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15.12 These cables have a relatively large
amount of mass per unit length (z2) and a
low tension (F). If the cables are dis-
turbed—say, by a bird landing on them—
transverse waves will travel along them at
aslowspeedv =V Flp.

15.13 Free-body diagram for a segment
of string. The force at each end of the
string is tangent to the string at the point of
application.

The string to the right of the segment (not
shown) exerts a force F, on the segment.

There can be a net vertical Fy,
force on the segment, but
the net horizontal force is
zero (the motion ls

tmnsverse) j F
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The string to the left of the scgment (not
shown) exerts a force ¥ on the segment.

Equation (15.13) confirms our prediction that the wave speed v should increase
when the tension F increases but decrease when the mass per unit length u
increases (Fig. 15.12).

Note that v, does not appear in Eq. (15.13); thus the wave speed doesn’t
depend on v,. Our calculation considered only a very special kind of pulse, but
we can consider any shape of wave disturbance as a series of pulses with differ-
ent values of v,. So even though we derived Eq. (15.13) for a special case, it is
valid for any transverse wave motion on a string, including the sinusoidal and
other periodic waves we discussed in Section 15.3. Note also that the wave speed
doesn’t depend on the amplitude or frequency of the wave, in accordance with
our assumptions in Section 15.3.

Wave Speed on a String: Second Method

Here is an alternative derivation of Eq. (15.13). If you aren’t comfortable with
partial derivatives, it can be omitted. We apply Newton’s second law, Ei = md,
to a small segment of string whose length in the equilibrium position is Ax
(Fig. 15.13). The mass of the segment is m = u Ax; the forces at the ends are rep-
resented in terms of their x- and y-components. The x-components have equal
magnitude F and add to zero because the motion is transverse and there is no com-
ponent of acceleration in the x-direction. To obtain Fy, and F,), we note that the
ratio Fy[F is equal in magnitude to the slope of the string at point x and that F [F
is equal to the slope at point x + Ax. Taking proper account of signs, we find
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The notation reminds us that the derivatives are evaluated at points x and x + Ax,
tespectively. From Eq. (15.14) we find that the net y-component of force is
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We now equate F, from Eq. (15.15) to the mass yx Ax times the y-component of
acceleration 8%y/at%. We obtain
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We now take the limit as Ax— 0. In this limit, the left side of Eq. (15.17)
becomes the derivative of dy/ax with respect to x (at constant f)—that is, the
second (partial) derivative of y with respect to x:
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Now, finally, comes the punch line of our story. Equation (15.18) has exactly the
same form as the wave equation, Eq. (15.12), that we derived at the end of Sec-
tion 15.3. That equation and Eq. (15.18) describe the very same wave motion, so
they must be identical. Comparing the two equations, we see that for this to be so,

we must have
U=, 'Ii (15.19)
= ;

(15.18)



which is the same expression as Eq. (15.13).

In going through this derivation, we didn’t make any special assumptions
about the shape of the wave. Since our derivation led us to rediscover Eq. (15.12),
the wave equation, we conclude that the wave equation is valid for waves on a
string that have any shape.

The Speed of Mechanical Waves

Equation (15.13) or (15.19) gives the wave speed for only the special case of
mechanical waves on a stretched string or rope. Remarkably, it turns out that for
many types of mechanical waves, including waves on a string, the expression
for wave speed has the same general form:

\/ Restoring force returning the system to equilibrium
v= - T Lt
Inertia resisting the return to equilibrium

To interpret this expression, let’s look at the now-familiar case of waves on a
string. The tension F in the string plays the role of the restoring force; it tends to
bring the string back to its undisturbed, equilibrium configuration. The mass of
the string—or, more properly, the linear mass density p—provides the inertia
that prevents the string from returning instantaneously to equilibrium. Hence we

15.4 Speed of a Transverse Wave
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have v = V/ Ffp for the speed of waves on a string.

In Chapter 16 we’ll see a similar expression for the speed of sound wavesin a
gas. Roughly speaking, the gas pressure provides the force that tends to return the
gas to its undisturbed state when a sound wave passes through. The inertia is pro-

vided by the density, or mass per unit volume, of the gas.

m Calculating wave speed

One end of a nylon rope is tied to a stationary support at the top of
a vertical mine shaft 80.0 m deep (Fig. 15.14). The rope is
stretched taut by a box of mineral samples with mass 20.0 kg
attached at the lower end. The mass of the rope is 2.00 kg. The
geologist at the bottom of the mine signals to his colleague at the
top by jerking the rope sideways. (a) What is the speed of a trans-

15.14 Sending signals along a vertical rope using transverse
waves.
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Mrope = 200kg———

80.0 m

Mpampics = 20.0kg

verse wave on the rope? (b) If a point on the rope is given a trans-
verse simple harmonic motion with a frequency of 2.00 Hz, how
many cycles of the wave are there in the rope’s length?

IDENTIFY: In part (a) the target variable is the wave speed. This
part involves dynamics—that is, the relationship between the wave
speed and the properties of the rope (tension and liner mass den-
sity). Part {b) involves kinematics, since we need toknow how wave
speed, frequency, and wavelength are related. (The target variable
is actually the number of wavelengths that fit into the length of
the rope.)

‘We’ll assume that the tension in the rope is provided by the
weight of the box of samples. In fact, the weight of the rope itself
contributes to the tension, which means that the tension is different
at the top and bottom of the rope. We’ll ignore this effect here,
since the weight of the rope is small compared to the weight of the
samples.

SET UP: We use the relationship v = V/F[p in part (a). If we neg-
lect the weight of the rope itself, the tension F is just equal to the
weight of the box. In part (b) we use the equation v = fA to find
the wavelength, which we then compare to the 80.0-m length of
the rope.

EXECUTE: (a) The tension in the rope (due to the sample box) is
F = Mgmpeeg = (200kg)(9.80 m/s?) = 196N
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