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Chapter 1

Introduction

In this chapter, we sketch the contents of this dissertation. These contents will be mostly
concerned with the properties of Dirac kets, Lippmann-Schwinger kets, and Gamow vectors.

Jim looked at the trash, and then looked at me, and back at the
trash again. He had got the dream fixed so strong in his head that he
couldn’t seem to shake it loose and get the facts back into place
again, right away. But when he did get the things straightened around,
he looked at me steady, without ever smiling, and says:
“What do dey stan’ for? I’s gwyne to tell you. When I got all wore
out wid work, en wid de callin’ for you, en went to sleep, my heart
wuz mos’ broke bekase you wuz los’, en I didn’ k’yer no mo’ what
become er me en de raf’. En when I wake up en fine you back agin,
all safe en soun’, de tears come en I could a got down on my knees
en kiss’ yo’ foot I’s so thankful. En all you wuz thinkin ’bout wuz
how you could make a foul uv ole Jim wid a lie. Dat truck dah is
trash; en trash is what people is dat puts dirt on de head er dey fren’s
en makes ’em ashamed.”
Then he got up slow, and walked to the wigwam, and went in
there, without saying anything but that. But that was enough. It
made me feel so mean I could kissed his foot to get him to
take it back.
It was fifteen minutes before I could work myself up to go and
humble myself to a nigger–but I done it, and I warn’t ever sorry for
it afterwards, neither. I didn’t do him no more mean tricks, and I
wouldn’t done that one if I’d a knowed it would make him feel that
way.

Mark Twain, The adventures of Huckleberry Finn

1
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This dissertation is about the description of Dirac kets, Lippmann-Schwinger kets and
Gamow vectors in Rigged Hilbert Space language. The Dirac kets are the state vectors
associated to any element in the spectrum of an observable. The Lippmann-Schwinger kets
are the eigenkets of the Hamiltonian that are relevant in scattering theory. They correspond
to the monoenergetic “in” and “out” scattering states. The Gamow vectors are the kets
that represent the state vector of a resonance. Our main goal is to show that the Rigged
Hilbert Space is the most suitable formalism to describe these kets. Rather than working in
an abstract fashion, examples shall be used to illustrate this description. The two examples
we shall mainly use are the harmonic oscillator and the square barrier potential.

In this dissertation, no experimental data is discussed. We shall rather focus on the
methods, the ideas and principles in terms of which such data can be interpreted and un-
derstood. We shall use the Schrödinger equation subject to different boundary conditions as
a model for the description of the data. Different boundary conditions upon the Schrödinger
equation will yield Dirac kets, Lippmann-Schwinger kets or Gamow vectors. Although such
a model involves an idealization, this is probably the best way to understand what these
state vectors are.

We should note that the RHS is not an interpretation of Quantum Mechanics, but rather
the most natural, concise and logic language to formulate such heuristic physical concepts
as Dirac kets, Lippmann-Schwinger kets or Gamow vectors.

1.1 A Brief History of the Rigged Hilbert Space

In the late 1920’s, Dirac introduced a new mathematical model of Quantum Mechanics
based upon a uniquely smooth and elegant abstract algebra of linear operators defined on
an infinite dimensional complex vector space equipped with an inner product norm [1].
Dirac’s abstract algebraic model of bras and kets (from the bracket notation for the inner
product) proved to be of great heuristic value in the ensuing years, especially in dealing
with Hamiltonians whose spectrum is continuous. However, there were serious difficulties in
finding a version of linear algebra which could be employed for making the actual numerical
calculations.

The Hilbert space (HS) was the first mathematical idealization proposed for Quantum
Mechanics [2]. However, as von Neumann explains in the introduction to his book [2], the
HS theory and Dirac’s formalism are two different things. Although there were attempts to
realize the Dirac model in Hilbert space, there was a number of serious problems resulting
from the fact that this formalism cannot allocate such things as bras, kets or the Dirac
delta function or give a mathematical meaning to the Dirac basis vector expansion, which
are essential in any physical formulation of Quantum Mechanics that deals with continuous
spectrum. Indeed in his textual presentation [1] Dirac himself states that “the bra and ket
vectors that we now use form a more general space than a Hilbert space” (see [1], page 40).

In the late 1940’s, L. Schwartz gave a precise meaning to the Dirac delta function as a
functional over a space of test functions [3]. This led to the development of a new branch
of functional analysis, the theory of distributions [3].
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About the same time, von Neumann published the theory of direct integral decomposi-
tions of a Hilbert space induced by a self-adjoint operator [4] (also valid for more general
cases). This spectral theory was closer to classical Fourier analysis, and represented an
improvement over former von Neumann’s spectral theory [2].

I. Gelfand always thought that von Neumann’s spectral theory was not the whole story
of the theory of linear operators defined on infinite dimensional vector spaces. Prompted by
the theory of distributions, he and his school introduced the Rigged Hilbert Space (RHS).
Starting out with this RHS and von Neumann’s direct integral decomposition, they were
able to prove the so-called Nuclear Spectral Theorem [5] (also known as the Gelfand-Maurin
Theorem). This theorem provides a more thorough information on the spectral properties
of an operator and treats the continuous and the discrete spectrum on the same footing.

One of the aspects of Dirac’s formalism, the continuity of the elements of the algebra
of observables, was discussed in the early 1960’s in Refs. [6, 7]. If two operators of the
algebra of observables satisfy the canonical (Heisenberg) commutation relation, at least one
of them cannot be continuous (i.e., bounded) with respect to the Hilbert space topology. In
Refs. [6, 7], it is shown that there are subdomains of the Hilbert space that can be endowed
with topologies that make those operators continuous; the largest of these subdomains is
the Schwartz space.

In the 1960’s, some physicists [8, 9, 10] independently realized that the RHS provides a
rigorous mathematical rephrasing of all of the aspects of Dirac’s formalism. In particular,
the Nuclear Spectral Theorem restates Dirac basis vector expansion along with the Dirac
bras and kets within a mathematical theory. Later on, other authors came to the same
conclusion [11]. Nowadays the RHS is textbook material [12, 13, 14, 15, 16, 17, 18].

During the past few years, the RHS has emerged as the natural mathematical language
in the theory of scattering and decay (cf. Refs. [19, 20, 21, 22] and references therein). The
RHS has also proved to be very useful in other areas of theoretical physics such as in the
construction of generalized spectral decompositions of chaotic maps [23, 24]. In fact, it
seems that the RHS is the best known language to deal with scattering and decay in a
consistent way. This is the very reason why we are using it here.

The Schrödinger equation is the dynamical equation that governs the behavior of a
quantum system. Thus any attempt to show that the RHS contains the mathematical
methods needed by Quantum Mechanics should show that the natural framework for the
solutions of the Schrödinger equation is the RHS. We recall that none of Refs. [19, 20, 21, 22]
took the Schrödinger equation as the dynamical equation. The objective of this dissertation
is to obtain the Dirac, Lippmann-Schwinger, and Gamow kets as solutions of the Schrödinger
equation subject to different boundary conditions, and to show that these solutions fall in
the RHS rather than just in the HS [25, 26, 27].

In the end, the results of this dissertation will allow us to draw a very important con-
clusion: the RHS is the natural language to deal with scattering and decay.
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1.2 Harmonic Oscillator

If the spectrum of an observable is discrete, the mathematical methods of the Hilbert space
are sufficient for the purposes of Quantum Mechanics. However, if the spectrum of an
observable has a continuous part, the mathematical methods of the Hilbert space are not
sufficient, and an extension of these methods is needed.

Physicists use Dirac’s bra-ket formalism in order to handle continuous spectra. Four of
the most important features of this formalism are:

1. To each element λ of the spectrum of an observable A, there corresponds a ket |λ〉
that is an eigenvector of A with eigenvalue λ,

A|λ〉 = λ|λ〉 . (1.2.1)

2. A wave function ϕ can be expanded by these eigenkets,1

ϕ =

∫

Spectrum(A)

dλ |λ〉〈λ|ϕ〉 . (1.2.2)

3. The eigenkets are normalized according to the following rule:

〈λ|λ′〉 = δ(λ− λ′) , (1.2.3)

where δ(λ− λ′) is the Dirac delta function.

4. All algebraic operations such as the commutator of two observables A and B are
always well defined,

[A,B] = AB −BA . (1.2.4)

In Quantum Mechanics, observables are assumed to be represented by self-adjoint, linear
operators defined on a Hilbert space H. If the operator A associated to an observable is
unbounded (which is the most common case in Quantum Mechanics), then A is only defined
on a subdomain D(A) on which A is self-adjoint. In this case, the Hilbert space methods are
not sufficient to make sense of (1.2.1)-(1.2.4). The RHS formalism provides the mathematics
that are needed to make sense of them.

On the other hand, one of the key assumptions of Quantum Mechanics is that the
quantity

(ϕ,Aϕ) (1.2.5)

represents the expectation value of the measurement of the observable A in the state ϕ, and
that

∆ϕA =
√
(ϕ,A2ϕ)− (ϕ,Aϕ)2 (1.2.6)

represents the uncertainty of the measurement of the observable A in the state ϕ (we assume
the wave function ϕ to be normalized to 1). The expectation value (1.2.5) cannot be

1Eq. (1.2.2) is referred to as the Dirac basis vector expansion.
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computed for every element of the Hilbert spaceH, but only for those ϕ ∈ H that also belong
to D(A). Similarly, the uncertainty (1.2.6) cannot be computed for every element of H, but
just for those ϕ ∈ D(|A|) [28]. If we take as physical states those normalizable functions for
which physical quantities such as the expectation value (1.2.5) and the uncertainty (1.2.6)
can be computed, then it is clear that not every square normalizable function (i.e., every
element of H) can represent a physical state. As we shall see, the natural space of physical
wave functions is a subspace Φ of H, because all physical quantities can be computed for
its elements. Further, Φ has all the niceties of Dirac’s formalism.

For example, let us consider the harmonic oscillator. The algebra of the harmonic oscil-
lator contains the observables position Q and momentum P . These observables are defined
as linear operators over the Hilbert space H, and they fulfill the Heisenberg commutation
relation:

[P,Q] = PQ−QP = −i~I . (1.2.7)

It is well known that Eq. (1.2.7) implies that either P or Q is an unbounded operator. This
implies that either P or Q cannot be defined on the whole Hilbert space—they are, in fact,
defined on certain dense subdomains D(P ) and D(Q) on which P and Q are self-adjoint.
Therefore, the expression PQ − QP is not defined on the whole Hilbert space. Moreover,
since D(P ) and D(Q) do not remain stable under the action of P and Q, the expression
PQ−QP is only defined on those ϕ ∈ H such that ϕ ∈ D(Q), ϕ ∈ D(P ), Pϕ ∈ D(Q) and
Qϕ ∈ D(P ). Therefore, the Heisenberg commutation relation (1.2.7) is not defined on the
whole of H, but only on a subspace of it. We recall that Eq. (1.2.7) leads to the Heisenberg
uncertainty relation:

∆ϕP ∆ϕQ ≥
~

2
. (1.2.8)

Now, if we want the expectation values of H , P and Q,

(ϕ,Aϕ) , A = H,P,Q , (1.2.9)

the uncertainties of H , P and Q,

∆ϕA , A = H,P,Q , (1.2.10)

and the Heisenberg uncertainty relation (1.2.8) to be well defined, then the square normal-
izable wave function ϕ must be not only in H, but also in D(P ), D(Q), D(H), D(|P |),
D(|Q|), D(|H|).

Hence, a subdomain Φ of H where all of the physical quantities (1.2.7)-(1.2.10) can be
computed is needed. Clearly, Φ should be stable under the action of P , Q and H . It seems
that the best candidate for Φ is given by the intersection of the domains of all the powers
of P , Q and H ,

Φ =

∞⋂

n=0
A=P,Q,H

D(An) . (1.2.11)

The space in Eq. (1.2.11) is the maximal invariant subspace of the algebra of the harmonic
oscillator. On Φ, all physical quantities such as expectation values and uncertainties can be
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computed. Algebraic relations such as the Heisenberg commutation relation are well defined
on Φ. In particular, the Heisenberg uncertainty principle is well defined on Φ.

The spectrum of the Hamiltonian of the harmonic oscillator is discrete, and its eigen-
vectors are square normalizable (actually, they are elements of Φ). This means that, as far
as the eigenvectors of H are concerned, there is no need to go beyond the Hilbert space
H. However, the spectrum of the position and momentum observables is continuous, and
coincides with the set of real numbers. Following the prescription (1.2.1), we associate an
eigenvector |p〉 to each of the elements p of the (continuous) spectrum of P ,

P |p〉 = p|p〉 , −∞ < p < +∞ . (1.2.12)

According to (1.2.2), a wave function can be expanded by these eigenkets,

ϕ =

∫ +∞

−∞
dp |p〉〈p|ϕ〉 . (1.2.13)

Obviously, the kets |p〉 are not in the Hilbert space—a larger linear space is needed to
accommodate them. It happens that those |p〉 acquire meaning as antilinear functionals
over the space Φ. That is, |p〉 ∈ Φ×, where Φ× represents the set of antilinear functionals
over the space Φ. Similar considerations hold for the position operator Q,

Q|x〉 = x|x〉 , |x〉 ∈ Φ× , −∞ < x < +∞ . (1.2.14)

ϕ =

∫ +∞

−∞
dx |x〉〈x|ϕ〉 , ϕ ∈ Φ . (1.2.15)

In this way, the Gelfand triplet
Φ ⊂ H ⊂ Φ× (1.2.16)

of the harmonic oscillator arises in a natural way. The Hilbert space H comes from the
requirement that the wave functions must be square normalizable. The subspace Φ is the
set of physical wave functions, i.e., the wave functions on which any expectation value,
any uncertainty and any commutator can be computed. The dual space Φ× contains the
eigenkets associated to the continuous spectrum of the observables of the algebra. These
eigenkets are defined as functionals over the space Φ, and they can be used to expand any
ϕ ∈ Φ as in Eq. (1.2.13) or Eq. (1.2.15).

These ideas will be elaborated in Chapter 3, where the Rigged Hilbert Space of the
harmonic oscillator is constructed.2 The harmonic oscillator will be studied from a different
point of view to that used in textbooks on Quantum Mechanics. The standard approach
to the harmonic oscillator is to start out with the (position) Schrödinger realization of the
algebra of operators, i.e., one takes for granted the well-known differential expressions for
Q, P and H . From these expressions one derives, for instance, the Heisenberg commutation

2Chapter 3 is a substantial improvement of and an extension to Ref. [29].
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relation. One can also derive that the Hamiltonian has a countable number of eigenval-
ues whose corresponding eigenvectors are given by the Hermite polynomials. The above
prescriptions of Dirac’s formalism are also assumed, although it is not mentioned that the
Hilbert space mathematics cannot incorporate them. In this dissertation, we shall not take
for granted the position realization of the algebra of the harmonic oscillator, but rather
derive this realization from algebraic assumptions. We shall just assume some algebraic
relations to be fulfilled by the operators P , Q and H , namely the Heisenberg commutation
relation

[P,Q] = PQ−QP = −i~I , (1.2.17)

and the expression of H in terms of P and Q,

H =
1

2µ
P 2 +

µω2

2
Q2 . (1.2.18)

We shall make an additional essential assumption: the existence of an eigenvector φ0 of the
energy operator,

Hφ0 = 1/2 ~ω φ0 . (1.2.19)

From this algebraic starting point, we shall derive first that H possesses a countable number
of eigenvalues ~w(n + 1/2), n = 0, 1, 2, . . ., corresponding to some eigenvectors φn. The
linear space spanned by the φn will be called Ψ. This linear space will be equipped with
two different topologies: the usual Hilbert space topology, which generates the Hilbert space
H from Ψ, and a stronger, nuclear topology, which generates the space Φ from Ψ. This
nuclear topology will make the elements of the algebra continuous operators. Once Φ is
constructed, we shall construct Φ× and therewith the Rigged Hilbert Space of the harmonic
oscillator:

Φ ⊂ H ⊂ Φ× . (1.2.20)

The eigenkets |p〉 and |x〉 will be continuous antilinear functionals over Φ, i.e., they will be
elements of Φ×. The eigenket equations Q|x〉 = x|x〉, P |p〉 = p|p〉 will find their mathemat-
ical setting as functional equations over Φ. The statement of the Gelfand-Maurin Theorem
will be given, which will guarantee the existence of a complete set of generalized eigenvec-
tors of the position and momentum operators. It will be shown that this theorem is the
mathematical statement that justifies the heuristic Dirac basis vector expansions (1.2.13)
and (1.2.15). We shall derive the Schrödinger representation of the harmonic oscillator. In
this representation, the standard expressions for P , Q and H in terms of differential oper-
ators will be obtained. The position realization of the RHS (1.2.20) by spaces of functions
and distributions will be also obtained. The space Φ will be realized by the Schwartz space
S(R), and Φ× will be realized by the space of tempered distributions S(R)×. Thus the
position realization of the RHS (1.2.20) will read

S(R) ⊂ L2(R) ⊂ S(R)× . (1.2.21)

The eigenvectors φn of H will be realized by the Hermite polynomials.
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Therefore, we shall give a proper mathematical framework for the operations that the
physics of the harmonic oscillator seems to need, and we will throw light onto the problem
of how the Schrödinger realization of the algebra of operators of the harmonic oscillator can
be singled out. The important point is that this realization, which is introduced ad hoc in
the literature, can be derived from proper algebraic assumptions within the RHS formalism.

1.3 A Rigged Hilbert Space of the Square Barrier Po-

tential

The fundamental equation of Quantum Mechanics is the Schrödinger equation. Thus, show-
ing that the RHS contains the mathematical methods needed by Quantum Mechanics is tan-
tamount to showing that the natural framework for the solutions of the Schrödinger equation
is the RHS. To show this, we shall use the example of the square barrier potential [25, 26].

The time dependent Schrödinger equation reads as

i~
∂

∂t
ϕ(t) = Hϕ(t) , (1.3.1)

where H denotes the Hamiltonian, and ϕ(t) denotes the value of the wave function ϕ at
time t. Dirac’s formalism solves this equation formally as follows: for each energy E in the
spectrum Sp(H) of the Hamiltonian, there exists a ket |E〉 that is an eigenvector of H ,

H|E〉 = E|E〉 , E ∈ Sp(H) . (1.3.2)

These eigenkets form a complete basis system that expands any wave function ϕ as

ϕ =

∫
dE |E〉〈E|ϕ〉 ≡

∫
dE ϕ(E)|E〉 . (1.3.3)

The time dependent solution of Eq. (1.3.1) is obtained by Fourier-transforming the time
independent solution of Eq. (1.3.3),

ϕ(t) =

∫
dE e−iEt/~ ϕ(E) . (1.3.4)

If the spectrum of the Hamiltonian has a continuous part, and if the energy E belongs
to this continuous part of the spectrum, then the corresponding eigenket |E〉 that solves
Eq. (1.3.2) is not square integrable, i.e., |E〉 is not an element of the Hilbert space. As in
the case of the harmonic oscillator, the Hilbert space cannot handle these non-normalizable
kets, whereas the RHS formalism can.

The main shortcoming of the RHS formalism is that it does not provide a prescription
to construct the spaces Φ, Φ×, or the eigenkets |E〉. The general statement of the Nuclear
Spectral Theorem [5] just assures the existence of the eigenkets |E〉, and assumes the spaces
Φ, Φ× to be given beforehand. Therefore, a systematic procedure to construct the RHS
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of Schrödinger Hamiltonians is needed. The fourth chapter of this dissertation provides
this systematic procedure [25, 26]. In order to make things clear, we shall illustrate this
procedure through the square barrier potential, although the same method can be applied
to a large class of potentials.

