular orbits and epicycles with elliptical trajectories, and explaining how planetary velocities vary. The three laws state that:

The orbit of a planet is an ellipse with the Sun at one of the two foci.
A line segment joining a planet and the Sun sweeps out equal areas during equal intervals of time.
The square of a planet's orbital period is proportional to the cube of the length of the semi-major axis of its orbit.The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law helps to establish that when a planet is closer to the Sun, it travels faster. The third law expresses that the farther a planet is from the Sun, the slower its orbital speed, and vice versa.
Isaac Newton showed in 1687 that relationships like Kepler's would apply in the Solar System as a consequence of his own laws of motion and law of universal gravitation.

View More On Wikipedia.org
  1. P

    Kepler's Third Law: Deriving Radius3/Period2

    How did Kepler come about to conclude that his third law is Radius3/Period2? How did he derive this equation?
  2. S

    Kepler's third law and multiple formulas

    Hi, I just got my physics test back and am hoping I can be helped with two questions. My instructor gave it back at the end of class leaving no time for going over it. 1) Suppose the period of the moon in its orbit about the Earth were 41.1 days and the moon were 768,000 km from earth...
Back
Top