Facebook Page
Twitter
RSS
Thanks Thanks:  0
+ Reply to Thread
Results 1 to 1 of 1
  1. MHB Master
    MHB Math Helper

    Status
    Offline
    Join Date
    Jan 2012
    Posts
    1,373
    Thanks
    130 times
    Thanked
    2,122 times
    Thank/Post
    1.546
    #1
    Quote Quote:
    $\displaystyle y\left( t \right) $ satisfies the initial value problem

    $\displaystyle \frac{\mathrm{d}^2y}{\mathrm{d}t^2} + 4\,y= -8\,H\left( t - 6 \right) , \quad y\left( 0 \right) = 2 , \,\, y'\left( 0 \right) = 0$

    Find the solution to the initial value problem using Laplace Transforms.
    Upon taking the Laplace Transform of the equation we have

    $\displaystyle \begin{align*} s^2\,Y\left( s \right) - s\,y\left( 0 \right) - y'\left( 0 \right) + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
    s^2 \,Y\left( s \right) - 2\,s - 0 + 4\,Y\left( s \right) &= -\frac{8\,\mathrm{e}^{-6\,s}}{s}\\
    \left( s^2 + 4 \right) Y\left( s \right) - 2\,s &= -\frac{8\,\mathrm{e}^{-6\,s}}{s} \\
    \left( s^2 + 4\right) Y\left( s \right) &= 2\,s - \frac{8\,\mathrm{e}^{-6\,s}}{s} \\
    Y\left( s \right) &= \frac{2\,s}{s^2 + 4} - \frac{8\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \\
    Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \end{align*}$

    The first term's Inverse Transform can be read off the tables. The second requires the second shift theorem: $\displaystyle \mathcal{L}\,\left\{ f\left( t - a \right) \, H\left( t - a \right) \right\} = \mathrm{e}^{-a\,s}\,F\left( s \right) $.

    $\displaystyle F\left( s \right) = \frac{4}{s\left( s^2 + 4 \right) }$

    Applying Partial Fractions:

    $\displaystyle \begin{align*} \frac{A}{s} + \frac{B\,s + C}{s^2 + 4} &\equiv \frac{4}{s\left( s^2 + 4 \right) } \\
    A\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \end{align*}$

    Let $\displaystyle s = 0 \implies 4\,A = 4 \implies A = 1$, then

    $\displaystyle \begin{align*} 1\left( s^2 + 4 \right) + \left( B\,s + C \right) s &\equiv 4 \\
    s^2 + 4 + B\,s^2 + C\,s &\equiv 4 \\
    \left( B + 1 \right) s^2 + C\,s + 4 &\equiv 0\,s^2 + 0\,s + 4 \end{align*}$

    It's clear that $\displaystyle B + 1 = 0 \implies B = -1$ and $\displaystyle C = 0$. Thus

    $\displaystyle \begin{align*} F\left( s \right) &= \frac{1}{s} - \frac{s}{s^2 + 4} \\
    f\left( t \right) &= 1 - \cos{ \left( 2\,t \right) } \\
    f\left( t - 6 \right) \, H\left( t - 6 \right) &= \left\{ 1 - \cos{ \left[ 2 \left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \end{align*}$

    So from our original DE

    $\displaystyle \begin{align*} Y\left( s \right) &= 2 \left[ \frac{s}{s^2 + 4} - \frac{4\,\mathrm{e}^{-6\,s}}{s\left( s^2 + 4 \right) } \right] \\
    \\
    y \left( t \right) &= 2\left[ \cos{ \left( 2\,t \right) } - \left\{ 1 - \cos{ \left[ 2\left( t - 6 \right) \right] } \right\} \, H\left( t - 6 \right) \right] \\
    &= 2 \left[ \cos{ \left( 2\,t \right) } + \left\{ \cos{ \left[ 2\left( t - 6 \right) \right] } - 1 \right\} \, H\left( t - 6 \right) \right] \end{align*} $

  2. # ADS
    Circuit advertisement
    Join Date
    Always
    Posts
    Many
     

Similar Threads

  1. Dharshan's question via email about a Laplace Transform
    By Prove It in forum Questions from Other Sites
    Replies: 0
    Last Post: March 16th, 2020, 02:09
  2. Henry's question via email about an Inverse Laplace Transform
    By Prove It in forum Questions from Other Sites
    Replies: 2
    Last Post: August 14th, 2016, 07:27
  3. Collin's question via email about a Laplace Transform
    By Prove It in forum Questions from Other Sites
    Replies: 0
    Last Post: August 12th, 2016, 11:01
  4. Emad's question via email about Inverse Laplace Transform
    By Prove It in forum Questions from Other Sites
    Replies: 1
    Last Post: March 16th, 2016, 17:24
  5. Douglas' question via email about Inverse Laplace Transform
    By Prove It in forum Questions from Other Sites
    Replies: 0
    Last Post: March 18th, 2014, 09:45

Tags for this Thread

Posting Permissions

  • You may not post new threads
  • You may not post replies
  • You may not post attachments
  • You may not edit your posts
  •  
Math Help Boards