The procedure to construct the RHS of the square barrier potential is as follows. First, we
write down the time independent Schrödinger equation in the radial position representation:

〈r|H|E〉 ≡ h〈r|E〉 = E〈r|E〉 , (1.3.5)

where h is the following Schrödinger differential operator:

h ≡ − ~2

2m

d2

dr2
+ V (r) , (1.3.6)

and

V (r) =





0 0 < r < a
V0 a < r < b
0 b < r <∞

(1.3.7)

is the square barrier potential. By applying the Sturm-Liouville theory (Weyl theory) [30]
to the time independent Schrödinger equation (1.3.5), we obtain a domain D(H) on which
the differential operator h is self-adjoint. This domain induces the self-adjoint Hamiltonian
H . The next step is to compute the Green functions (i.e., the resolvent) of H , the spectrum
of H (which in our example is [0,∞)), and the unitary operator U that diagonalizes H . The
operator U allows us to obtain the energy representation of the Hilbert space and the direct
integral decomposition induced by the Hamiltonian. The direct integral decomposition is
not enough for the purposes of Quantum Mechanics. The reasons why the direct integral
decomposition (i.e., the Hilbert space methods) is not enough for the purposes of Quantum
Mechanics are the same as in the case of the harmonic oscillator:

(i) The expectation values and the uncertainties of the Hamiltonian in any physical wave
function should be well defined.

(ii) Algebraic operations should be well defined. Since D(H) is not stable under the
action of H , the powers of H are not well defined on all of the elements of H. Hence, a
subdomain Φ included in D(H) that remains stable under the action of H and all of its
powers is needed,

Hn : Φ 7−→ Φ , n = 0, 1, 2, . . . (1.3.8)

(Obviously, if Eq. (1.3.8) holds, then the expectation values and the uncertainties of H in
any ϕ of Φ are well defined.)

(iii) For each E ∈ Sp(H), there is a Dirac ket |E〉 such that the eigenequation (1.3.2)
and the Dirac basis vector expansion (1.3.3) hold. The kets |E〉 are defined in terms of the



1.3 A Rigged Hilbert Space of the Square Barrier Potential 11

eigenfunctions 〈r|E〉 of (1.3.5) as
|E〉 : Φ 7−→ C

ϕ 7−→ 〈ϕ|E〉 :=
∫ ∞

0

ϕ(r)〈r|E〉dr . (1.3.9)

After realizing that the Hilbert space is not sufficient to account for (i)-(iii), we construct
the RHS

Φ ⊂ H ⊂ Φ× (1.3.10)

of the square barrier potential. This RHS accounts for (i)-(iii), because of the following
reasons:

(1) The space Φ is stable under the action of H (this will give (1.3.8)). On the space
Φ, all algebraic operations involving the Hamiltonian H are well defined. In particular, the
expectation values of the Hamiltonian in any element of Φ are well defined. The elements
of Φ are represented by well-behaved functions, in contrast to the elements of the Hilbert
space, which are represented by sets of equivalent functions that can vary arbitrarily on any
set of zero Lebesgue measure. As in the example of the harmonic oscillator, we conclude that
not every element of the Hilbert space can be a physically acceptable wave function—only
the elements of Φ fulfill all the conditions to be a wave function.

(2) The ket |E〉, as defined by (1.3.9), is a well-defined antilinear functional on Φ, i.e.,
|E〉 ∈ Φ×. In the energy representation, |E〉 acts as the antilinear Schwartz delta functional.
Moreover, |E〉 is an eigenvector of H as in Eq. (1.3.2). To see this, we have to recall that in
RHS language, Eq. (1.3.2) means that

〈Hϕ|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ . (1.3.11)

The action of H can be extended to the kets |E〉 in Φ× as follows:

〈ϕ|H×|E〉 = 〈Hϕ|E〉 , ∀ϕ ∈ Φ . (1.3.12)

Because H is continuous on Φ, the operator H× is a uniquely defined extension of H . Using
the definition (1.3.12), we rewrite Eq. (1.3.11) as

〈ϕ|H×|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ . (1.3.13)

Omitting the arbitrary ϕ in this equation leads to

H×|E〉 = E|E〉 , (1.3.14)

which is the same as Eq. (1.3.2). (Note that in Eq. (1.3.14) we have denoted the action of
the Hamiltonian on the ket |E〉 by H× and not just by H . We shall use this notation in
order to stress that the Hamiltonian is acting on vectors that lie outside the Hilbert space.)

(3) Any element of Φ can be expanded in terms of the eigenkets |E〉 as in Eq. (1.3.3).

From (1)-(3) it follows that, when continuous spectrum is present, the natural framework
for the solutions of the Schrödinger equation is the Rigged Hilbert Space rather than just
the Hilbert space.
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1.4 Scattering off the Square Barrier Potential

The above procedure to construct RHSs of Schrödinger Hamiltonians also shows that the
RHS can incorporate boundary conditions imposed upon the Schrödinger equation:

Schrödinger equation
+

boundary conditions
−→ Φ ⊂ H ⊂ Φ×.

The Hilbert space H is needed to incorporate the requirement that the wave functions are
square integrable. Moreover, H singles out the scalar product used to compute probability
amplitudes. The space Φ× is needed to incorporate the Dirac kets associated with the
eigenfunctions of the time independent Schrödinger equation subject to boundary conditions.
The space Φ is needed to incorporate the wave functions on which the Dirac kets act as
continuous antilinear functionals and for which all the algebraic operations and all the
expectation values are well defined.

We are now going to see that the RHS formalism is also able to incorporate the boundary
conditions of a scattering system. In essence, the RHS can accommodate the Lippmann-
Schwinger equation.3 To illustrate this, we shall use the example of scattering off the square
barrier potential.

Loosely speaking, we send a beam of prepared initial in-states ϕin towards the square
barrier potential. After the collision takes place, ϕin becomes ϕout. We then measure the
probability to find a final out-state ψout. The amplitude of this probability is given by

(ψout, ϕout) = (ψout, Sϕin) , (1.4.1)

where S is the S-matrix. The canonical understanding is that the initial in-state ϕin and
the final out-state ψout are asymptotic forms of the so-called in-state ϕ+ and out-state ψ−

in the remote past and in the distant future, respectively. In terms of these, the probability
amplitude (1.4.1) reads

(ψ−, ϕ+) . (1.4.2)

The asymptotic states ϕin and ψout are related to the “exact” states ϕ+ and ψ− by the
Møller operators,

Ω+ϕ
in = ϕ+ , (1.4.3a)

Ω−ψ
out = ψ− . (1.4.3b)

It is customary to split up the (total) Hamiltonian H into the free Hamiltonian H0 and the
potential V ,

H = H0 + V . (1.4.4)

3For a mathematical approach to the Lippmann-Schwinger equation in terms of RHSs of Hardy functions
see Ref. [31].
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The potential V is interpreted as the interaction between the components of the initial
prepared states, for instance, the interaction between the in-going beam and the target.
The initial in-state ϕin and the final out-state ψout evolve under the influence of the free
Hamiltonian H0, whereas the in-state ϕ+ and the out-state ψ− evolve under the influence
of the (total) Hamiltonian H .

Therefore, the dynamics of a scattering system is governed by the Schrödinger equation
subject to certain boundary conditions. These boundary conditions specify what is “in”
and what is “out.” The Lippmann-Schwinger equation for the in- and out-kets |E±〉 has
those “in” and “out” boundary conditions built into it,4

|E±〉 = |E〉+ 1

E −H0 ± iǫ
V |E±〉 . (1.4.5)

Eq. (1.4.5) is an integral equation, and is equivalent to the Schrödinger equation

H×|E±〉 = E|E±〉 (1.4.6)

subject to certain boundary conditions. The most important of these boundary conditions
is built into the “infinitesimal imaginary parts” ±iǫ, which characterize what is “in” (+iǫ)
and what is “out” (−iǫ). We then say that the |E±〉 are eigenvectors of the Hamiltonian
whose corresponding eigenvalues have an “infinitesimal imaginary part.”

Needless to say, the Lippmann-Schwinger kets |E±〉 are, mathematically speaking, de-
fined as antilinear functionals. The in-ket |E+〉 acts on the in-states ϕ+, while the out-ket
|E−〉 acts on the out-states ψ−. Since the eigenvalues of the kets |E±〉 have an “infinitesimal
imaginary part,” the wave functions 〈ϕ+|E+〉 and 〈ψ−|E−〉 should have meaning not only
for real energies, but also for energies with an “infinitesimal imaginary part.” Mathemat-
ically this means that the wave functions 〈ϕ+|E+〉 and 〈ψ−|E−〉 should be the boundary
values of analytic functions of the (complex) variable E. The analytical properties satisfied
by the in-ket |E+〉 (or, equivalently, by the wave function 〈ϕ+|E+〉) are different to those
satisfied by the out-ket |E−〉 (or, equivalently, by the wave function 〈ψ−|E−〉). In incorpo-
rating these two different types of boundary conditions into the RHS framework, we will
end up constructing two different RHSs. One RHS corresponds to the in-states ϕ+,

Φ− ⊂ H ⊂ Φ×
− , (1.4.7)

while the other RHS corresponds to the out-states ψ−,

Φ+ ⊂ H ⊂ Φ×
+ . (1.4.8)

The Lippmann-Schwinger kets belong to the dual spaces of these RHSs,

|E±〉 ∈ Φ×
∓ . (1.4.9)

4In Eq. (1.4.5), the symbol |E〉 denotes an eigenket of the free Hamiltonian H0, not the eigenket of the
total Hamiltonian of Eq. (1.3.9).
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The wave functions ϕ+ are usually called in-states, whereas the wave functions ψ−

are called out-states. Occasionally, we shall call the ψ− observables (or out-observables),
because they are determined by the registration apparatus. In order to grasp the meaning
of this terminology, let us consider the matrix element (ψ−, ϕ+). This scalar product is the
amplitude of the probability to observe the out-state ψ− in the in-state ϕ+,

Pϕ+→ψ− = |(ψ−, ϕ+)|2 . (1.4.10)

Since ψ− is determined by the property that we want to measure, it stands to reason that
we call it observable and denote it by a specific symbol. In order to stress the distinction
between states and observables, the probability (1.4.10) may be written as

Pϕ+→ψ− = Tr(Pψ−Wϕ+) , (1.4.11)

where Tr stands for trace and

Wϕ+ ≡ |ϕ+〉〈ϕ+| , (1.4.12)

Pψ− ≡ |ψ−〉〈ψ−| . (1.4.13)

The Lippmann-Schwinger equation will be studied in Chapter 5 within the example of the
square barrier potential. We shall first write Eq. (1.4.5) in the radial position representation,

〈r|E±〉 = 〈r|E〉+ 〈r| 1

E −H0 ± iǫ
V |E±〉 . (1.4.14)

Next, we shall obtain the Lippmann-Schwinger eigenfunctions 〈r|E±〉. The continuation of
these eigenfunctions to complex values of the energy, that we denote by 〈r|(E ± iǫ)±〉, will
be used to define the action of the Lippmann-Schwinger kets:

〈ϕ+|E+〉 := lim
ǫ→0

∫ ∞

0

dr 〈ϕ+|r〉〈r|(E + iǫ)+〉 , ϕ+ ∈ Φ− , (1.4.15a)

〈ψ−|E−〉 := lim
ǫ→0

∫ ∞

0

dr 〈ψ−|r〉〈r|(E − iǫ)−〉 , ψ− ∈ Φ+ . (1.4.15b)

This definition needs a comment. The action of the Lippmann-Schwinger kets is defined
as the limits in Eq. (1.4.15) in order to keep track of the ±iǫ boundary conditions. The
±iǫ boundary conditions just mean that we are approaching the cut (i.e., the spectrum of
H) either from above (+iǫ) or from below (−iǫ). Therefore, the action of the Lippmann-
Schwinger kets |E±〉 should be viewed as the limit of the integrals in Eq. (1.4.15) when ǫ
tends to 0.

The conditions under which the ket (1.4.15a) is well defined are in general different to
those under which (1.4.15b) is well defined. Since these conditions determine the space of
wave functions on which the kets act, the space Φ− on which the in-ket |E+〉 acts is different



1.5 The Gamow Vectors of the Square Barrier Potential Resonances 15

from the space Φ+ on which the out-ket |E−〉 acts. Although the precise form of the spaces
Φ± will not be given, we shall provide a list of necessary conditions that must be satisfied
by the elements of Φ±. For the sake of definiteness, we shall assume sometimes that those
spaces are, in the energy representation, subspaces of spaces of Hardy class (see also [31]).

Once the Lippmann-Schwinger kets are constructed, the complex basis vector expansions
of the states ϕ+ and of the observables ψ− follow:

ϕ+ =

∫ ∞

0

dE |E+〉〈+E|ϕ+〉 , (1.4.16a)

ψ− =

∫ ∞

0

dE |E−〉〈−E|ψ−〉 . (1.4.16b)

We will also construct the Møller operators and the S-matrix, and express the matrix element
(1.4.2) in terms of the in- and out-Lippmann-Schwinger kets,

(ψ−, ϕ+) =

∫ ∞

0

dE 〈ψ−|E−〉S(E)〈+E|ϕ+〉 . (1.4.17)

This expression will be used later to derive the complex basis vector expansion generated
by the Gamow vectors.

We remark that the RHS (1.3.10) was called a RHS of the square barrier potential and
not the RHS of the square barrier potential, because different boundary conditions upon
the Schrödinger equation yield different RHSs for the same potential. The space Φ of
Eq. (1.3.10) is neither Φ+ nor Φ−, because Φ incorporates neither the “in” nor the “out”
boundary conditions of the scattering off the square barrier potential [32].

1.5 The Gamow Vectors of the Square Barrier Poten-

tial Resonances

The Gamow vectors are the state vectors of resonances. They are defined as eigenvectors
of the Hamiltonian with a complex eigenvalue. The description of the Gamow vectors, im-
possible in the Hilbert space, can be accomplished within the RHS formulation of Quantum
Mechanics.

Experimentally, resonances often appear as peaks in the cross section whose shape resem-
ble the well-known Breit-Wigner distribution. The Breit-Wigner distribution has two char-
acteristic parameters: the energy ER at which the distribution reaches its maximum, and
its width ΓR at half-maximum. The inverse of ΓR is the lifetime of the decaying state [33].
The peak of the cross section with Breit-Wigner shape is related to a first-order pole of the
S-matrix in the energy representation S(E) at the complex number zR = ER − iΓR/2. The
theoretical expression of the cross section in terms of S(E) fits the shape of the experimental
cross section in the neighborhood of ER. This is why the first-order pole of the S-matrix is
often taken as the theoretical definition of a resonance.
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Although a resonance has a finite lifetime, it is otherwise assigned all the properties
that are also attributed to stable particles, like angular momentum, charge, spin, parity and
other particle labels. For example, consider [34] the bombardment of stable Pb206 nuclei by
a beam of α particles whose energy is peaked around 5.4 MeV. The cross section for α+Pb206

scattering has an incredibly sharp resonance whose width is of the order of 10−18 eV. For
times (after the α+Pb206 scattering has taken place) much less than 138 days, there will
be nuclei in the target that have all the chemical and physical properties associated with
the atomic numbers Z = 84, A = 210, and we call these nuclei Po210. The probability
to find Po210 is not stationary, however, but decreases exponentially with a characteristic
decay time of 138 days. For times short compared to 138 days, Po210 is to all intends an
atomic nucleus. In fact, we include it (and the rest of unstable nuclei) in the periodic table
of elements along with the stable nuclei.

In particle physics the situation is the same (cf. for instance [35]). Unstable particles are
listed along with the stable ones in the Particle Data Table [36] and attributed values for the
mass, the spin and the width (or lifetime). Thus, stable particles differ from the unstable
ones by the value of their width, which is zero in the case of stable particles and different from
zero in the case of unstable ones. Hence, phenomenologically, unstable particles are not less
fundamental than the stable ones, which are, according to current experimental evidence,
only the proton, the electron, the photon, the neutrinos and possibly the graviton.

Theoretically, stable and unstable particles are usually treated on a different footing.
The reason is that an unstable particle, unlike a stable one, cannot be described within the
Hilbert space formalism. However, there are some theoretical models that treat stable and
unstable particles on the same footing. For instance, in the eightfold way of Gell-Mann and
Ne’eman [37] many multiplets contain both stable and unstable particles—no fundamental
distinction between stable and unstable particles is made.

Because resonances are particles with a finite lifetime—not just peaks in the cross
section—a state vector description for resonances is needed. The Gamow vectors are the
natural state vectors of resonances [27]. The description of resonances by Gamow vectors
allows us to interpret them as autonomous experimentally decaying physical systems.

The energy eigenfunction with complex eigenvalue was originally introduced by Gamow
in his paper on α-decay of atomic nuclei [38], and used thereafter by a number of authors
(see for example, Refs. [39, 40, 41, 42, 43] and references therein). The real part of the
complex eigenvalue is associated with the energy of the resonance, and the imaginary part is
associated with the inverse of the lifetime. The Gamow eigenfunctions have an exponentially
decaying time evolution, in accordance with the exponential law observed in α decay of
radioactive nuclei [44, 45, 46, 47]. The Gamow eigenfunctions are obtained as solutions of
the Schrödinger equation subject to the purely outgoing boundary condition. This condition
was introduced by Siegert [48].

Gamow’s treatment is merely heuristic though, and it cannot be made rigorous in the
Hilbert space theory, because self-adjoint operators on a Hilbert space can only have real
eigenvalues. Recall however that Dirac’s bra-ket formulation of Quantum Mechanics was
also heuristic and without mathematical justification until the RHS formulation of Quantum
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Mechanics was suggested [8, 9, 10]. During the past few years, it has become clear that
the RHS mathematics also asserts the legitimacy of Gamow’s proposition (cf. Refs. [19, 20,
21, 22] and references therein). In RHS language, the Gamow vectors are eigenvectors of
the dual extension of the self-adjoint Hamiltonian. This extension can surely have complex
eigenvalues.5

A complementary approach to resonances started with Breit and Wigner, who described
a resonance by means of the Breit-Wigner distribution [50]. (Curiously enough, this distri-
bution had been independently introduced five years earlier by Fock [51].) Now, if a vector
is to obey the exponential decay law and also to correspond to the Breit-Wigner distribu-
tion, then this distribution must be nonzero over the full energy real line (see Ref. [52] and
references therein). Because the spectrum of the Hamiltonian is bounded from below, say
[0,∞), the Breit-Wigner distribution then has to be defined also at energies that do not
belong to the physical spectrum [52]. This seems to imply that the exponential decay law
is incompatible with the Breit-Wigner distribution, because the Breit-Wigner distribution
leads to the exponential law only when is defined over the full energy real line (−∞,∞)
rather than just over the physical spectrum [0,∞). However, it has been shown that even
though the spectrum of the Hamiltonian is [0,∞), the Breit-Wigner distribution can be
defined on the full energy real line by means of RHSs of Hardy functions [20], and hence the
Breit-Wigner distribution yields the exponential law. The essential ingredient to do so is the
so-called van Winter’s theorem [53]. This theorem allows us to piece together the physical
spectrum, which coincides with [0,∞), and the support of the Breit-Wigner distribution,
which coincides with (−∞,∞).

Thus, there are two ways of describing a resonance: the Gamow vectors, which are
eigensolutions of the Schrödinger equation subject to a purely outgoing boundary condition,
and the Breit-Wigner distribution, which arises from the resonance pole of the S-matrix. It
is the major goal of this dissertation to show that the energy representation of the Gamow
vectors is given by the Breit-Wigner distribution. The square barrier potential will be used
to illustrate this point.

The Gamow vectors of the square barrier potential will be constructed in Chapter 6.
The Gamow eigenkets will be defined as the solutions of a homogeneous integral equation
of the Lippmann-Schwinger type. If we denote the Gamow ket associated to the complex
energy zR = ER − iΓR/2 by |z−R〉, then |z−R〉 satisfies the following integral equation:

|z−R〉 =
1

zR −H0 + i0
V |z−R〉 . (1.5.1)

This equation was introduced (in a different language) by A. Mondragón6 et al. in Ref. [40].
It is well known that the poles of a scattering system come in pairs, i.e., if zR = ER− iΓR/2

5Eigenvectors of the dual extension of self-adjoint operators with complex eigenvalues in the RHS were
systematically studied for the first time in the reduction of SO(2,1) with respect to its noncompact sub-
group [49].

6I am indebted to Prof. Alfonso Mondragón for his careful and patient explanations on Eq. (1.5.1).



