Recent content by daxowax

  1. D

    I Lie derivative of a differential form

    Thanks, I think this has put me on the right track. My current attempt: Using the product rule, we get $$\mathcal{L}_v(v_i dx^i) = \mathcal{L}_v (v_i) dx^i + v_i \mathcal{L}_v (dx^i)$$ Interpreting \mathcal{L}_v as a directional derivative the first term equals v^j \partial_j v_i dx^i . For...
  2. D

    I Lie derivative of a differential form

    Hello, I have a maybe unusual question. In a paper, I recently found the equation $$\mathcal{L}_v(v_i dx^i) = (v^j \partial_j v_i + v_j \partial_i v^j) dx^i$$ Where v denotes velocity, x spatial coordinates and \mathcal{L}_v the Lie derivative with respect to v. Now I'm an undergraduate who...
  3. D

    Momentum density in curvilinear coordinates

    Thank you a lot for this elaborate answer! It helped me very much to understand these calculations. In the second last equation, you wrote I believe this was a typing error, and it should be $$ \mathrm{d} m=\mathrm{d}^3 \vec{x} \rho(\vec{x})=\sqrt{g} \rho \mathrm{d} \tilde{x}^1 \mathrm{d}...
  4. D

    Momentum density in curvilinear coordinates

    Hi, In an article on theoretical fluid dynamics I recently came across the following equation: $$M_i = \sqrt{g} \rho v_i$$ where ##M_i## denotes momentum density, ##v_i## velocity, ##\rho## the mass density and g is the determinant of the metric tensor. It is probably quite obvious, but I do...
Back
Top