18 1 Introduction

is a pole of the S-matrix, then z∗R = ER+ iΓR/2 is also a pole of the S-matrix. The Gamow
vector associated to the pole z∗R is denoted by |z∗+R 〉, and satisfies the following integral
equation:

|z∗+R 〉 =
1

z∗R −H0 − i0
V |z∗+R 〉 . (1.5.2)

In Chapter 6, we will solve the integral equations (1.5.1) and (1.5.2) in the radial position
representation. In this representation, these integral equations are equivalent to the time
independent Schrödinger equation subject to a purely outgoing boundary condition. The
resonance spectrum is then singled out by this purely outgoing boundary condition. As
we shall see, this is the same resonance spectrum as that defined by the poles of the S-
matrix [27]. The Gamow kets will be shown to be generalized eigenvectors of the Hamiltonian
with complex eigenvalues:

H×|z−R〉 = zR|z−R〉 , |z−R〉 ∈ Φ×
+ , (1.5.3a)

H×|z∗+R 〉 = z∗R|z∗+R 〉 , |z∗+R 〉 ∈ Φ×
− . (1.5.3b)

Next, we shall compute the energy representation of these Gamow vectors. We shall consider
two energy representations. One energy representation will be associated to the physical
spectrum, which is [0,∞) in our example. The other energy representation will be associated
to the support of the Breit-Wigner distribution, which is (−∞,∞). We will show that the
[0,∞)-energy representation of the Gamow vectors is the complex delta function, and that
its (−∞,∞)-energy representation is given by the Breit-Wigner distribution.

Once the Gamow kets are constructed, we shall see that their time evolution is governed
by a semigroup [20]. More precisely, we shall see that the time evolution of |z−R〉 can be
defined only for positive values of time, whereas the time evolution of |z∗R+〉 can be defined
only for negative values of time:

e−iH
×t/~|z−R〉 = e−izRt/~|z−R〉 = e−iERt/~e−ΓRt/(2~)|z−R〉 , for t > 0 only , (1.5.4a)

e−iH
×t/~|z∗R+〉 = e−iz

∗
Rt/~|z∗R+〉 = e−iERt/~eΓRt/(2~)|z∗R+〉 , for t < 0 only . (1.5.4b)

Therefore, the Gamow vectors that we shall construct have all the properties that are
demanded from a resonance state:

1. They are eigenvectors of the (dual extension of the self-adjoint) Hamiltonian with
complex eigenvalues. These eigenvalues are also poles of the S-matrix.

2. They correspond to the Breit-Wigner amplitude in the (−∞,+∞)-energy representa-
tion.

3. Their time evolution is governed by a semigroup, and obeys the exponential decay
law.

The Gamow vectors will be used also as basis vectors. The expansion generated by
the Gamow vectors will be called the complex basis vector expansion. We shall see that
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the Gamow vectors do not form a complete basis system. An additional set of Dirac kets
corresponding to the energies that lie in the negative real axis of the second sheet of the
Riemann surface will be added to complete them. As we shall see, the expansion of an
in-state ϕ+ ∈ Φ− reads

ϕ+ =

∫ −∞

0

|E−〉S(E)〈+E|ϕ+〉dE − 2πi
∞∑

n=0

rn|z−n 〉〈+zn|ϕ+〉 , (1.5.5)

where zn = En− iΓn/2 represents the n-th resonance energy of the square barrier potential,
and rn represents the residue of the S-matrix S(E) at zn. In Eq. (1.5.5), the infinite sum
contains the resonances contribution, whereas the integral is associated to the background.

As we said above, the Gamow vectors have a semigroup time evolution. This semigroup
time evolution expresses the time asymmetry built into a decaying process. Some authors
such as Fonda et al. [52], Cohen-Tannoudji et al. [54], or Goldberger and Watson [55] have
called this time asymmetry the irreversibility of a decaying process. In recent years, many
authors using various languages have claimed that time asymmetry is a feature of the time
evolution of any closed quantum systems (not just of a resonance process). For instance,
Gell-Mann and Hartle have introduced the time asymmetry of closed quantum systems in
terms of decoherence histories [56]. Haag uses the concept of event [57]. Bohm, Antoniou,
and Kielanowski use the preparation-registration arrow of time [58]. Although we shall not
discuss time asymmetry in this dissertation, we would like to mention that, for this author,
the time asymmetry of a closed quantum system is built into the propagators (for more on
this see Ref. [32], where the arrow of time of Quantum Electrodynamics is discussed).

1.6 Time Reversal

We shall also study how the time asymmetry of the resonances behaves under the action of
the time reversal operator [59]. In order to do it, we shall apply the time reversal operator
to the Gamow vectors. Essentially, we will show in Chapter 7 that the so-called “growing”
Gamow vector is really the time reversed of the so-called “decaying” Gamow vector [60].
We shall also study more exotic possibilities, which are based on the work by Wigner.

When constructing projective representations of the Poincaré group extended by time re-
versal and parity, Wigner [61, 62] found that there are four possibilities. Three of these possi-
bilities imply a doubling of the space supporting the representation. Later on, J. F. Cariñena
and M. Santander7 studied the projective representations of the Galilei group extended by
time inversion and parity [63]. They also found four possibilities for the case with mass.
As in the relativistic case, the standard case does not yield a doubling of the space that
supports the representation, whereas the other three possibilities do yield a doubling.

Based on the work by Wigner [61, 62], Bohm has tried to find a meaning to the doubling
of spaces [64]. In Chapter 7, we shall construct this doubling explicitly for one of the
non-standard time reversal operators in the nonrelativistic domain.

7I thank Professor M. Santander for making me aware of his paper with Professor J. F. Cariñena and
for his explanations on it.
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1.7 Synopsis

The organization of this dissertation is as follows:

In Chapter 2, we review the mathematical methods of the Rigged Hilbert Space. The
algebraic structures (linear spaces), the topological structures (topological spaces), and their
combinations (linear topological spaces) are introduced in a pedestrian way. The countably
Hilbert spaces, which are the class of linear topological spaces almost exclusively used in
Quantum Mechanics, are studied in more detail. At the end of Chapter 2, the Hilbert space
mathematical methods used in this dissertation are presented.

In Chapter 3, we construct the RHS of the harmonic oscillator.8 This system is stud-
ied from a different point of view to that used in Quantum Mechanics textbooks. Instead
of assuming that the position and momentum operators are given by the multiplication
and derivative operators, we shall make three simple algebraic assumptions: the Heisen-
berg commutation relation, the expression of the Hamiltonian in terms of the position
and momentum operators, and the existence of an eigenvector of the Hamiltonian. From
these algebraic assumptions, we shall construct the RHS of the harmonic oscillator and the
Schrödinger representation of the algebra of the harmonic oscillator.

In Chapter 4, we construct a RHS of the square barrier Hamiltonian by means of the
Sturm-Liouville theory. This theory provides the direct integral decomposition of the Hilbert
space. From this direct integral decomposition, we shall construct the RHS.

In Chapter 5, we turn to the description of the Lippmann-Schwinger equation within the
RHS formalism. First, the Lippmann-Schwinger eigenfunctions will be computed. We shall
define the Lippmann-Schwinger eigenkets in terms of the Lippmann-Schwinger eigenfunc-
tions and see that they are defined on different spaces of wave functions. The Lippmann-
Schwinger kets will be used as basis vectors to expand the wave functions. As well, the
Møller operators and the S-matrix are explicitly constructed.

In Chapter 6, we construct the Gamow vectors of the square barrier resonances. First,
we compute the resonance energies as poles of the S-matrix. The integral equation of
A. Mondragón et al. for the Gamow vectors will be translated into the RHS language. The
Gamow eigenfunctions in the position representation are obtained as the solutions of the
time independent Schrödinger equation subject to the purely outgoing boundary condition.
These eigensolutions will be associated to certain eigenfunctionals (Gamow kets). The
[0,∞)-energy representation of the Gamow eigenfunction will be related to the complex
delta function, and the (−∞,∞)-energy representation of the Gamow eigenfunction will
be related to the Breit-Wigner amplitude. The semigroup time evolution of the Gamow
vectors will also be computed. The Gamow vectors will be used as basis vectors. We
shall see that the Gamow vectors do not form a complete basis—an additional set of kets
needs to be added in order to obtain a complete basis. The time asymmetry of the purely
outgoing boundary condition will be disclosed. To finish the chapter, we shall elaborate on
the exponential decay law of the Gamow vectors.

In Chapter 7, we study the behavior of resonances under the time reversal operation. We

8This chapter is a substantial improvement of and an extension to Ref. [29].
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shall study the standard time reversal operator and also a non-standard one, which yields
a doubling of the RHS.





Chapter 2

Mathematical Framework of
Quantum Mechanics

In this chapter, we review the mathematical methods of the Rigged Hilbert Space. The
algebraic structures (linear spaces), the topological structures (topological spaces), and their
combinations (linear topological spaces) are introduced in a pedestrian way. The countably
Hilbert spaces, which are the class of linear topological spaces almost exclusively used in
Quantum Mechanics, are studied in more detail. At the end of this chapter, the Hilbert
space mathematical methods used in this dissertation are presented.

They rushed down the street together, digging every-
thing in the early way they had, which later became so much
sadder and perceptive and blank. But then they danced down
the streets like dingledodies, and I shambled after as I’ve been
doing all my life after people who interest me, because the
only people for me are the mad ones, the ones who are mad to
live, mad to talk, mad to be saved, desirous of everything at
the same time, the ones who never yawn or say a commonplace
thing, but burn, burn, burn like fabulous yellow roman can-
dles exploding like spiders across the stars and in the middle
you see the blue centerlight pop and everybody goes
“Awww!”.

Jack Kerouac, On the road
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2.1 Linear Spaces

2.1.1 Introduction

There are some major principles in Quantum Mechanics that seem to come from experi-
mental data. Among them, there are the linear superposition principle and the probabilistic
nature of Quantum Mechanics. These two principles suggest that the mathematical ideal-
ization of Quantum Mechanics should include a linear space Ψ with a scalar product ( · , · )
defined on it. Then (Ψ, ( · , · )) will be our primary mathematical object.

2.1.2 Linear Spaces and Scalar Product

A linear space Φ is a set of elements ϕ, ψ, φ, . . . which is assigned an algebraic structure that
is a generalization of certain aspects of the three-dimensional real space R3. The elements,
also called vectors, are defined to obey rules which are well-known properties of vectors in
R3. The vector spaces which we use are in general not three-dimensional, but can have any
dimension N , often infinite, and are defined, in general, over the complex numbers C rather
than over the real numbers R. There are two algebraic operations, the addition of vectors
and the multiplication of a vector by a scalar. The rules for these operations that define the
vector space are similar to those in R3.

Definition A linear space (also called vector space) Φ over the complex numbers C is a
set of elements ϕ, ψ, φ, . . . for which the sum ϕ + ψ of any two elements ϕ, ψ and the
multiplication by a complex number λ ∈ C, λψ, are defined and are elements of Φ, and
have the following properties

(VS1) ϕ+ ψ = ψ + ϕ , ∀ϕ, ψ ∈ Φ ; (2.1.1)

(VS2) (φ+ ψ) + ϕ = φ+ (ψ + ϕ) , ∀φ, ψ, ϕ ∈ Φ ; (2.1.2)

(VS3) There exists a 0 ∈ Φ such that 0 + ϕ = ϕ , ∀ϕ ∈ Φ ; (2.1.3)

(VS4) ∀ϕ ∈ Φ there exists ψ ∈ Φ such that ϕ+ ψ = 0 (we write ψ ≡ −ϕ) ; (2.1.4)
(VS5) (λµ)ϕ = λ(µϕ) , ∀λ, µ ∈ C , ∀ϕ ∈ Φ ; (2.1.5)

(VS6) (λ+ µ)ϕ = λϕ+ µϕ , ∀λ, µ ∈ C , ∀ϕ ∈ Φ ; (2.1.6)

(VS7) λ(ϕ+ ψ) = λϕ+ λψ , ∀λ ∈ C , ∀ϕ, ψ ∈ Φ ; (2.1.7)

(VS8) 1ϕ = ϕ , ∀ϕ ∈ Φ . (2.1.8)

From these, it follows that the zero element is unique and that, for each ϕ in Φ, the
element −ϕ is unique; moreover, 0ϕ = 0 and (−1)ϕ = −ϕ for all ϕ in Φ and λ0 = 0 for all
λ in C. A linear space over the field of real numbers can be described in exactly the same
way with the word “real” substituted for the word “complex.” The spaces that we shall use
in Quantum Mechanics will have additional properties besides (2.1.1)-(2.1.8).

A subset S in a linear space Φ is called a subspace of Φ if S is a linear space under
the same definitions of the operations of addition and multiplication by a number inherited
from Φ, i.e., if it follows from ϕ, ψ ∈ S and α ∈ C that αϕ ∈ S and ϕ+ ψ ∈ S.
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An expression of the form λ1ϕ1 + λ2ϕ2 + · · ·+ λnϕn, where the λ’s are in C and the ϕ’s
in Φ, is called a linear combination of the vectors ϕ1, ϕ2, . . . , ϕn. The vectors ϕ1, ϕ2, . . . , ϕn
are said to be linearly dependent if there exist numbers α1, α2, . . . , αn, not all zero, for which
α1ϕ1 +α2ϕ2 + · · ·+αnϕn = 0. If the equation α1ϕ1 + α2ϕ2 + · · ·+ αnϕn = 0 holds only for
α1 = α2 = · · · = αn = 0, then the vectors ϕ1, ϕ2, . . . , ϕn are called linearly independent. A
space Φ is said to be finite dimensional or, more precisely, n-dimensional if there are n and
not more than n linearly independent vectors in Φ. If the number of linearly independent
vectors in Φ is arbitrarily large, then Φ is said to be infinite-dimensional. Every system of
n linearly independent vectors in an n-dimensional space Φ is called a basis for Φ.

If ϕ1, ϕ2, . . . , ϕn is a basis for an n-dimensional space Φ and ϕ is an arbitrary vector in
Φ, then ϕ, ϕ1, ϕ2, . . . , ϕn are linearly dependent, so that

αϕ+ α1ϕ1 + α2ϕ2 + · · ·+ αnϕn = 0 , (2.1.9)

for some α, α1, α2, . . . , αn not all zero. Then α 6= 0, for otherwise we should have

α1ϕ1 + α2ϕ2 + · · ·+ αnϕn = 0 , (2.1.10)

where α1, α2, . . . , αn are not all zero, which contradicts the supposition that the vectors
ϕ1, . . . , ϕn are linearly independent. But, if α 6= 0, it follows from (2.1.9) that

ϕ = ξ1ϕ1 + ξ2ϕ2 + · · ·+ ξnϕn , (2.1.11)

where ξi = −αi/α. This representation of the element ϕ is unique. Thus, every vector ϕ in an
n-dimensional space Φ can be uniquely represented in the form (2.1.11), where ϕ1, . . . , ϕn is
a basis forΦ. The numbers ξ1, . . . , ξn are called the coordinates of the vector ϕ relative to the
basis ϕ1, . . . , ϕn. Notice that when the vectors are added, their corresponding coordinates
relative to a fixed basis are added and, when a vector is multiplied by any number, all the
coordinates are multiplied by that number.

Clearly the vectors ~a,~b, . . . in the three-dimensional space R3 fulfill the relations (2.1.1)-
(2.1.8). The set of complex infinitely differentiable continuous functions which vanish rapidly
at infinity (called the Schwartz space) also fulfills these relations. One often says that the
abstract vector space structure defined by the above rules is realized by other mathematical
objects, if these objects appear to us more “real” than the “abstract” vectors. Thus if
one feels more familiar with functions one may prefer the “realization” of Φ by a space of
functions over the space Φ itself.

In physics, the abstract mathematical objects are realized by objects with a physical
interpretation. Thus, a physicist’s realization of a linear space is not by other more familiar
or more interesting mathematical objects, but by physical objects. In particular, in quantum
physics, the elements of the space Φ will be the mathematical images of pure physical states
which will be called state vectors. Thus, a vector structure is “realized” by a concrete space
whose elements are interpreted as the physical states of a quantum system.

For the purposes of Quantum Mechanics, a linear space is a set with very little math-
ematical structure. We will equip it with another structure by defining a scalar product.
This notion is again a generalization of the dot product in R3.
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Definition A linear space is called a scalar product space (or Euclidean space or pre-Hilbert
space) if for each pair of vectors ϕ, ψ ∈ Φ we can define a complex number (ϕ, ψ) satisfying
the following properties:

(SP1) (ϕ, ψ) = (ψ, ϕ) ∀ϕ , ψ ∈ Φ (the overline denotes complex conjugation) , (2.1.12)

(SP2) (ϕ, αψ1 + βψ2) = α(ϕ, ψ1) + β(ϕ, ψ2) , ∀ϕ, ψ1, ψ2 ∈ Φ , ∀α, β ∈ C , (2.1.13)

(SP3) (ϕ, ϕ) ≥ 0 , and (ϕ, ϕ) = 0 iff ϕ = 0 . (2.1.14)

This function is called a scalar product and (ϕ, ψ) is called the scalar product of the
elements ϕ and ψ.

The usual scalar product in R3, (~a,~b) = ~a·~b clearly fulfills the conditions (2.1.12)-(2.1.14)
with all numbers being real instead of complex.

As in R3, one calls two vectors ϕ and ψ orthogonal if

(ϕ, ψ) = 0 . (2.1.15)

With the scalar product defined by (2.1.12)-(2.1.14) one defines the norm ‖ϕ‖ of a vector
ϕ by

‖ϕ‖ = +
√
(ϕ, ϕ) . (2.1.16)

The norm of a vector is an extension of the notion of length of a vector in R3. For any
vector ψ different from the zero vector one can always define a vector ψ̂ = ψ/‖ψ‖, which
has the property ‖ψ̂‖ = 1 and which is called a normalized vector.

Sometimes one needs in a vector space a more general notion than the scalar product,
the bilinear Hermitian form.

Definition A complex-valued function h(ϕ, ψ) of two vector arguments is a Hermitian form
if it satisfies

h(ϕ, ψ) = h(ψ, ϕ) , (2.1.17)

h(ϕ, αψ) = αh(ϕ, ψ) , (2.1.18)

h(ϕ1 + ϕ2, ψ) = h(ϕ1, ψ) + h(ϕ2, ψ) . (2.1.19)

If in addition h satisfies
h(ϕ, ϕ) ≥ 0 (2.1.20)

for every vector ϕ, then h is said to be a positive Hermitian form. A positive Hermitian form
is called positive definite if from h(ϕ, ϕ) = 0 it follows that ϕ = 0. Thus a Hermitian form
fulfills (2.1.12) and (2.1.13), but not the condition (2.1.14) for a scalar product. However, a
positive definite Hermitian form is a scalar product.

Positive Hermitian forms, which are not necessarily scalar products, satisfy the Cauchy-
Schwartz-Bunyakovski inequality:

|h(ϕ, ψ)|2 ≤ h(ϕ, ϕ)h(ψ, ψ) . (2.1.21)
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If h is positive definite, equality holds iff ϕ = αψ for some α ∈ C.
Sometimes we have different realizations of the same algebraic structure. In these cases,

the spaces are, from an algebraic point of view, the same.

Definition An isomorphism between two algebraic structures A and B is a one-to-one
correspondence between the sets A and B (i.e., to every a ∈ A there corresponds exactly
one b ∈ B and vice versa: a↔ b), which preserves the algebraic operations.

For example, two linear scalar product spaces Φ and Ψ are isomorphic if there exists a
mapping f : Φ→ Ψ which is one-to-one and onto and that fulfills

f(αϕ+ βψ) = αf(ϕ) + βf(ψ) , ∀α , β ∈ C , ∀ϕ , ψ ∈ Φ , (2.1.22)

(ϕ, ψ)Φ = (f(ϕ), f(ψ))Ψ , ∀ , ϕ , ψ ∈ Φ , (2.1.23)

i.e., f preserves the sum, the multiplication and the scalar product. Isomorphic scalar
product spaces (and in particular Hilbert spaces) are also called isometric. It often happens
that two scalar product spaces are isomorphic as vector spaces, i.e., there is a one-to-one
correspondence which fulfills (2.1.22), but are not isomorphic as scalar product spaces, i.e.,
the correspondence does not fulfill (2.1.23).

2.1.3 Linear Operators

Vectors in R3 can be transformed into each other. One example is the rotation R of a vector
~a into a vector ~b = R~a. In analogy to this, one defines transformations or linear operators
on a vector space Φ. A function A, A : Φ→ Φ, that maps each vector ϕ in a vector space
Φ into a vector ψ ∈ Φ, Aϕ = ψ, is called a linear operator if for all ϕ, ψ ∈ Φ and α ∈ C it
fulfills the conditions

A(ϕ + ψ) = Aϕ + Aψ , (2.1.24)

A(αϕ) = αAϕ . (2.1.25)

An operator is called antilinear if it fulfills

A(αϕ) = αAϕ (2.1.26)

instead of (2.1.25), where α is the complex conjugate of α.
For two operators defined on the whole space Φ, the operations of addition A + B,

multiplication by a complex number αA, and multiplication AB, are defined in the following
way:

(A+B)ϕ := Aϕ+Bϕ , (αA)ϕ := α(Aϕ) , (AB)ϕ := A(Bϕ) , (2.1.27)

for all ϕ ∈ Φ. It is easily verified that A + B, αA and AB are linear operators defined on
the whole space Φ if A and B are linear operators defined on the whole space Φ. In finite
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dimensional spaces with a topology (linear topological spaces defined in Section 2.3) there is
a large class of operators that can be defined on the whole space, the continuous operators.
In general this is not the case and the definition of A+B and AB is more complicated and
involves questions on the domains and on the ranges of the operators.

For every linear operator A defined on the whole space Φ, one can define an operator
A† on the elements ψ in Φ for which

(A†ψ, ϕ) := (ψ,Aϕ) , ∀ϕ ∈ Φ . (2.1.28)

The operator A† is called the adjoint operator of A. An operator for which A† = A is called
self-adjoint or Hermitian.1

In the general case, an operator A need not to be defined on the whole space Φ but only
on certain subset D(A) of Φ.

Definition Let Φ,Ψ be two linear spaces and let D(A) be a subspace of Φ. A mapping
A : D(A) ⊂ Φ→ Ψ is called a linear operator if

A(αϕ+ βψ) = αAϕ+ βAψ , ∀α, β ∈ C and ∀ϕ, ψ ∈ D(A) , (2.1.29)

and is called an antilinear operator if

A(αϕ+ βψ) = αAϕ+ βAψ , ∀α, β ∈ C and ∀ϕ, ψ ∈ D(A) . (2.1.30)

D(A) is the domain of A and R(A) = {Aϕ | ϕ ∈ D(A)} ⊂ Ψ is the range of A.

Let Ai : Φ ⊃ D(Ai) → Ψ (i = 1, 2) be two linear operators with domains D(Ai). Then
A1 + A2 is a linear operator with domain D(A1) ∩ D(A2) defined as

(A1 + A2)(ϕ) := A1ϕ+ A2ϕ (2.1.31)

for every ϕ in D(A1) ∩ D(A2). In the same way, αAi is the operator defined on D(Ai) as

(αAi)(ϕ) := αAiϕ (2.1.32)

for each ϕ ∈ D(Ai). The product of A1 and A2 is defined as

(A1A2)(ϕ) = A1(A2ϕ) (2.1.33)

for the vectors ϕ in Φ such that ϕ is in D(A2) and A2ϕ is in D(A1). With these operations
of addition and multiplication by scalars, the set of all linear operators mapping Φ into Ψ
form a vector space.

1We will usually use the term Hermitian if we do not want to distinguish between the mathematically
precisely defined notions self-adjoint, essentially self-adjoint, and symmetric. We will present all these
concepts in Section 2.5 along with the precise definition of the adjoint operator.
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Of special interest are the zero operator, denoted 0, and the unit operator or identity
operator, denoted I, which are defined by

0ϕ = 0 , Iϕ = ϕ , (2.1.34)

for every ϕ ∈ Φ. Note that 0 on the left side of the first equation is the zero operator, while
0 on the right is the zero vector in (2.1.3).

The definition of linear operators was inspired by the properties of transformations on
the three-dimensional space. Linear operators on a vector space Φ may be thought of
as analogous to transformations on the three-dimensional Euclidean space, but they can
also have other physical interpretations. In particular, in quantum physics they represent
physical observables.

Very important notion for quantum physics is that of an eigenvalue and an eigenvector
of an operator in a vector space.

Definition A nonzero vector ψ ∈ Φ is called an ⁀eigenvector of the linear operator A if

Aψ = λψ with λ ∈ C. (2.1.35)

λ is called the eigenvalue of A corresponding to the eigenvector ψ.

For a given operator A, there may be many (perhaps infinitely many) different eigen-
vectors with different eigenvalues. There may also be n (finite or infinite) many different
eigenvectors with the same eigenvalue λ. In this case, λ is called n-fold degenerate. In a
finite dimensional space every linear operator (matrices) has at least one eigenvector. In
an infinite dimensional space this is in general not fulfilled. For instance, the operator
differentiation −i d

dx
defined on the Hilbert space L2(R) has no eigenvector belonging to

L2(R).
If A is a Hermitian operator defined on a scalar product space, then eigenvectors and

eigenvalues have the following properties:

1. All eigenvalues are real.

2. If ϕ1 and ϕ2 are eigenvectors of A with eigenvalues λ1 and λ2, respectively, and if
λ1 6= λ2, then ϕ1 and ϕ2 are orthogonal to each other, i.e., (ϕ1, ϕ2) = 0.

In quantum physics, an operator represents an observable of a physical system. Its eigen-
values then represent the numbers which are obtained in a measurement of this observable.

In the finite dimensional case (and in some special infinite dimensional cases), the eigen-
vectors of a Hermitian operator can be used to expand any state (wave function) in terms of
them. In the infinite dimensional case, this expansion will need the concept of a generalized
eigenvector and a generalized eigenvalue (see Section 3.5).

Definition An operator B is called the inverse of an operator A if BA = AB = I. The
operator B is denoted by A−1.
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A linear operator U is called a unitary operator if U †U = UU † = I.

Because of the definition of the inverse operator, one can define a unitary operator also
by the condition U † = U−1. It is worthwhile noting that not every operator has an inverse.

Another important notion is that of the commutator of two operators.

Definition Let A and B be two operators defined on Φ. The commutator of A and B is
defined by

[A,B] ≡ AB − BA or [A,B]ϕ = ABϕ− ABϕ , ∀ϕ ∈ Φ . (2.1.36)

A and B are said to commute if

[A,B] ≡ AB − BA = 0 or ABϕ− ABϕ = 0 , ∀ϕ ∈ Φ . (2.1.37)

The collection of linear operators defined on the whole linear space forms a new algebraic
structure, where the algebraic operations of sum of two operators, product of a number with
an operator and product of two operators are defined by (2.1.27). This algebraic structure is
called an associative algebra. An associative algebra can also be defined abstractly without
any reference to linear operators by the following definition:

Definition A set A is an (associative) algebra with unit element iff

(A1) A is a vector space.

(A2) For every pair A,B ∈ A, a product AB ∈ A is defined such that

(AB)C = A(BC) , (2.1.38)

A(B + C) = AB + AC , (2.1.39)

(A+B)C = AC +BC , (2.1.40)

(αA)B = A(αB) = αAB . (2.1.41)

(A3) There exists an element I ∈ A such that

IA = AI = A , ∀A ∈ A . (2.1.42)

A subset A1 of an algebra A is called a subalgebra of A if A1 is an algebra with the same
definitions of the operations of addition, multiplication by a number, and multiplication as
inherited from A. That is, if from A,B ∈ A1 and α ∈ C, it follows that A + B ∈ A1,
αA ∈ A1, and AB ∈ A1.

(A4) An algebra A is called a ∗-algebra if we have on the algebra a †-operation (involu-
tion), A→ A†, that has the following defining properties:

(αA+ βB)† = αA† + βB† , (2.1.43)
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(AB)† = B†A† , (2.1.44)

(A†)† = A , (2.1.45)

I† = I , (2.1.46)

where A,B ∈ A and α, β ∈ C.

From the definition (2.1.27) of the sum and the product of two operators and the product
of an operator with a number, and from the definition (2.1.28) of the adjoint operator, one
can see that the set of linear operators fulfills all the axioms (A1)-(A4) of a ∗-algebra.
Thus the set of linear operators defined on the whole vector space Φ forms a ∗-algebra.
A subalgebra of this algebra is called an operator ∗-algebra. It can be shown that in a
certain sense every ∗-algebra can be realized as an operator ∗-algebra in a scalar-product
space (generalization of the Gelfand-Naimark-Segal reconstruction theorem). In Quantum
Mechanics, physical systems are assumed to be described by operator algebras.

A set X1, X2, . . . , Xn of elements of A is called a set of generators, and A is said to be
generated by the Xi (i = 1, 2, . . . , n) iff each element of A can be written as

A = cI +

n∑

i=1

ciXi +

n∑

i,j=1

cijXiXj + . . . , (2.1.47)

where c, ci, cij, . . . ∈ C.
Defining algebraic relations are relations among the generators

P (Xi) = 0 , (2.1.48)

where P (Xi) is a polynomial with complex coefficients of the n variables Xi. An element
B ∈ A,

B = bI +
∑

biXi +
∑

bijXiXj + . . . , (2.1.49)

where b, bi, . . . ∈ C, is equal to the element A in (2.1.47) iff (2.1.49) can be brought into
the form (2.1.47) with the same coefficients c, ci, cij, . . . by the use of the defining relations
(2.1.48).

2.1.4 Antilinear Functionals

In the previous section, we have introduced the concept of an eigenvector of an operator in
a vector space. In Quantum Mechanics, some of the eigenvectors that we need are antilinear
mappings from a space of states into the complex numbers. In this section, we define them
and explain some of their basic properties.

Definition Let Φ be a complex linear space. A functional (or a function) on Φ is a mapping
F from the space Φ into the complex numbers C, F : Φ→ C. (If Φ is a real space then the
mapping is into the real numbers R.)
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If F satisfies

F (αϕ+ βψ) = αF (ϕ) + βF (ψ) , ∀ϕ, ψ ∈ Φ , ∀α, β ∈ C , (2.1.50)

then F is called an antilinear functional. If F satisfies

F (αϕ+ βψ) = αF (ϕ) + βF (ψ) , ∀ϕ, ψ ∈ Φ , ∀α, β ∈ C , (2.1.51)

then F is called a linear functional. (If Φ is a real space there is no distinction between
linear and antilinear functionals.) A linear or antilinear functional is thus a special case of
a linear or antilinear operator between two linear spaces (see (2.1.29) and (2.1.30)) if the
space Ψ is the space of complex numbers C.

A functional is also the analog of a complex-valued function F (x) of a real variable x
varying on R, F : R → C, only now the variable is not a real number x ∈ R but a vector
ϕ ∈ Φ. We will consider here antilinear functionals rather than linear functionals (in the
mathematical literature one usually considers linear functionals).

An example of an antilinear functional on a scalar product space is given by

Fψ : Φ → C

ϕ → Fψ(ϕ) = (ϕ, ψ) , (2.1.52)

where ψ is a fixed element in Φ and (ϕ, ψ) is the scalar product of ψ with ϕ, where ϕ varies
over Φ. Because of this example and because in the general case we want to consider a
functional to be a generalization of the scalar product, one uses for the antilinear functional
F (ϕ) the Dirac’s bra-ket symbol (see reference [1])

F (ϕ) ≡ 〈ϕ|F 〉 . (2.1.53)

We shall use the two notations concurrently. Dirac kets will be given a mathematical
meaning as antilinear functionals (which in addition are continuous, notion that will be
defined in Section 2.2).

Any two antilinear functionals F1 and F2 on a linear spaceΦmay be added and multiplied
by numbers according to

(αF1 + βF2)(ϕ) = αF1(ϕ) + βF2(ϕ) , α, β ∈ C , (2.1.54)

or, using the notation (2.1.53),

〈ϕ|αF1 + βF2〉 = α〈ϕ|F1〉+ β〈ϕ|F2〉 . (2.1.55)

The functional αF1+βF2 defined by (2.1.54) is again an antilinear functional over Φ. Thus,
the set of antilinear functionals on a vector space Φ is a linear space itself. This space
is called the conjugate space or dual space (more precisely, the algebraic dual or algebraic
conjugate space) of the space Φ and is denoted by Φ×

alg.
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2.2 Topological Spaces

2.2.1 Introduction

When we defined the vector space we took a set Φ of elements (which we called ϕ, ψ, . . .)
and endowed this set with an algebraic structure by defining two operations, addition of two
elements and multiplication of ϕ ∈ Φ by an α ∈ C. We demanded that these operations
fulfilled certain rules (see Section 2.1.2). The resulting structured set was called a linear
space. (We thereafter defined another algebraic operation on Φ, the scalar product—see
Section 2.1.2—and called Φ a scalar product space). Now we take a set, which we call again
Φ (but which is not yet a vector space), and endow it with another structure, a topological
structure. The resulting structured set will be called a topological space.

The topology on a space provides us with a way of phrasing such concepts of nearness,
continuity, convergence, completion, etc that we are familiar with for the space of real
numbers. We shall start with the concept of “open set,” which is a generalization of the
notion of open set in R. However, there are several equivalent ways of defining a topology
(via open sets, or closed sets, or neighborhoods,...) and for more restricted cases one can
define the topology in more specific ways, e.g. by convergence of sequences. We want to start
in the most general setting and then to specialize the concepts without much discussions in
order to arrive rapidly at the particular spaces that we need in Quantum Mechanics.

2.2.2 Open Sets and Neighborhoods

Definition Let Φ be a set and let P(Φ) = {S | S ⊂ Φ} be the collection of all subsets of
Φ. A subset τΦ of P(Φ) is called a topology of Φ if the following conditions are fulfilled:

(O1) ∅ ∈ τΦ and Φ ∈ τΦ (∅ is the empty set) . (2.2.1)

(O2) The union of arbitrarily many elements of τΦ is an element of τΦ . (2.2.2)

(O3) The intersection of a finite number of elements of τΦ is in τΦ . (2.2.3)

The pair (Φ, τΦ) is called a topological space and the elements of τΦ are called open sets.

With the given definition of topology we can define the convergence of sequences of
elements (points) ϕ1, ϕ2, . . . , ϕn, . . . ≡ {ϕn}∞n=0 of the set Φ, which is a generalization of the
notion of convergence for real numbers.

Definition A sequence of points ϕ1, ϕ2, . . . , ϕn, . . . ∈ Φ is said to converge to ϕ ∈ Φ if for
every open set O with ϕ ∈ O there exists a positive integer N = N(O) such that ϕn ∈ O
for all n > N(O).

This definition means that beginning from a large enough N the elements of the sequence
are as close to ϕ as we desire.
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Example Let Φ be the set of real numbers R. The meaning of the convergence of the
sequence {yn}, written as limn→∞ yn = x (or yn → x), is the following: the open sets O
containing x in the previous definition are given by

Uǫ(x) ≡ {y ∈ R | |x− y| < ǫ , ǫ > 0} . (2.2.4)

Then, according to the definition of convergence, for every Uǫ(x) there exists an Nǫ such that
for all n > Nǫ, yn ∈ Uǫ(x), i.e., |x−yn| < ǫ. This is the well-known definition of convergence
of a sequence of real numbers. The open sets Uǫ(x) in (2.2.4) are called neighborhoods of x.
The generalization of the concept of a neighborhood to a topological space is the following:

Definition If Φ is a topological space and ϕ ∈ Φ, a neighborhood (hereafter abbreviated
nhood) of ϕ is a set U which contains an open set O containing ϕ (that is, ϕ ∈ O ⊂ U).
The collection Uϕ of all nhoods of ϕ is the nhood system at ϕ. Nhoods need not be open
but we shall only use systems of open nhoods, i.e., U ∈ Uϕ which also are in τΦ.

One can easily see that a sequence {ϕn}∞n=0 converges to an element ϕ iff each nhood
of ϕ contains every point of the sequence whose index is larger than some positive integer
depending on the given nhood. Thus, it is a generalization of the notion of convergence for
real numbers.

Definition A subset S ⊂ Φ is said to be a topological subspace of Φ if S is given the
topology

τS = {S ∩ O | O ∈ τΦ} . (2.2.5)

To describe a given topology, we do not need to know the whole collection of open sets:
it is enough to know a proper subcollection.

Definition A base B of a topology τΦ on Φ is a subcollection of τΦ such that every open
set O is a union of some open sets in B, i.e., each O ∈ τΦ can be given as

O =
⋃

α

Bα, Bα ∈ B. (2.2.6)

Thus, given a base B we generate all the open sets (and therefore we describe the
topology completely) taking all possible unions of sets in B. In much the same way that a
base describes the whole collection of open sets, a nhood system can be completely described
by a nhood base.

Definition A nhood base (or a system of basic nhoods) at ϕ in the topological space Φ is a
subcollection Bϕ taken from the nhood system Uϕ, having the property that each U ∈ Uϕ
contains some V ∈ Bϕ. Once a nhood base at ϕ has been chosen (there are many to choose
from, all producing the same nhood system at ϕ) its elements are called basic nhoods.
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Obviously, the nhood system at ϕ is itself a nhood base at ϕ. In the topological space
of the real numbers R, the open set (2.2.4) is a nhood of x and {Uǫ(x), ǫ > 0} is a system
of basic nhoods at x. But also

Bx = {U1/m(x) | m = 1, 2, . . .} (2.2.7)

is a system of basic nhoods at the point x ∈ R which consists of a countable number of
nhoods. For the real numbers we know that a sequence {yn} is already convergent to a
point x, yn → x, iff for every m ∈ N, |x− yn| < 1

m
for all positive integers n greater than a

certain natural number N = N(m) depending on m. Thus, the countable system of nhoods
(2.2.7) defines already the convergence in R and defines the topology completely.

In general, a topological space does not need to have a countable system of (basic)
nhoods at each of its points. But there are many spaces which have this property.

Definition A space Φ is said to satisfy the first axiom of countability if it has a countable
system of basic nhoods at each of its points. We also called these spaces first countable.

Most of the spaces in which we are interested satisfy the first axiom of countability.
The most important feature of this kind of topologies is that we can describe them com-
pletely using convergence on sequences (that is, specifying which sequences converge to
which points).

Using the above definitions one can prove that in a topological space Φ a system of
nhoods Uϕ at a point ϕ has the properties:

(N1) If U ∈ Uϕ , then ϕ ∈ U , (2.2.8)

(N2) If U, V ∈ Uϕ , then U ∩ V ∈ Uϕ , (2.2.9)

(N3) If U ∈ Uϕ , then there is a V ∈ Uϕ such that U ∈ Uψ for each ψ ∈ V , (2.2.10)

(N4) If U ∈ Uϕ , and U ⊂ V then V ∈ Uϕ , (2.2.11)

and furthermore,

(N5) O ⊂ Φ is open iff O contains a nhood of each of its points . (2.2.12)

Conversely, if in a set Φ a collection Uϕ of subsets of Φ is assigned to each ϕ ∈ Φ so as
to satisfy (2.2.8)-(2.2.11) and if we define “open” using (2.2.12), the result is a topology on
Φ (i.e., a collection of subsets of Φ satisfying (2.2.1)-(2.2.3)) in which Uϕ is a nhood system
at ϕ, for each ϕ ∈ Φ. Therefore, whenever nhoods have been assigned to each point in a set,
satisfying the properties (2.2.8)-(2.2.11), the topology is completely specified. This means
that we can equivalently describe a topology (that is, to describe the concepts of nearness,
continuity, convergence,...) using as starting point the open sets or the nhood systems at
each point. Obviously, one can also describe the topology completely assigning a system of
basic nhoods to each point.

A given set Φ can be equipped with various topologies. Different topologies on the
same set lead to different meanings of nearness, continuity, convergence,... If Φ is equipped
with two different topologies, say with τ1 and τ2, and if τ1 ⊂ τ2, then τ1 is called coarser
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than τ2 and the convergence with respect to τ1 weaker than the convergence with respect
to τ2. Correspondingly, τ2 is called finer than τ1 and the convergence with respect to τ2 is
called stronger than with respect to τ1. Since every U ∈ τ1 is also in τ2, it follows from the
definition of convergence that every strongly convergent sequence is also weakly convergent.

One can arrive at the same topology in a space (i.e., the same system of open sets)
starting from two different systems of nhoods. For example, in defining the natural topology
on the real line we can, on the one hand, take as nhoods the open intervals (2.2.4) with
real ǫ’s and, on the other hand, take the nhoods (2.2.7) with rational ǫ’s. As mentioned
above, both systems of nhoods describe the same topology. In general, we will call two
different systems of nhoods equivalent, if they lead to the same topology. The following
simple condition is both necessary and sufficient for the equivalence of two given nhood
systems {U} and {V }: every nhood U contains a nhood V , and every nhood V contains a
nhood U .

A topology can also be described in terms of closed sets. To introduce this notion, we
first need the following definition:

Definition Let (Φ, τΦ) be a topological space and let S ⊂ Φ. ϕ ∈ Φ is called an adherence
point of S if for every U ∈ Uϕ, then U ∩ S 6= ∅.

In particular, every point of the set S is an adherence point. There are two possibilities
for the adherence points of a set S:

1. There exists a nhood of ϕ (the adherence point) which contains only a finite number
of points of S. We are not interested in this case.

2. Every nhood of the adherence point ϕ contains an infinite number of distinct points
of S. Then ϕ is called a limit point of S.

A limit point ϕ of S may or may not belong to S. A set S is said to be closed if it contains
all of its adherence points. If a set S is not closed one obtains the closure S of S by adjoining
to S those of its adherence points which do not already belong to it. Thus the closure S of
S is the collection of all adherence points of S. The closure of any set S is closed, and S is
closed iff S = S. The concepts of open and closed set are dual to each other. In fact, a set
M ⊂ Φ is closed (i.e., M =M) iff its complement Φ−M is open.

Definition A set D in a topological space Φ is called dense in Φ if D = Φ. A topological
space Φ is separable iff Φ has a countable dense subset.

The real line is separable, since the rational numbers are dense in R, and most of the
spaces used in Quantum Mechanics are separable.

2.2.3 Separation Axioms

The above definition of a topology is still too general. The topologies that are of importance
in physics satisfy more requirements. These topologies all fulfill strong conditions for the
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meaning of separation of two points ϕ and ψ in Φ. These conditions will allow us to
“distinguish” between two different points of the space using only the topology.

Definition A topological space Φ is a T0-space (or, the topology on Φ is T0) if whenever
ϕ and ψ are distinct points in Φ, there is an open set containing one and not the other.

A topological space Φ is a T1-space if whenever ϕ and ψ are distinct points in Φ, there
is a nhood of each not containing the other.

Φ is said to be a T2-space (also called Hausdorff) if whenever ϕ and ψ are distinct points
of Φ, there are disjoint open sets U and V in Φ with ϕ ∈ U and ψ ∈ V .

Every T2-space is T1, and every T1-space is T0. In a T1-space, every finite set is closed.
In a T2-space, every convergent sequence has exactly one (unique) limit point. For this
reason, the minimum that we will require of our topologies is that they be Hausdorff spaces.
But often we will make even stronger separation demands on our spaces.

Definition A topological space Φ is said to be regular if whenever S is closed and ϕ is not
in S, then there are disjoint open sets U and V with ϕ ∈ U and S ⊂ V .

We define a T3-space to be a regular T1-space.
A topological space Φ is normal if whenever S and P are disjoint closed sets in Φ , there

are disjoint open sets U and V with S ⊂ U and P ⊂ V .
A normal T1-space will be called T4.

Roughly speaking, in T3- and T4-spaces we can “distinguish” (or “separate”) points
from sets and sets from sets, respectively. Every T4-space is T3, and every T3-space is T2.
Most spaces we shall consider will be T4. The class of T4-spaces include all metrizable
and therefore all locally convex spaces whose topology is given by a countable number
of seminorms. These include countable normed spaces, countable Hilbert spaces, and, in
particular, normed and scalar product spaces. The definition of these kinds of spaces will be
given is Section 2.4.1. All the spaces that we shall use in Quantum Mechanics for the space
Φ of a rigged Hilbert space Φ ⊂ H ⊂ Φ× will be countable Hilbert spaces and therefore T4.

2.2.4 Continuity and Homeomorphic Spaces

An important notion that depends upon the topology is the notion of a continuous mapping.
Intuitively, a map f is continuous at a given point ϕ if the images of the points close to
ϕ are close to f(ϕ). Thus the concept of continuity is derived from that of nearness, and
therefore is given by the topology.

Definition Let (Φ, τΦ) and (Ψ, τΨ) be two topological spaces and f : Φ → Ψ. Then f is
continuous at ϕ ∈ Φ iff for each nhood V of f(ϕ) in τΨ, there is a nhood U of ϕ in τΦ such
that f(U) ⊂ V . We say f is continuous on Φ iff f is continuous at each ϕ ∈ Φ.

One can use the open sets to describe continuous maps on the whole space. A map
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f : Φ→ Ψ is continuous on Φ iff the inverse image of every open set of Ψ is an open set of
Φ, i.e., O ∈ τΨ ⇒ f−1(O) ∈ τΦ.

In the case of spaces that satisfy the first axiom of countability, we can use the sequences
(that determine completely the topology) to describe the continuity of a function at a given
point. A map f : Φ → Ψ, where Φ and Ψ satisfy the first axiom of countability, is
continuous at a point ϕ iff whenever ϕn → ϕ with respect to τΦ, then f(ϕn)→ f(ϕ) with
respect to τΨ.

A map is called a topological map (or homeomorphism) if it is one-to-one, onto and
continuous and f−1 is also continuous. In this case, we say that Φ andΨ are homeomorphic.
Homeomorphic spaces are, from a topological point of view, the same. That is, there is no
topological property that allows us to distinguish them. Moreover, a topological property is
anything that is conserved under homeomorphisms.

In order to convey the meaning of the combination of an algebraic structure with a topo-
logical structure, as is needed for the definition of a linear topological space in Section 2.3,
we have to define the direct product of two topological spaces.

Definition Let (Φ1, τ1) and (Φ2, τ2) be topological spaces. Then the topology on the direct
product space Φ1 ×Φ2 is generated by the base

B = {O1 × O2 | O1 ∈ τ1, O2 ∈ τ2} , (2.2.13)

i.e., the (topological) product space is (Φ1 × Φ2, τ), where τ is the collection of arbitrary
unions of the sets that belong to B in (2.2.13).

2.3 Linear Topological Spaces

2.3.1 Introduction

A linear topological space (also called a topological vector space) is a combination of a linear
structure (see Section 2.1.2) and a topological structure (see Section 2.2), both introduced
on one and the same set Φ. However, these structures are not independent of each other.
The linear operations, which are mappings on Φ, are required to be continuous in order
that these two structures match each other. The general procedure to construct topological
algebraic structures (topological algebras, topological groups, topological vector spaces) is:

1. One endows a given set Φ with an algebraic structure.

2. One endows the same set Φ with a topological structure.

3. One demands that the algebraic operations on Φ be continuous mappings.

The reason why one constructs these mathematical structures is that there exist realiza-
tions of such structures (with some additional properties) that are very useful in mathematics
and in physics. For instance, linear topological spaces are realized in mathematics by classes
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of functions (e.g., the Schwartz space). In physics, these abstract mathematical entities are
used to describe some structures in nature. For example, topological groups (in particular
parameter or Lie groups) are the mathematical image of symmetry transformations of the
registration apparatuses (detector) relative to the preparation apparatuses (accelerator).
Linear topological spaces and their algebras of linear operators provide the mathematical
framework to describe the states and the observables of quantum physics, respectively.

For the combination of a topological structure with the algebraic structure, the following
definition is an example of the general procedure described above.

Definition A set Φ is called a linear topological space (l.t.s.) or a topological vector space
(t.v.s.) if

(LT1) Φ is a linear space . (2.3.1)

(LT2) Φ is a topological space . (2.3.2)

(LT3) The algebraic operations are continuous . (2.3.3)

Assumption (2.3.3) means that the mapping

: C×Φ → Φ

(α, ϕ) → αϕ (2.3.4)

and the mapping

: Φ×Φ → Φ

(ϕ, ψ) → ϕ+ ψ (2.3.5)

are continuous. The continuity of these operations gives a precise meaning to intuitive
notions such as an “infinite linear combination” of vectors or the limit of an infinite sequence
of vectors. A l.t.s. is often denoted by (Φ, τΦ,+, ·) in order to specify the linear and the
topological structures. We shall just denote a l.t.s. by Φ if no confusion is possible.

From the continuity of the algebraic operations it follows that if U(0) is a nhood of the
zero element, then V = ϕ + U(0) (i.e., the set obtained by adding ϕ to all the elements of
U(0), also called the translate of U(0) by ϕ) is a nhood of ϕ. In other words, the nhood
system at ϕ is just the family of translates by ϕ of members of the nhood system at 0.
Therefore, the topology of a l.t.s. can be completely specified by the system of nhoods at
the zero element.

If U0 is a base of nhoods at the zero element in the l.t.s. Φ, then Φ is T2 if and only
if
⋂
U∈U0

U = {0}, i.e., iff the intersection of the nhoods of zero is precisely zero. We shall
always assume that the topology of a l.t.s. is T2. Moreover, we shall consider mostly T4

spaces. In particular, for all the spaces Φ in the Rigged Hilbert Space Φ ⊂ H ⊂ Φ× we
shall choose exclusively T4 spaces.

The simplest example of a l.t.s. is the real line R when endowed with the usual addition
and multiplication (which provide the linear algebraic structure) and with the topology of
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the absolute value defined in Section 2.2.2. In a similar manner, the complex numbers C

can be also considered as a l.t.s.

A useful concept in R is that of a bounded set. A set S ⊂ R is bounded if there exists an
M > 0 such that |x| < M for all x ∈ S. The generalization of this notion to an arbitrary
l.t.s. is:

Definition A subset B of a l.t.s. Φ is said to be bounded if for every nhood of zero U(0)
there exists a λ > 0 such that B ⊂ λU(0). λU(0) = {λϕ | ϕ ∈ U(0)}, the set obtained by
multiplying each element of U(0) by λ, is called a multiple of U(0).

Roughly speaking, a set is bounded if every nhood of zero has a multiple that swallows
it up. By using the nhoods of R in Section 2.2.2, one can show that this definition agrees
with the above definition of boundedness of S ⊂ R.

It is easy to see that if τ1 and τ2 are two topologies on a l.t.s. Φ and if τ1 ⊂ τ2, then
every set B which is bounded with respect to the finer topology τ2 is also bounded with
respect to the coarser topology τ1.

2.3.2 Cauchy Sequences

In the topological vector space of real numbers R, a sequence {yn}∞n=0 is called Cauchy if
for every ǫ > 0 there is a positive integer N = N(ǫ) (depending only on ǫ) such that for
all n,m ≥ N we have |yn − ym| < ǫ. This means that a sequence is Cauchy if beginning
from a large enough N the elements of the sequence are more and more close to each
other. We can reformulate this definition in terms of nhoods of the zero element in R: a
system of nhoods at x = 0 is the collection (see Section 2.2.2) U0 = {Uǫ(0) | ǫ > 0} where
Uǫ(0) = {y ∈ R | |y| < ǫ}. Then a sequence {yn}∞n=0 of real numbers is Cauchy iff for
every nhood Uǫ(0) of 0, there is a positive integer N(Uǫ) such that yn − ym ∈ Uǫ(0) for all
n,m > N . We shall generalize this concept to an arbitrary l.t.s.

Definition A sequence {ϕn}∞n=0 of elements in a l.t.s. Φ is called Cauchy if for every nhood
U of the zero element there exists a natural number N = N(U), depending only on U , such
that ϕn − ϕm ∈ U for all n,m > N .

Every convergent sequence is Cauchy, but the converse is not always true, i.e., a Cauchy
sequence need not converge to a point in the space. In the l.t.s. of the real numbers R, a
sequence is Cauchy iff it is convergent to some (unique) real number. In the l.t.s. of rational
numbers Q this is not the case, since there are Cauchy sequences of rational numbers which
do not converge to any rational number (for example, any sequence of rational numbers
converging to π).

Definition A l.t.s. Φ is called complete (more precisely, sequentially complete) if every
Cauchy sequence has a limit in Φ.
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This definition means that in a sequentially complete space we always get to a point in
the space whenever we follow a sequence of elements that become more and more close to
each other. When the same set is endowed with two different topologies we usually say that
the space is τ -complete, if we want to emphasize which topology we are considering.

In general, we seek spaces that are complete. This is why if a l.t.s. is not complete
we complete it by adjoining all the limit elements of Cauchy sequences to it. Then, the
incomplete space can be viewed as a dense subspace of its completion.

Definition A complete l.t.s. Φc is said to be the completion of an incomplete l.t.s. Φ if there
is a map i : Φ→ Φc which is one-to-one, linear and continuous with continuous inverse i−1

such that i(Φ) is dense in Φc.

Note that the function i (usually called an embedding) is not onto (if so, Φ would already
be a complete space). The completion of a space Φ is unique up to a linear homeomorphism
which leaves Φ pointwise fixed. As an example, R is a completion of Q.

Completeness is a very important requirement in mathematics. Without it one can-
not prove existence theorems nor define derivatives or integrals. In physics, completeness
cannot be established directly from physical observation because completeness involves an
infinite number of entities (Cauchy sequences) and all physical observations involve only a
finite number of states. Thus, it cannot be “deduced” directly from experiments and only
the overall success of a mathematical theory can show which completion—more precisely,
completion with respect to which topology—is preferable for quantum physics.

We have given above only the definition of sequential completeness, which is sufficient
when the topology is fully described in terms of the convergence of sequences (that is, when
the topology satisfies the first axiom of countability). If the space is not first countable,
its completion cannot be defined in terms of Cauchy sequences. It has to be defined in
terms of nets, which we do not want to introduce here. With this more general definition of
completion, every l.t.s. can be completed in the sense of the above definition, the completion
is unique (up to a linear homeomorphism) and the space can be considered as a dense
subspace of its completion. The space Φ of the Rigged Hilbert Space Φ ⊂ H ⊂ Φ× will
always be chosen to satisfy the first axiom of countability. Therefore, it can be completed
using Cauchy sequences. The space Φ× will in general not be first countable, and its
completion must be constructed using the general definition.

Since any metrizable space (a class that includes scalar product spaces, normed spaces
and countably normed spaces) is first countable (see Section 2.3.3), we can complete it by
using Cauchy sequences. Vaguely speaking, the completion is accomplished in the follow-
ing way: two Cauchy sequences (ϕ1, ϕ2, ϕ3, . . .) and (ψ1, ψ2, ψ3, . . .) in Φ are considered
equivalent if beginning from a large enough term their elements are more and more close
to each other. More precisely, (ϕ1, ϕ2, ϕ3, . . .) ∼ (ψ1, ψ2, ψ3, . . .) iff for every U ∈ U0 there
is a positive integer N(U) such that ϕn − ψm ∈ U for all n,m > N . We denote by
[(ϕ1, ϕ2, . . . , ϕn, . . .)] the set of sequences which are equivalent to (ϕ1, ϕ2, . . . , ϕn, . . .). On
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this space of equivalence sequences, one defines an algebraic addition

[(ϕ1, ϕ2, . . . , ϕn, . . .)]+ [(ψ1, ψ2, . . . , ψn, . . .)] := [(ϕ1+ψ1, ϕ2+ψ2, . . . , ϕn+ψn, . . .)] (2.3.6)

and a multiplication by scalars

λ[(ϕ1, ϕ2, . . . , ϕn, . . .)] := [λ(ϕ1, ϕ2, . . . , ϕn, . . .)] . (2.3.7)

We define the metric on this space as

dc([{ϕn}∞n=0], [{ψn}∞n=0]) := lim
n→∞

d(ϕn, ψn) , (2.3.8)

where d is the metric on the incomplete space and dc will be the metric on the complete
space. Finally, we define the map i : Φ→ Φc as i(ϕ) = [(ϕ, ϕ, . . . , ϕ, . . .)], i.e., the elements
ϕ of the incomplete l.t.s. Φ are represented in Φc by the infinite rows (ϕ, ϕ, ϕ, . . .). In
the end, i is a 1:1, linear, continuous mapping and i(Φ) is dense in Φc. Moreover, we can
extend other algebraic operations on Φ to Φc in the same way we extended the sum and
the products by scalars. For example, we can extend a scalar product on Φ to Φc via the
definition

([{ϕn}∞n=0], [{ψn}∞n=0])c := lim
n→∞

(ϕn, ψn) (2.3.9)

where ( · , · )c is the scalar product on Φc and ( · , · ) is the scalar product on Φ.

2.3.3 Normed, Scalar Product and Metric Spaces

In a linear space Φ, we can introduce algebraic operations that have in principle nothing
to do with a topology, but that can be used to define one. For instance, in Section 2.1.2
we introduced a scalar product on a vector space. The resulting structure, called scalar
product space, has significance even without any topological considerations. However, this
scalar product can be used to define several topologies on the scalar product space (a Hilbert
space topology, a nuclear topology,...). Another example of an algebraic operation that can
give rise to a topology is the norm.

Definition Let Φ be a linear space. A norm ‖ · ‖ on Φ is a function which associates to
each ϕ ∈ Φ a finite real number ‖ϕ‖ fulfilling

(N1) ‖ϕ+ ψ‖ ≤ ‖ϕ‖+ ‖ψ‖ , ∀ϕ, ψ ∈ Φ . (2.3.10)

(N2) ‖αϕ‖ = |α| ‖ϕ‖ , ∀ϕ ∈ Φ, ∀α ∈ C . (2.3.11)

(N3) ‖ϕ‖ ≥ 0 , and ‖ϕ‖ = 0 only if ϕ = 0 . (2.3.12)

A linear space Φ equipped with a norm ‖ · ‖ is usually denoted by (Φ, ‖ · ‖), and it is
called a normed space. From (2.3.10) and (2.3.11), it follows that ‖0‖ = 0.
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With the use of the norm we can specify a system of nhoods at 0 to define a topology,
called the norm topology. We define the nhoods of the zero element by

Uǫ(0) = {ϕ | ‖ϕ‖ < ǫ} , ǫ > 0 . (2.3.13)

Then the nhoods of any ψ are defined by

Uǫ(ψ) = ψ + Uǫ(0) = {ϕ | ‖ϕ− ψ‖ < ǫ} . (2.3.14)

The system of nhoods at zero
U0 = {Uǫ(0) | ǫ > 0} (2.3.15)

provides a topology for the normed space (Φ, ‖ · ‖). Equipped with this topology, (Φ, ‖ · ‖)
is a l.t.s. In place of (2.3.15), one can choose a countable system of nhoods at zero

W0 = {U1/m(0) | m = 1, 2, ...} . (2.3.16)

One can show that the systems of nhoods (2.3.15) and (2.3.16) are equivalent, i.e., they
yield the same topology. In particular, this means that every normed space satisfies the first
axiom of countability.

In the l.t.s. (Φ, ‖ · ‖) , we can give a meaning to the topological notions we have discussed
above (convergence of sequences, completeness,...). For example, according to the general
definition given in Section 2.3.2, a sequence {ϕn}∞n=0 is Cauchy if for every Uǫ(0) in (2.3.13)
there exists an N = N(Uǫ) such that for all n,m > N , ϕn − ϕm ∈ Uǫ(0). This means
that for every ǫ > 0 there exists a natural number N = N(ǫ) such that for all n,m > N ,
‖ϕn − ϕm‖ < ǫ. This is the definition of Cauchy sequences that one usually finds in tracts
on normed spaces. As in the general case, a normed space Φ is called complete if every
Cauchy sequence converges to an element in Φ. If a normed space (Φ, ‖ · ‖) is not complete
then it can be completed. A complete normed space is called a Banach space.

Now, given a scalar product ( · , · ) on a linear space Φ we can define the norm provided
by the scalar product as

‖ϕ‖ := +
√
(ϕ, ϕ) , ∀ϕ ∈ Φ . (2.3.17)

It is easy to see that (2.3.17) is a well defined norm that satisfies the requirements (2.3.10)-
(2.3.12) if the scalar product satisfies (2.1.12)-(2.1.14). Therefore, we can make a scalar
product space Φ a l.t.s. by using the system of nhoods at zero (2.3.15) or (2.3.16) with ‖ · ‖
defined by (2.3.17). Although a scalar product always describes a norm (through (2.3.17)),
the converse is not always true. Therefore a scalar product space is always a normed space
but the converse does not necessarily hold.

Definition A scalar product space is called a Hilbert space if it is complete with respect to
the topology generated by the norm given by the scalar product as in (2.3.17). We shall
usually denote a Hilbert space by H.

Thus a Hilbert space is the completion of the scalar product space of Section 2.1.2 with
respect to the topology given by the system of nhoods (2.3.15) or (2.3.16) . Since the Hilbert
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space has been so important in mathematics and physics, a scalar product space (in which
one does not introduce any topology) is often called a pre-Hilbert space. Every pre-Hilbert
space becomes a Hilbert space when we complete it with respect to the topology given by
(2.3.15) with (2.3.17). It is worthwhile noting that the Hilbert space topology is not the
only topology for which one can complete a scalar product space Φ. In Section 2.4 we will
discuss other different topologies that can be introduced on Φ.

Definition A real-valued function d, defined for each pair of elements ϕ, ψ of a set Φ, is
called a metric if it satisfies

(M1) d(ϕ+ ψ) ≤ d(ϕ, φ) + d(φ, ψ) , ∀ϕ, φ, ψ ∈ Φ . (2.3.18)

(M2) d(ϕ, ψ) = d(ψ, ϕ) , ∀ϕ, ψ ∈ Φ . (2.3.19)

(M3) d(ϕ, ψ) ≥ 0 , d(ϕ, ϕ) = 0 , and d(ϕ, ψ) > 0 if ϕ 6= ψ . (2.3.20)

A set Φ provided with a metric is called a metric space and d(ϕ, ψ) is called the distance
between ϕ and ψ.

Let V (ϕ, ǫ) be the set of all elements ψ ∈ Φ such that d(ϕ, ψ) < ǫ. Then, the collection

Uϕ = {V (ϕ, ǫ) | ǫ > 0} (2.3.21)

is a system of basic nhoods at ϕ that generate a topology on Φ. Endowed with this topology,
a metric space is a l.t.s. A topological space is called metrizable if its topology can be defined
by a metric d. Every metrizable space is first countable, since the system of nhoods

{V (ϕ, 1/n) | n = 1, 2, . . .} (2.3.22)

is equivalent to (2.3.21). A metrizable space is also T4.
The real numbers and the complex numbers are both metrizable spaces, the metric being

given by
d(x, y) := |x− y| , x, y ∈ R (∈ C) . (2.3.23)

If we are given a norm ‖ · ‖ defined on a linear space, we can define a metric associated to
it by d(ϕ, ψ) = ‖ϕ− ψ‖. Therefore, normed and scalar product spaces are metrizable, and
their topology as metrizable spaces coincides with the topology defined by the norm or by
the scalar product.

2.3.4 Continuous Linear Operators and Continuous Antilinear
Functionals

Linear operators and antilinear functionals were defined in Sections 2.1.3 and 2.1.4. In
quantum physics, the operators (representing quantum mechanical observables and quantum
mechanical states) are linear and the functionals (representing kets or generalized states)
are antilinear. Therefore, we shall use here linear operators and antilinear functionals;
corresponding mathematical statements hold for antilinear operators and linear functionals.
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Definition Let Φ and Ψ be two l.t.s. A map A : D(A) ⊂ Φ→ Ψ is called a continuous
linear mapping or just a continuous operator iff

1. A is linear (cf. Section 2.1.3),

2. A is continuous (cf. Section 2.2.4).

The notion of continuity of an operator on a l.t.s. can be localized at zero, in the same
way that the topology can be localized at zero. More precisely, a linear mapping A from a
l.t.s. Φ into another l.t.s. Ψ is continuous on the whole space Φ iff it is continuous at the
zero element. Therefore, a linear mapping A : Φ→ Ψ is continuous iff for every nhood U of
0 ∈ Ψ there exists a nhood V of 0 ∈ Φ such that A(V ) ⊂ U . When the l.t.s. Φ and Ψ are
first countable (that is, the topology can be described in terms of convergence of sequences),
then the sequential criterion for continuity (see Section 2.2.4) can also be localized at zero:
an operator A : Φ→ Ψ is continuous iff whenever ϕn → 0 in Φ, then A(ϕn)→ 0 in Ψ.

The notion of boundedness is related to the continuity of an operator:

Definition A linear operator A : Φ → Ψ is called bounded iff it transforms every τΦ-
bounded set B ⊂ Φ into a τΨ-bounded set A(B) ⊂ Ψ (cf. Section 2.3.1 for the definition of
a bounded set).

One can show that every continuous operator defined on a l.t.s. is bounded. Moreover,
if the l.t.s. Φ and Ψ satisfy the first axiom of countability, an operator A : Φ → Ψ is
continuous if and only if it is bounded. Therefore, in all normed, countably normed and
metrizable spaces (which are first countable) one can use the words continuous operator and
bounded operators interchangeably.

Continuous operators as compared to non-continuous operators have nicer properties
and are easier to handle because they can always be defined on the whole space Φ. Even if
initially they are only defined on a dense subspace D(A), their definition can be extended
to the whole space in a continuous manner. As an example of this extension, consider two
first countable l.t.s. Φ and Ψ such that Ψ is complete. Let A : D(A) ⊂ Φ→ Ψ be a densely
defined continuous operator. Then A can be uniquely extended to the whole space Φ in a
continuous way as follows: if ϕ ∈ Φ but ϕ is not in D(A) we can always find a sequence
{ϕn} in D(A) such that ϕn → ϕ with respect to τΦ. Since {ϕn} is τΦ-Cauchy, {Aϕn} is
τΨ-Cauchy, and {Aϕn} has a well defined limit ψ in Ψ. We can define the action of A on
ϕ to be this limit ψ

Aϕ := lim
n→∞

Aϕn , ∀ϕ ∈ Φ . (2.3.24)

The operator defined in (2.3.24) is well defined on the whole space Φ, extends the action of A
on D(A) and is continuous. For the spaces Φ of the RHS Φ ⊂ H ⊂ Φ× and for the operators
defined on them this extension will always be possible. In fact, we shall always assume that
every continuous linear (as well as antilinear) operator has already been extended to the
whole space Φ.
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If A : Φ→ Ψ is a continuous linear operator then (αA), α ∈ C, is also a continuous linear
operator. If A,B are continuous linear operators then A+B and A ·B are also continuous
linear operators. Thus if the generatorsXi of an algebra A are given by continuous operators
then the whole algebra is an algebra of continuous operators and every A ∈ A given by
(2.1.47) with a finite numbers of terms are defined on the whole space Φ. (The question of
the convergence of infinite sums of the form (2.1.47) can only be addressed after a topology
has been introduced on A). If one wants to do calculations it is of great importance to
have an algebra of continuous operators which are defined on the whole space, because then
one does not have to worry about domain questions, i.e., one does not have to answer the
question whether Bϕ is in the domainD(A) of an operator A to calculate ABϕ. Also one will
not have to deal with the absurd situation that the expectation value (ϕ,Aϕ), representing
average value of a quantum mechanical observable A measured in quantum mechanical state
ϕ, is “infinite” when ϕ is not in D(A). It would, therefore, be desirable that all quantum
mechanical observables were given by continuous operators on a suitable l.t.s. This means
that the mathematical image of all quantum mechanical observables should be a set (perhaps
an algebra) of continuous operators on some l.t.s. Only vectors ϕ of such l.t.s. can represent
physical states. The non-continuous operators should be forbidden because they may lead
to nonphysical infinite predictions.

Much of the trouble of the Hilbert Space formalism comes from domain questions. Al-
ready the simplest operators of Quantum Mechanics, the operators momentum P and po-
sition Q, which fulfill the algebraic relation PQ − QP = −i1 (Heisenberg commutation
relation), cannot be represented by continuous operators in the Hilbert space H. Thus the
Hilbert space contains some “non-physical states” in which these operators are not defined.
This is one of the reasons why we have to introduce a countably norm topology τΦ in ad-
dition to the algebraic structure of a scalar product space. The completion with respect
to this topology generates a space Φ. This space, which is as subspace of H, allows for a
representation by τΦ-continuous operators that satisfy the Heisenberg commutation relation
or similar algebraic relations (e.g., the commutation relations of non-compact groups of im-
portance in physics). Our task is thus to find a topology τΦ such that the phenomenological
commutation relations of Quantum Mechanics are represented by continuous operators on
some space Φ. For the Heisenberg commutation relations and many other algebraic re-
lations (including the commutation relations of all Lie groups) a countably Hilbert space
(cf. Section 2.4) will do the job.

The concept and properties of a continuous antilinear functional F : Φ → C follows
from the case of a continuous linear mapping just changing linearity for antilinearity and
considering the space C as a l.t.s.

Definition A map F : Φ→ C is called a continuous antilinear functional if

1. F is antilinear (cf. Section 2.1.3),

2. F is continuous (cf. Section 2.2.4).
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Dirac kets, Lippmann-Schwinger kets and Gamow vectors will be represented by contin-
uous antilinear functionals.

The collection Φ× of continuous antilinear functionals on a l.t.s. Φ, i.e., the set

Φ× = {F : Φ→ C | F is antilinear and τΦ−continuous} , (2.3.25)

is called the conjugate of Φ, the topological dual of Φ, or the adjoint of Φ. The conjugate
space depends, as all topological notions do, on the particular topology that has been
chosen. The conjugate space is a linear space under the usual sum of two functionals
and multiplication of a functional by a complex number. Since the elements of Φ× must
be continuous, the topological dual is always a subspace of the algebraic dual defined in
Section 2.1.4. A topology can also be assigned to Φ× to make it a l.t.s.

Example If (Φ, ‖ · ‖) is a Banach space, an antilinear functional F on Φ is continuous iff
the quantity

‖F‖Φ× := sup
ϕ∈Φ, ϕ 6=0

|F (ϕ)|
‖ϕ‖ (2.3.26)

is a finite real number. ‖F‖Φ× is called the norm of the antilinear functional F . One can
prove that (2.3.26) is indeed a well defined norm that satisfies (2.3.10)-(2.3.12). Moreover,
the adjoint space Φ× of a Banach space Φ is a Banach space itself when we define the norm
of a functional by (2.3.26). An antilinear functional F over a Banach space is bounded iff
there exists a positive constant K such that

|F (ϕ)| ≤ K‖ϕ‖ , ∀ϕ ∈ Φ . (2.3.27)

Since a Banach space is first countable, F is continuous iff F is bounded. In fact, ‖F‖Φ× in
(2.3.26) is the minimum of the real numbers K that satisfy (2.3.27).

The adjoint H× of a Hilbert space H, that in particular is a Banach space, can be
constructed in a similar fashion and can be endowed with the norm topology generated by
(2.3.26). Once this is done, the following important theorem holds:

Theorem (Riesz-Frechet) For every τH-continuous antilinear functional F on a Hilbert
space H there exists a unique vector fF ∈ H such that

F (g) = (g, fF ) , ∀ g ∈ H , (2.3.28)

and such that ‖fF‖H = ‖F‖H×.

The Riesz-Frechet theorem provides a one-to-one continuous linear mapping of H× onto
H,

: H× → H
F → fF , (2.3.29)
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that preserves the norms of the spaces. Therefore, a Hilbert space and its adjoint are
isometric spaces (cf. Section 2.1.2). This is usually abbreviated as

H ≃ H× . (2.3.30)

In general, two l.t.s. Φ and Ψ are called isomorphic if there exists a one-to-one mapping
h of Φ onto Ψ which is linear and continuous and such that its inverse is continuous. The
mapping h is called an isomorphism.2 Thus an isomorphism is a mapping that preserves
the linear topological structure of the spaces. Two isomorphic spaces are, from a linear
topological point of view, the same, and are usually identified,

Φ ≃ Ψ . (2.3.31)

When Φ and Ψ are normed spaces, a linear mapping h of Φ onto Ψ is an isomorphism iff
there are positive constants K1 and K2 with

K1‖ϕ‖ ≤ ‖h(ϕ)‖ ≤ K2‖ϕ‖ . (2.3.32)

Two isomorphic metric spaces are usually called isometric.

A continuous linear operator A defined on the whole of a l.t.s. Φ,

A : Φ→ Φ , (2.3.33)

can be extended into Φ× by

〈ϕ|A×F 〉 := 〈Aϕ|F 〉 , ϕ ∈ Φ , F ∈ Φ× . (2.3.34)

The dual extension A× defined by (2.3.34) is a well defined linear operator on Φ×

A× : Φ× → Φ× . (2.3.35)

2.4 Countably Hilbert Spaces

2.4.1 Introduction

In Section 2.3 we studied how to combine a linear and a topological structure. The resulting
l.t.s. structure is still too general for the purposes of Quantum Mechanics. We now distin-
guish a class of l.t.s. that is of service in Quantum Mechanics: countably Hilbert spaces. A
countably Hilbert space is a linear space on which a countable number of scalar products is
defined, i.e., for every ϕ, ψ ∈ Φ there exist

(ϕ, ψ)1, (ϕ, ψ)2, . . . , (ϕ, ψ)p, . . . , (2.4.1)

2Since algebraic isomorphisms were also designated as isomorphisms in Section 2.1.2, the terms topological
isomorphism and topologically isomorphic may be used to avoid misunderstanding.
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which fulfill the defining conditions (2.1.12)-(2.1.14) of the scalar product. From these scalar
products one can define the norms

‖ϕ‖p :=
√

(ϕ, ϕ)p , p = 1, 2, . . . (2.4.2)

One can also define a countably set of arbitrary norms ‖ϕ‖p not necessarily given by scalar
products. In this case, the space is called countably normed. The scalar products (norms)
in a countably Hilbert (normed) space must be related to each other. This relation makes
these norms match each other in the sense given by the following definitions:

Definition Let ‖ · ‖1 and ‖ · ‖2 be two norms defined on the same linear space Φ. These
two norms are called comparable if for every ϕ ∈ Φ there exists a constant C > 0 such that

‖ϕ‖1 ≤ C‖ϕ‖2 , ∀ϕ ∈ Φ . (2.4.3)

The norm ‖ · ‖1 is called weaker than the norm ‖ · ‖2 and ‖ · ‖2 is called stronger than
‖ · ‖1. Two norms are equivalent if there exist two constants C and D such that

‖ϕ‖1 ≤ C‖ϕ‖2 , ‖ϕ‖2 ≤ D‖ϕ‖1 , (2.4.4)

for every ϕ ∈ Φ.

Every sequence that is Cauchy with respect to the stronger norm is also Cauchy with
respect to the weaker norm. If two norms are equivalent, a sequence is Cauchy with respect
to one of the norms iff it is Cauchy with respect to the other norm.

Definition Two norms are called compatible iff every sequence {ϕn}∞n=1 ⊂ Φ which is
Cauchy with respect to both norms and which converges to 0 with respect to one of them,
also converges to 0 with respect to the other norm.

Let ‖ · ‖1 and ‖ · ‖2 be two comparable and compatible norms on a linear space Φ such
that ‖ · ‖1 is weaker than ‖ · ‖2. We can complete Φ with respect to the norm ‖ · ‖1 to
obtain a complete normed space Φ1. Similarly, we can complete Φ with respect to the norm
‖ · ‖2 to obtain Φ2. We then have

Φ1 ⊃ Φ2 ⊃ Φ . (2.4.5)

If ‖ · ‖1 and ‖ · ‖2 are equivalent, then both completions yield the same space,

Φ1 = Φ2 ⊃ Φ . (2.4.6)

Definition A space Φ is a countably Hilbert space (or a countably scalar product space) if
an increasing denumerable number of scalar products

(ϕ, ϕ)1 ≤ (ϕ, ϕ)2 ≤ · · · ≤ (ϕ, ϕ)p ≤ · · · (2.4.7)
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are defined on Φ such that the norms

‖ϕ‖p :=
√

(ϕ, ϕ)p , p = 0, 1, 2, . . . (2.4.8)

are comparable and compatible. The nhoods of zero that generate the topology are given
by

Up,ǫ(0) = {ϕ | ‖ϕ‖p < ǫ} , ǫ > 0, p = 1, 2, . . . (2.4.9)

The topology generated by (2.4.9) make Φ a linear topological space, i.e., the algebraic
operations are continuous.

Instead of (2.4.9), one can also choose the countable number of nhoods

Up,m(0) = {ϕ | ‖ϕ‖p <
1

m
} , p,m = 1, 2, . . . (2.4.10)

It is not hard to see that the systems of nhoods (2.4.9) and (2.4.10) are equivalent. Therefore,
in a countably scalar product space the first axiom of countability holds, and its topology τΦ
is completely specified by the definition of convergence of sequences. As it is easily seen, a
sequence {ϕn}∞n=1 of elements in a countably Hilbert space Φ converges to zero with respect
to this topology iff it converges to zero with respect to every norm ‖ · ‖p, p = 0, 1, 2, . . . In
symbols,

ϕn
τΦ−−→

n→∞
0 iff ‖ϕn‖p τC−−→

n→∞
0 , for every p = 1, 2, 3, . . . (2.4.11)

and
ϕn

τΦ−−→
n→∞

ϕ iff ‖ϕn − ϕ‖p τC−−→
n→∞

0 , for every p = 1, 2, 3, . . . (2.4.12)

Since a countably Hilbert space is first countable, the continuity of the linear combina-
tions αϕ+ βψ can be equivalently stated in terms of sequences as:

1. if ϕn
τΦ−−→

n→∞
ϕ then also αϕn

τΦ−−→
n→∞

αϕ for every α ∈ C ,

2. if αn
τC−−→

n→∞
α then also αnϕ

τΦ−−→
n→∞

αϕ for every ϕ ∈ Φ ,

3. if ϕn
τΦ−−→

n→∞
ϕ and ψn

τΦ−−→
n→∞

ψ then ϕn + ψn
τΦ−−→

n→∞
ϕ+ ψ .

If a given system of countable scalar products ( · , · )p does not fulfill the inequalities
(2.4.7), it can be replaced by a new equivalent system of scalar products that has this
property. We just need to define a new increasing sequence of scalar products as

(ϕ, ϕ)′p :=

p∑

i=1

(ϕ, ϕ)i , p = 1, 2, 3, . . . (2.4.13)

The systems of scalar products ( · , · )′p and ( · , · )p yield the same topology. Therefore, the
condition (2.4.7) does not restrict the class of spaces considered.

When the sequence of norms in (2.4.8) cannot be defined in terms of scalar products, we
call the space countably normed. A countably Hilbert space is always countably normed,
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but not vice versa. At first glance, it may appear that the class of countably Hilbert spaces
constitutes a narrow class of countably normed spaces, because the norms ‖ϕ‖p =

√
(ϕ, ϕ)p

are only special cases of general countable collections of norms. However, due to the fact that
we are considering denumerable collections of norms, the difference is much less pronounced
than for the case of one norm (Banach space) and one scalar product (Hilbert space). Under
very mild assumptions any initial system of norms ‖ϕ‖′p on a given countably normed space

can be replaced by another system of norms ‖ϕ‖p =
√
(ϕ, ϕ)p defined by some scalar

products without altering the topology on the space. We will always consider that this is
the case.

Example An important example of countably Hilbert space is the Schwartz space—also
called the space of test functions. We consider the set S(R) of functions ϕ(·) : R→ C which
are infinitely differentiable and the derivatives ∂kϕ(x)/∂xk of which tend to 0 as x → ∞
faster than any power of 1/|x|, for k = 0, 1, 2, . . . The norms that define the topology are

‖ϕ‖p = sup
k,q≤p

∣∣∣∣x
k ∂

qϕ(x)

∂xq

∣∣∣∣ , p = 0, 1, 2, . . . (2.4.14)

As mentioned before, we usually can find a sequence of scalar products that generate the
same topology as the sequence of norms do. In the case of S(R), these scalar products are
defined by

(ϕ, ψ)p =

∫ ∞

−∞
(1 + x2)2p

∑

0≤q≤p

∂qϕ(x)

∂xq
∂qψ(x)

∂xq
dx , p = 1, 2, . . . . (2.4.15)

The norms (2.4.14) and the scalar products (2.4.15) lead to equivalent topologies on S(R).
Therefore, S(R) is a countably Hilbert space.

Example The linear space K(a) of all infinitely differentiable functions ϕ(x) that vanish
whenever |x| > a can be made a countably normed space by defining the norms

‖ϕ‖p := sup
k=0,1,...,p

∣∣∣∣
dkϕ(x)

dxk

∣∣∣∣ , p = 0, 1, 2, . . . (2.4.16)

A countably Hilbert space is always metrizable, i.e., we can define a metric on it that
yields the original topology. In terms of the norms (2.4.8), this metric is given by

d(ϕ, ψ) =

∞∑

n=1

1

2n
‖ϕ− ψ‖n

1 + ‖ϕ− ψ‖n
. (2.4.17)

The function defined in (2.4.17) meets the conditions (2.3.18)-(2.3.20) for a metric. Thus
one can apply all the results for the well studied metric spaces to the countably Hilbert
spaces.
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A countably Hilbert (normed) space is called Frechet or an F-space if it is complete with
respect to the topology generated by the sequence of scalar products (norms). To find a
necessary and sufficient condition for a countably Hilbert space Φ to be complete, we denote
by Φn the completion of Φ relative to the norm ‖ϕ‖n =

√
(ϕ, ϕ)n. Then Φn is a Hilbert

space. Since

‖ϕ‖1 ≤ ‖ϕ‖2 ≤ · · · ≤ ‖ϕ‖n ≤ · · · , (2.4.18)

we have (cf. Eq. (2.4.5))

Φ1 ⊃ Φ2 ⊃ . . . ⊃ Φn ⊃ . . .Φ . (2.4.19)

One can prove that Φ is complete with respect to the topology given by the nhoods (2.4.9)
iff

Φ =

∞⋂

n=1

Φn . (2.4.20)

We shall always assume that our countably Hilbert space is Frechet, i.e., it fulfills (2.4.20).
In Section 2.2.2 we saw that different systems of nhoods in a topological space can lead

to equivalent topologies. The question arises whether the topology in a countably normed
space is really not equivalent to the topology given by one single norm. On the one hand,
every normed space (Φ, ‖ · ‖) is a countably normed space: one has just to choose a countable
system of norms ‖ · ‖p, p = 1, 2, . . ., such that ‖ · ‖p is equivalent to ‖ · ‖ for every p. On
the other hand, given a countably normed space Φ, whose topology is given by the infinite
sequence of norms

‖ · ‖1 ≤ ‖ · ‖2 ≤ · · · ≤ ‖ · ‖p ≤ · · · , (2.4.21)

its topology is equivalent to the topology given by a single norm ‖ · ‖ iff there is only a finite
number of non-equivalent norms in the sequence (2.4.21). Therefore, the essential difference
between a normed space and a countably normed space is that in the latter the topology is
given by an infinite number of non-equivalent norms.

2.4.2 Dual Space of a Countably Hilbert Space

The dual space Φ× (cf. Section 2.3.4) of a countably Hilbert space Φ is the collection of
antilinear functionals on Φ that are continuous with respect to the topology generated by
the norms (2.4.8). If we denote the adjoint of the Hilbert spaces Φn in (2.4.19) by Φ×

n , then
these spaces form an increasing chain

Φ×
1 ⊂ Φ×

2 ⊂ . . . ⊂ Φ×
n ⊂ . . . ⊂ Φ× , (2.4.22)

as opposed to the decreasing chain (2.4.19). Since a countably Hilbert space is first count-
able, a linear functional F on Φ is continuous iff it is bounded (see Section 2.3.4). One can
also see that F is bounded iff there exist a positive constant K and a norm ‖ · ‖q in the
sequence (2.4.8) such that

F (ϕ) ≤ K‖ϕ‖q (2.4.23)
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holds for every ϕ ∈ Φ. This means that an antilinear functional is continuous (bounded)
with respect to the sequence of norms (2.4.8) iff it is continuous (bounded) with respect to
one norm in this sequence. Therefore, the dual space of a countably Hilbert space can be
written as (compare to Eq. (2.4.20))

Φ× =
∞⋃

n=1

Φ×
n . (2.4.24)

One can introduce a topology in the linear space Φ× in various ways. For instance, one
can take as the nhoods of zero in Φ× the sets

UW (ϕ1, ϕ2, . . . , ϕn; ǫ) = {F ∈ Φ× | |F (ϕk)| ≤ ǫ , 1 ≤ k ≤ n} . (2.4.25)

Here ϕ1, ϕ2, . . . , ϕn are elements of Φ, and ǫ is an arbitrary positive number. The topology
generated by these nhoods is called the weak topology on the space Φ× and is denoted by
τW . Along with the weak topology one can construct the strong topology, whose nhoods of
zero are defined by

US(B; ǫ) =

{
F ∈ Φ× | sup

ϕ∈B
|F (ϕ)| < ǫ

}
, (2.4.26)

where B is any bounded set in Φ (cf. Section 2.3.1), and ǫ > 0. We denote the strong
topology by τS. As the names indicate, the strong topology is actually stronger than the
weak topology, i.e., τW ⊂ τS.

We consider, finally, the adjoint space Φ×× of Φ×. In this space also, one can define
different topologies. We shall only consider a topology built from the strongly bounded sets
in Φ× (that is, bounded with respect to τS). With each τS-bounded set B and each number
ǫ > 0 we associate the set

U(B, ǫ) =

{
ϕ̃ ∈ Φ×× | sup

F∈B
|ϕ̃(F )| < ǫ

}
. (2.4.27)

We take the collection of all sets U(B; ǫ) for a system of nhoods at zero in Φ××. With this
topology the second adjoint Φ×× is isomorphic to the original countably normed space Φ,
i.e., Φ ≃ Φ××. A l.t.s. Φ for which Φ ≃ Φ×× is called reflexive. Thus any countably Hilbert
space is reflexive. In particular, every Hilbert space is also reflexive (cf. Eq. (2.3.30)).

2.4.3 Countably Hilbert Spaces in Quantum Mechanics

The primary structure that physicists work with is a linear space Ψ with a (primary) scalar
product (ϕ, ψ) defined on it and an algebra of linear operators A. The (primary) scalar
product constitutes one of the most fundamental entities: |(ϕ, ψ)|2 represents the probability
to find the property ψ in the state ϕ, which are the quantities that are to be compared with
the experimental data. The linear operators A ∈ A represent the observables measured
in the quantum system upon consideration. This algebraic structure has, in principle, no
topology attached to it. But in Quantum Mechanics we need a topological structure so
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that the elements of the algebra of observables are continuous operators and all algebraic
operations are allowed. This is the reason why we need a sequence of scalar products.

Therefore, we consider the case of a linear space Ψ in which, in addition to a sequence
of scalar products (2.4.7), there is also another scalar product

( · , · ) : Ψ×Ψ 7−→ C

ψ × ϕ 7−→ (ψ, ϕ) (2.4.28)

defined on it. In principle the scalar product (2.4.28) is unrelated to the other scalar
products (2.4.7) that generate a countably Hilbert space topology τΦ. To make the scalar
product (2.4.28) and the sequence (2.4.7) match each other, we assume that (2.4.28) is a
τΦ-continuous mapping. Thus, in addition to (2.1.12)-(2.1.14), we demand that

ϕn
τΦ−−→

n→∞
ϕ implies (ϕn, ψ)

τC−−→
n→∞

(ϕ, ψ) , ∀ψ ∈ Ψ . (2.4.29)

We are now going to show that whenever a primary scalar product (2.4.28) is continuous
with respect to the topology generated by a denumerable sequence of scalar products, we
can include this scalar product as the first element of that sequence without altering the
topology:

From (2.4.29) we can see that the linear functional

Fψ : Ψ 7−→ C

ϕ 7−→ Fψ(ϕ) = (ψ,ϕ) (2.4.30)

and the antilinear functional

Fψ : Ψ 7−→ C

ϕ 7−→ Fψ(ϕ) = (ϕ,ψ) (2.4.31)

are τΦ-continuous. Since any continuous functional on a countably Hilbert space is
bounded, there is a norm ‖ · ‖q and a constant C > 0 such that

|Fψ(ϕ)| ≤ C‖ϕ‖q , |Fψ(ϕ)| ≤ C‖ϕ‖q , |(ψ,ϕ)| ≤ C‖ψ‖q ‖ϕ‖q . (2.4.32)

We now define the sequence of scalar products

(ϕ,ψ)′0 := (ϕ,ψ) , (2.4.33)

(ϕ,ψ)′p := C(ϕ,ψ)p+q−1 , p = 1, 2, . . . (2.4.34)

The new sequence of scalar products contains the original scalar product as the zeroth
element, satisfies

(ϕ,ϕ) ≡ (ϕ,ϕ)′0 ≤ (ϕ,ϕ)′1 ≤ · · · ≤ (ϕ,ϕ)′p ≤ · · · , (2.4.35)

and generates the same topology as the original scalar products (ϕ,ϕ)p do.
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Therefore, we can always assume that the scalar product (2.4.28) is already the zeroth
scalar product of the sequence

(ϕ, ϕ)0 ≤ (ϕ, ϕ)1 ≤ · · · ≤ (ϕ, ϕ)p ≤ · · · (2.4.36)

of scalar products that will define the topologies on Ψ. We are mostly interested in two
topologies induced by the scalar products (2.4.36) on Ψ. The first topology is generated by
the nhoods of zero given by

Um(0) = {ϕ | ‖ϕ‖0 <
1

m
} , m = 1, 2, . . . (2.4.37)

This is the Hilbert space topology (cf. Section 2.3.3) and is denoted by τH. The second
topology is the countably Hilbert space topology τΦ, whose nhoods of zero are given by

Up,m(0) = {ϕ | ‖ϕ‖p <
1

m
} , p = 0, 1, 2, . . . , m = 1, 2, . . . (2.4.38)

If we complete the linear space Ψ with respect to these two topologies, we obtain the chain
of spaces

Ψ ⊂ Φ ⊂ H . (2.4.39)

H is obtained by adjoining to Ψ the limit elements of τH-Cauchy sequences whereas Φ is
obtained by adjoining to Ψ the limit elements of τΦ-Cauchy sequences. The algebraic space
Ψ is τΦ-dense in Φ and τH-dense in H, and the complete countably Hilbert space Φ is
τH-dense in H. The second inclusion in (2.4.39) comes from the fact that every τΦ-Cauchy
sequence is also τH-Cauchy because {Um(0)} ⊂ {Up,m(0)} (and then τH ⊃ τΦ), but not vice
versa.

In applications to physics, the scalar products (2.4.36) are introduced in order to obtain
a topology so that all the elements of the algebra of observables are continuous. They
are defined in terms of the (primary) scalar product and the algebra of observables. For
example, the countable number of scalar products can be defined as

(ϕ, ψ)p ≡ (ϕ,Apψ) , p = 0, 1, 2, . . . , A ∈ A , (2.4.40)

where ( · , · ) is the (primary) scalar product that describes the probabilities. The quantities
|(ϕ, ψ)p| = |(ϕ,Apψ)| = |(ϕ, χ)| have also an interpretation, namely the probability to
find the property represented by ϕ in the transformed state χ = Apψ. Therefore, the
scalar products (ϕ, ψ)p, and therewith the topology τΦ and the space Φ, depend upon the
particular system under study.

2.5 Linear Operators on Hilbert Spaces

2.5.1 Introduction

In Quantum Mechanics, the observables are represented by a linear operators defined on
some linear scalar product space (Ψ, ( · , · )). The completion of this space with respect to
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the Hilbert space topology leads to the Hilbert space H (see Section 2.4.3). Therefore, any
observable can be viewed as an operator defined on the domain Ψ of the Hilbert space H.
This will allow us to apply the Hilbert space methods to these operators. Some of these
methods will be very useful in the Rigged Hilbert Space theory.

2.5.2 Bounded Operators on a Hilbert Space

Certain classes of bounded operators play an essential role in Quantum Mechanics: nuclear
operators are needed in the construction of the nuclear Rigged Hilbert Space (see Section 2.6)
and operators with finite trace (which are defined below) are to represent mixed states.
Before introducing the concept of bounded operator, we need some preliminary definitions.

Definition Let H be a Hilbert space and M be a closed subspace of H. The orthogonal
complementM⊥ ofM is the set of elements in H which are orthogonal to every element of
M,

M⊥ := {f ∈ H | (f, g) = 0 , ∀g ∈M} . (2.5.1)

IfM is a closed subspace of a Hilbert space H, then every f ∈ H can be uniquely written
as f = g+ g⊥, where g ∈M and g⊥ ∈M⊥. We usually say that H is the direct sum of the
spacesM andM⊥, and denote

H =M⊕M⊥ . (2.5.2)

Definition A set {en}∞n=1 ⊂ H is an orthonormal basis for H if:

1. The elements of the basis are orthonormal to each other,

(en, em) = δnm , n,m = 1, 2, . . . , (2.5.3)

where δnm is the Kronecker delta.

2. Every f ∈ H can be expanded in terms of this basis as a series of the form

f =
∞∑

n=1

(en, f)en , (2.5.4)

which converges in the sense of the norm of H.
In a general Hilbert space, an orthonormal basis need not be countable. It can be proven
though, that a Hilbert space is separable iff it has a countable orthonormal basis. We shall
only consider separable Hilbert spaces.

Example Define l2 to be the set of sequences {xn}∞n=1 of complex numbers which satisfy∑∞
n=1 |xn|2 <∞ with the scalar product

({xn}∞n=1, {yn}∞n=1) :=

∞∑

n=1

xn yn . (2.5.5)
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l2 is a separable Hilbert space and the set

{(1, 0, 0, . . . , 0, . . .), (0, 1, 0, . . . , 0, . . .), (0, 0, 1, . . . , 0, . . .), . . . , (0, 0, 0, . . . , 1, . . .), . . .}
(2.5.6)

is an orthonormal basis for l2.

Example The space L2(R, dx) is the set of complex-valued functions on R which satisfy∫∞
−∞ |f(x)|2dx <∞. L2(R, dx) is a Hilbert space under the scalar product

(f, g) =

∫ ∞

−∞
f(x) g(x) dx . (2.5.7)

The Hermite polynomials form an orthonormal basis for L2(R, dx).

We now list some definitions and results concerning bounded linear operators defined on
a Hilbert space H. Corresponding statements hold for operators of a Hilbert space H1 into
another Hilbert space H2.

Definition A linear operator A defined on a Hilbert space H is called bounded if there exists
a positive number K such that

‖Af‖ ≤ K‖f‖ (2.5.8)

holds for every f ∈ H. This definition of bounded operator is equivalent to the definition
given in Section 2.3.4.

The collection of all bounded operators on H is denoted by L(H). The space L(H) is a
linear space under the usual sum of two operators and multiplication of an operator by a
number. The norm of a bounded operator is defined by

‖A‖ := sup
f∈H,f 6=0

‖Af‖
‖f‖ . (2.5.9)

One can prove that (2.5.9) is a well defined norm that satisfies the conditions (2.3.10)-
(2.3.12). The space L(H) becomes a Banach space when the norm of its elements is defined
by (2.5.9).

In Section 2.1.2 we gave a preliminary definition of the adjoint of an operator. Now we
give a more thorough definition.

Definition Let A be a bounded operator on a Hilbert space H. The adjoint operator A†

of A is defined on the elements g for which there exists a z ∈ H fulfilling

(Af, g) = (f, z) (2.5.10)

for every f ∈ H. The adjoint is then defined by A†g = z. Thus (2.5.10) can be restated as

(Af, g) = (f, A†g) , ∀f ∈ H , ∀g ∈ D(A†) . (2.5.11)
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A bounded operator A is called Hermitian or self-adjoint if A = A†, i.e., if

(Af, g) = (f, Ag) , ∀f, g ∈ H . (2.5.12)

An important class of operators on Hilbert spaces is that of projections.

Definition If P ∈ L(H) and P 2 = P , then P is called a projection. If in addition P = P †,
then P is called an orthogonal projection.

The range R(P ) of a projection P is always a closed subspace on which P acts like the
identity. If in addition P is orthogonal, then P acts like the zero operator on (R (P ))⊥.
Conversely, given a closed subspaceM of H, we can define a projection operator PM onto
M as follows: since M induces on H a decomposition of the form (2.5.2), any f ∈ H can
be written as f = g+ g⊥, where g ∈M and g⊥ ∈ M⊥. We define PMf = PM(g+ g⊥) := g.
The operator PM is a well defined orthogonal projection. Therefore, there is a one to one
correspondence between orthogonal projections and closed subspaces.

Definition An operator U on H is called unitary if ‖Uf‖ = ‖f‖ for every f ∈ H. A unitary
operator satisfies the relations

U †U = UU † = I . (2.5.13)

Given a closed subspaceM⊂ H, an operator U ∈ L(H) is called a partial isometry onM
if U is unitary when restricted toM, i.e., if

U †U = PM , (2.5.14)

where PM is the projection ontoM.

Evidently, any unitary operator is a partial isometry on the whole of H. A unitary
operator U is always bounded and ‖U‖ = 1.

If A is a matrix on Cn, then the eigenvalues of A are the complex numbers λ such that
the determinant of λI − A is equal to zero. The set of such λ is called the spectrum of A.
It can consist of at most n points since det(λI −A) is a polynomial of degree n. If λ is not
an eigenvalue, then (λI −A) has an inverse since det(λI −A) 6= 0. In this case, λ is in the
resolvent set of A. These notions can be extended to the case of a linear transformation on
a Hilbert space.

Definition Let A ∈ L(H). A complex number λ is said to be in the resolvent set, Re(A),
of A if λI − A is a bijection with a bounded inverse. If λ /∈ Re(A), then λ is said to be in
the spectrum, Sp(A), of A. We distinguish two subsets of the spectrum:

1. An f ∈ H which satisfies Af = λf for some λ ∈ C is called an eigenvector of A; λ is
called the corresponding eigenvalue. If λ is an eigenvalue, then λ is in the spectrum
of A. The set of all eigenvalues is called the discrete spectrum of A.
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2. If λ is not an eigenvalue and if λ is not in Re(A), then λ is said to be in the continuous
spectrum of A.

A very important class of bounded operators is that of compact operators.

Definition An operator A ∈ L(H) is called compact (or completely continuous) if for every
bounded sequence {fn} ⊂ H, {Afn} has a subsequence convergent in H.

Example The simplest example of compact operator is an operator A of the form

Af := λ(e, f)h , (2.5.15)

where e and h are fixed vectors of unit length, and λ is a fixed number. This operator maps
all of H onto the one-dimensional subspace spanned by h, and is called a one-rank operator.
We can also define a linear operator A as

Af :=
N∑

i=1

λi(ei, f) hi (2.5.16)

for some fixed collections of vectors {ei}Ni=1 and {hi}Ni=1 in H. The range of this operator is
the finite dimensional subspace spanned by the vectors {hi}Ni=1. The operator A in (2.5.16)
is called a finite rank operator. Every finite rank operator is compact.

The spectrum Sp(A) of a compact operator A is a discrete set having no limit points
excepts perhaps λ = 0. Further, any nonzero λ ∈ Sp(A) is an eigenvalue of finite multiplicity
(i.e., the corresponding space of eigenvectors is finite dimensional).

A self adjoint compact operator, i.e., a compact operator A such that (Af, g) = (f, Ag)
for every f, g ∈ H, has a particularly simple structure. If A is a compact self adjoint operator,
then one can choose an orthonormal basis e1, e2, . . . in H which consists of eigenvectors of
A, Aen = λnen. The eigenvalues λ1, λ2, . . . corresponding to the eigenvectors e1, e2, . . . are
real and converge to zero as n → ∞, i.e., limn→∞ λn = 0. Conversely, every operator A
which is defined in terms of some orthonormal basis e1, e2, . . . , by Aen = λnen, where the
λn are real numbers and limn→∞ λn = 0, is self adjoint and compact.

An operator A is positive-definite if (Af, f) ≥ 0 for every vector f ∈ H. The eigenvalues
of a positive-definite operator are either positive or equal to zero. A compact operator differs
from a positive-definite operator only by an isometric factor, i.e., the following theorem
holds:

Theorem Let A be a compact operator on a Hilbert space H. Then A has the form

A = U |A| , (2.5.17)

where |A| is a positive-definite compact operator, and U is a partial isometry on the range
of |A|.
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Any compact operator can be approximated by a sum of one-rank operators (2.5.15).
Specifically, a compact operator A can be represented as the sum of a series

Af =

∞∑

n=1

λn (en, f) hn . (2.5.18)

The en are the eigenvectors of the operator |A| in the decomposition (2.5.17) corresponding
to the eigenvalues λn, i.e., |A|en = λnen. The hn are given by hn = Uen. (In particular, the
en and the hn are the elements of two orthonormal basis in H, and λ1, λ2, . . . are positive
numbers that tend to zero as n → ∞). Conversely, every series of the form (2.5.18), in
which en, hn, λn have the aforementioned properties, defines a compact operator.

The requirement that the eigenvalues λn (of the operator |A| appearing in the decom-
position A = U |A| of a compact operator A) tend to zero is too weak. We now consider
operators that satisfy more stringent conditions.

Definition A compact operator A = U |A| is called Hilbert-Schmidt if
∑∞

n=1 λ
2
n <∞, where

the λn are the eigenvalues of the operator |A|.

Therefore, an operator is of Hilbert-Schmidt type iff admits a decomposition of the form
(2.5.18) such that the series

∑∞
n=1 λ

2
n converges. One can also see that in order an operator

A be of Hilbert-Schmidt type, it is necessary and sufficient that the series
∑∞

n=1 ‖Aen‖2
converge for at least one orthonormal basis e1, e2, . . . in H.

An even more restrictive requirement that the operator A be Hilbert-Schmidt is that it
be a nuclear operator.

Definition A compact operator is called nuclear (or trace class) if
∑∞

n=1 λn < ∞, where
the λn are the eigenvalues of the operator |A| appearing in the decomposition A = U |A|.
Since the convergence of the series

∑∞
n=1 λ

2
n follows from the convergence of

∑∞
n=1 λn, every

nuclear operator is of Hilbert-Schmidt type.

It is clear that an operator A is nuclear iff it admits a decomposition of the form (2.5.18)
such that the series

∑∞
n=1 λn converges. The nuclear operators will serve in the definition of

nuclear spaces (cf. Section 2.6), which are the most important class of l.t.s. used in Quantum
Mechanics.

The trace of an operator is a generalization of the usual notion of the sum of the diagonal
elements of a matrix. For any positive operator A ∈ L(H) we define

Tr(A) :=
∞∑

n=1

(en, Aen) , (2.5.19)

where {en} is an orthonormal basis of H. The number Tr(A) is called the trace of A and
is independent of the orthonormal basis chosen. When Tr(A) is finite, then A is called an
operator with finite trace. If A is a positive-definite compact operator, then A is nuclear iff



62 2 Mathematical Framework of Quantum Mechanics

A has a finite trace. In this case,

Tr(A) =

∞∑

n=1

(en, Aen) =

∞∑

n=1

λn . (2.5.20)

In Quantum Mechanics, a general (mixed) state is assumed to be described by a positive
operator W with finite trace. W is usually chosen such that Tr(W ) = 1 (if Tr(W ) 6= 1,
we just define the equivalent normalized state W ′ ≡ W/Tr(W )). If A is a linear operator
representing a physical observable, then the quantity Tr(AW ) is to represent the probability
to observe A in the state W .

2.5.3 Unbounded Operators on a Hilbert Space

Most important observables that occur in Quantum Mechanics are represented by linear
operators that are unbounded with respect to the Hilbert space topology. In this section
we will introduce some of the basic definitions and theorems necessary for dealing with this
type of operators.

An operator A is unbounded if the quantity (2.5.9) is not finite. Unbounded operators
are usually defined on some subdomain of the Hilbert space. We will always suppose that
this domain is dense.

In order to compare operators that are not defined on the whole of H, we introduce the
following definition:

Definition Let A and B be two operators defined on H. Let D(A) be the domain of A and
D(B) the domain of B. A is said to be an extension of B if D(B) ⊂ D(A) and Af = Bf
for every f ∈ D(B). In this case we shall write B ⊂ A. One may also call B the restriction
of A to D(B).

For some operators A there is a natural way of defining an extension A. One takes a
Cauchy sequence {fn} in D(A). If the sequence {Afn} is also Cauchy, and if one denotes
by f and g the limits of {fn} and {Afn} respectively, it is natural to define Af = g. Since
f is not necessarily in D(A), one may define an extension A of A by applying the above
procedure to all Cauchy sequences {fn} in D(A) which are such that {Afn} is also Cauchy.
However, this construction makes sense only if the element g is independent of the choice of
a particular Cauchy sequence {fn} converging to f , i.e., if whenever {fn} and {f ′

n} are two
Cauchy sequences in D(A) converging to the same limit f and {Afn} and {Af ′

n} are also
Cauchy, then limn→∞Afn = limn→∞Af ′

n. An operator A verifying this condition is said
to be closable, and the extension A is called the closure of A. An operator A is said to be
closed if A = A.

Closedness is a weaker condition than continuity since, if an operator A on H is contin-
uous, then

lim
n→∞

fn = f , fn ∈ D(A) , (2.5.21)
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implies that the sequence {Afn} converges, while if it is only closed, then the convergence
of the sequence {fn} ⊂ D(A) does not imply the convergence of the sequence {Afn}.

The spectral notions for a bounded operator can be generalized to the unbounded case
when the operator is closed.

Definition Let A be a closed operator on a Hilbert space H. A complex number λ is in the
resolvent set, Re(A), of A if λI−A is a bijection from D(A) onto H with a bounded inverse.
The definitions of spectrum, discrete spectrum and continuous spectrum are the same for
unbounded operators as they are for bounded operators. We will sometimes refer to the
spectrum of nonclosed, but closable operators. In this case we always mean the spectrum
of the closure.

The adjoint of an unbounded operator A can be defined in a similar way to the bounded
case whenever the domain of A is dense in H.

Definition Let A : H → H be a linear operator (not necessarily bounded) on a Hilbert
space H whose domain D(A) is a dense linear subspace of H. The domain D(A†) of the
adjoint operator A† is the set of all vectors f ∈ H for which there exists a z ∈ H fulfilling

(f, Ag) = (z, g) (2.5.22)

for every g ∈ D(A). Then, by definition, A†f = z. Since D(A) is dense, the vector z is
uniquely determined and A† is well defined. We then write (2.5.22) as

(A†f, g) = (f, Ag) , ∀g ∈ D(A) , ∀f ∈ D(A†) . (2.5.23)

The adjoint operator is always closed. The relation between an unbounded operator A
and its adjoint A† can be more complicated than for the bounded case:

Definition An operator A on H is called symmetric if D(A) is dense in H and (Af, g) =
(f, Ag) for every f , g ∈ D(A). This means that a densely defined operator is symmetric iff
A ⊂ A†. A is called self-adjoint if D(A) is dense in H and A = A†. A is called essentially
self adjoint (e.s.a.) if A is self adjoint.

If A is a symmetric operator, then A is closable and A = A††. An e.s.a. operator has
a unique self adjoint extension that coincides with its adjoint. Physical observables are
assumed to be represented by e.s.a. operators.

Evidently, any self adjoint operator is e.s.a., and any e.s.a. operator is symmetric. In
fact, an operator A (not necessarily bounded) is

symmetric iff A ⊂ A = A†† ⊂ A† , (2.5.24)

e.s.a. iff A ⊂ A = A†† = A† , (2.5.25)

self adjoint iff A = A = A†† = A† . (2.5.26)
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The spectrum of a self-adjoint operator is always a closed subset of the real axis.

In Quantum Mechanics, the elements A of the algebra of observables A are defined on
some linear scalar product space (Ψ, ( · , · )), and are required to fulfill (Aϕ, ψ) = (ϕ,Aψ)
for every ϕ, ψ ∈ Ψ (i.e., they are required to be symmetric). These operators are usually
unbounded. When this is the case, they cannot be extended to the whole Hilbert space
H (which is the completion of Ψ with respect to the Hilbert space topology) due to the
following theorem:

Theorem (Hellinger-Toeplitz) Let A be an everywhere defined linear operator on a Hilbert
space H with (f, Ag) = (Af, g) for all f and g in H. Then A is bounded.

The Hellinger-Toeplitz theorem tells us that symmetric unbounded operators cannot be
defined on the whole of H. Thus such operators can be only extended at most into certain
dense subspaces of H. Given two unbounded densely defined operators A and B in A, the
definition of A+B or AB may be difficult: A+B is a priori only defined on D(A)∩D(B),
and AB is only defined on the elements ϕ ∈ D(B) such that Bϕ ∈ D(A). However, if there
exists a common invariant subdomain Φ for the algebra of operators A, i.e., a subspace Φ
such that Φ ⊂ D(A) and A : Φ → Φ for every A ∈ A, then all algebraic operations are
allowed and domain questions do not arise. The need for this domain, that is not provided
by the Hilbert space theory, is one of the reasons why we need to go beyond the Hilbert
space to the Rigged Hilbert Space.

As an example, let L2(R, dx) be the Hilbert space of square integrable functions on the
real line. Then the multiplication (position) operator

Q : f(x)→ xf(x) (2.5.27)

and the differentiation (momentum) operator

P : f(x)→ 1

i

df(x)

dx
(2.5.28)

are not bounded on L2(R, dx). Therefore, the commutation relation

[Q,P ] = QP − PQ = iI (2.5.29)

is not defined for every element in the Hilbert space. However, the actions of P and Q
can be restricted to the Schwartz space S(R), that is included in the domains of P and Q.
On this subdomain both P and Q are bounded (continuous) with respect to the topology
generated by the scalar products (2.4.15). On S(R), the commutation relation (2.5.29) is
well defined and all algebraic operations are allowed. This will serve as a motivation for
a physicist to consider using countably Hilbert spaces such as S(R) rather than just the
Hilbert space L2(R, dx).



2.6 Nuclear Rigged Hilbert Spaces 65

2.6 Nuclear Rigged Hilbert Spaces

2.6.1 Introduction

The class of countably Hilbert spaces that is of service in Quantum Mechanics is that of
nuclear spaces. Nuclear spaces will appear in connection with the spectral analysis of self
adjoint operators. This spectral analysis will be provided by the Gelfand-Maurin theorem
(see Section 3.5).

In order to introduce the concept of nuclearity, we consider a countably Hilbert space Φ
on which an increasing sequence of scalar products

(ϕ, ϕ)1 ≤ (ϕ, ϕ)2 ≤ · · · ≤ (ϕ, ϕ)n ≤ · · · (2.6.1)

is defined. We consider the Hilbert spaces Φn which are obtained by completing the space
Φ with respect to the norms ‖ϕ‖n =

√
(ϕ, ϕ)n. These completions lead to the chain of

spaces

Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φn ⊃ · · · ⊃ Φ . (2.6.2)

By construction, Φ is dense in each space Φn. We denote by ϕ[n] and ϕ[m] the same element
ϕ ∈ Φ, considered as an element of Φn and Φm, respectively. If m ≤ n, then it follows from
(2.6.1) that the identity mapping

: Φ ⊂ Φn → Φ ⊂ Φm

ϕ[n] → ϕ[m] (2.6.3)

is a continuous mapping from a dense set in Φn onto a dense set in Φm. We can extend this
mapping to a continuous linear transformation T nm which maps the space Φn onto a dense
subset of Φm (cf. Section 2.3.4).

A countably Hilbert space Φ is called nuclear if for any m there is an n such that the
mapping T nm of the space Φn into the space Φm is nuclear, i.e., it has the form

T nmϕ =
∞∑

k=1

λk (ek, ϕ)n hk , (2.6.4)

where ϕ ∈ Φn, {ek} and {hk} are orthonormal systems in Φn and Φm, respectively, λk > 0
and

∑∞
k=1 λk <∞.

We can extend the concept of nuclearity to a countably normed space. However, this
generalization does not lead to an extension of the class of spaces considered: in any nuclear
countably normed space it is possible to define a sequence of scalar products in such a way
that the space becomes a nuclear countably Hilbert space without altering its topology.

Nuclear spaces posses certain properties that make them suitable for the purposes of
Quantum Mechanics. Here we list the most relevant:

1. Any closed subspace of a nuclear space is nuclear.
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2. If Φ is a nuclear countably Hilbert space, then the strong and the weak topology3 on
Φ agree.

3. If Φ is nuclear, then the strong and weak topologies on Φ× (which were defined in
Section 2.4.2) coincide.

4. A nuclear space is separable (i.e., it contains a dense countable subset).

5. A nuclear space is complete with respect to the weak convergence.

6. A Hilbert (or a Banach) space is nuclear only if it is finite dimensional.

There is a number of countably Hilbert spaces that are nuclear. For example, the
Schwartz space S(R) (see Section 2.4.1) is nuclear with respect to the topology generated
by the scalar products (2.4.15). The space K(a) of Section 2.4.1 is also nuclear.

2.6.2 Nuclear Rigged Hilbert Spaces

By the use of the concepts discussed so far, it is now easy to introduce the basic notion of
(nuclear) Rigged Hilbert Space.

Let Φ be a nuclear countably Hilbert space. We introduce a scalar product ( · , · ) into
Φ satisfying (2.1.12)-(2.1.14). This scalar product is also required to be continuous with
respect to the countably Hilbert space topology on Φ. The completion of Φ with respect to
the norm ‖ϕ‖ =

√
(ϕ, ϕ) yields the Hilbert space H. Therefore, the mapping T that brings

any element of Φ into the completion H is continuous. Usually, we identify the space Φ
with the space T (Φ) and write

Φ ⊂ H . (2.6.5)

By construction, the topology of Φ is stronger (finer) than the topology induced by H on
Φ. Along with the spaces Φ and H we consider the adjoint space Φ× of Φ and the adjoint
space H× of H. The adjoint T× of T is an operator mapping H× into Φ×. T× is defined
by the equation

〈ϕ|T×h′〉 = 〈Tϕ|h′〉 (2.6.6)

for every h′ ∈ H× and ϕ ∈ Φ. Since every antilinear functional h′ on the Hilbert space H
can be written in the form (see Frechet-Riesz Theorem in Section 2.3.4)

h′(f) = (f, h1) , (2.6.7)

where h1 is some element of H, then T× can be considered as a mapping of H into Φ×.

3A sequence {ϕk} of elements in a countably Hilbert space Φ is said to be weakly convergent to ϕ if
limn→∞ F (ϕk) = F (ϕ) for every functional F on Φ. By strong convergence we mean the convergence with
respect to the countably Hilbert topology generated by the scalar products (2.6.1).
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A Rigged Hilbert Space4 (abbreviated RHS) or a Gelfand triplet is a triplet of spaces Φ,
H, Φ×, having the properties stated above: Φ is a nuclear countably Hilbert space on which
a scalar product is defined, H is the completion of Φ with respect to this scalar product,
and Φ× is the adjoint space of Φ. For any RHS there exists a continuous linear operator T
which maps Φ one-to-one onto a dense subset of H, and its adjoint T× maps H one-to-one
onto a dense subset in Φ×. Therefore, we will denote a RHS by

Φ ⊂ H ⊂ Φ× . (2.6.8)

Since T is continuous, then there exists a norm ‖ϕ‖m and an M > 0 such that

‖Tϕ‖ =
√

(ϕ, ϕ) ≤M‖ϕ‖m . (2.6.9)

Thus T can be extended onto the entire space Φn, n ≥ m. We denote the corresponding
operator by Tn. It can be proven that there is a value of n for which Tn, mapping the
Hilbert space Φn into H, is a nuclear operator. The operator T×

n , mapping H into Φ×
n , is

also nuclear.
The nuclearity of Tn will allow us to write T in a simple form. Since Tn is nuclear, there

exist orthonormal basis {hk} and {ek} in H and Φn such that for every element ϕ ∈ Φn

one has

Tnϕ =
∞∑

k=1

λk(ek, ϕ)hk , (2.6.10)

where λk ≥ 0 and the series
∑∞

k=1 λk converges. Since Tnϕ = Tϕ if ϕ belongs to Φ, then
for elements ϕ ∈ Φ formula (2.6.10) takes the form

Tϕ =

∞∑

k=1

λk(ek, ϕ)hk . (2.6.11)

One can associate with a RHS a two-sided infinite decreasing chain of spaces

Φ× ⊃ · · · ⊃ Φ−n ⊃ · · · ⊃ Φ0 ⊃ · · · ⊃ Φn ⊃ · · · ⊃ Φ , (2.6.12)

such that for any integer n there exists a nuclear mapping T n+1
n of the space Φn+1 onto a

dense subset of Φn, and such that

Φ =

∞⋂

n=1

Φn , Φ× =

∞⋃

n=1

Φ−n . (2.6.13)

In order to construct the chain (2.6.12), we take into account the fact that a nuclear space
Φ is the intersection of a decreasing chain of Hilbert spaces (see Section 2.4.1)

Φ =
∞⋂

n=1

Φn , Φ1 ⊃ Φ2 ⊃ · · · ⊃ Φn ⊃ · · · ⊃ Φ , (2.6.14)

4The word “rigged” in Rigged Hilbert Space has a nautical connotation, such as the phrase “fully rigged
ship”; it has nothing to do with any unsavory practice such as “fixing” or predetermining a result. The
phrase “rigged Hilbert space” is a direct translation of the phrase “osnashchyonnoe Hilbertovo prostranstvo”
from the original Russian.
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and for every n the mapping T n+1
n is nuclear. Now the space Φ× is the union of an increasing

chain of Hilbert spaces (see Section 2.4.2)

Φ× =

∞⋃

n=1

Φ−n , Φ−1 ⊂ Φ−2 ⊂ · · · ⊂ Φ−n ⊂ · · · ⊂ Φ× , (2.6.15)

where Φ−n ≡ Φ×
n . We denote by T n+1

n , for n < −1, the operator adjoint to T−n
−n−1. This

operator is also nuclear. In order to connect the chains (2.6.14) and (2.6.15), we note that
there is a value n for which the operator Tn , mapping Φn into H, is nuclear. Then the
mapping T−n of H into Φ−n is also nuclear. Without loss of generality we may suppose that
n = 1. We now denote H by Φ0, and the mappings T1 and T−1 by T

1
0 and T

0
−1, respectively.

We thereby obtain the sequence of spaces (2.6.12).

Example We define the scalar product on S(R) by

(ϕ, ψ) =

∫ +∞

−∞
ϕ(x)ψ(x)dx . (2.6.16)

Completion of S(R) with respect to this scalar product yields the Hilbert space L2(R, dx).
Since S(R) is nuclear and the scalar product (2.6.16) is continuous with respect to the
topology on S(R), then the triplet

S(R) ⊂ L2(R, dx) ⊂ S(R)× (2.6.17)

is a (nuclear) Rigged Hilbert Space. The space S(R)× is called the space of tempered distri-
butions. The “plane waves” eiλx may be considered as elements of S(R)×. The functional
associated to each plane wave eiλx is defined by

〈ϕ|Fλ〉 ≡ 〈ϕ|eiλx〉 :=
∫ ∞

−∞
ϕ(x) eiλxdx . (2.6.18)

It is easy to see that |Fλ〉 is a well defined continuous antilinear functional on S(R).



Chapter 3

The Rigged Hilbert Space of the
Harmonic Oscillator

In this chapter, we construct the RHS of the harmonic oscillator. This system is studied
from a different point of view to that taken in Quantum Mechanics textbooks. Instead
of assuming that the position and momentum operators are given by the multiplication
and derivative operators, we shall make three simple algebraic assumptions: the Heisen-
berg commutation relation, the expression of the Hamiltonian in terms of the position
and momentum operators, and the existence of an eigenvector of the Hamiltonian. From
these algebraic assumptions, we shall construct the RHS of the harmonic oscillator and the
Schrödinger representation of the algebra of the harmonic oscillator.

As I sat there, brooding on the old unknown world,
I thought of Gatsby’s wonder when he first picked out the
green light at the end of Daisy’s dock. He had come a long
way to this blue lawn and his dream must have seemed so
close that he could hardly fail to grasp it. He did not know
that it was already behind him, somewhere back in the vast
obscurity beyond the city, where the dark fields of the re-
public rolled on under the night.
Gatsby believed in the green light, the orgiastic future that
year by year recedes before us. It eluded us then, but that’s
no matter—tomorrow we will run faster, stretch out our
arms farther.... And one fine morning——
So we beat on, boats against the current, borne back
ceaselessly into the past.

F. Scott Fitzgerald, The Great Gatsby
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3.1 Introduction

We shall treat in detail one of the simplest physical models, the one-dimensional harmonic
oscillator, using the framework of the preceding sections. Our formulation will easily gen-
eralize to more complicated physical models, and we will list the algebras for which these
generalizations are already known.

The standard approach to the harmonic oscillator is to start out with the (position)
Schrödinger realization of the algebra of operators, i.e., one takes for granted the well
known differential expressions for the operators position Q, momentum P and energy H
of the harmonic oscillator. From these expressions one derives, for instance, the Heisen-
berg commutation relation. These operators are implicitly assumed to be defined on the
same domain, which is assumed to remain stable under their action, and so all algebraic
operations such as the multiplication of two operators are allowed. The operators Q and
P are assumed to have eigenkets |x〉 and |p〉 satisfying Q|x〉 = x|x〉 and P |p〉 = p|p〉 for
every real x and p, although a satisfactory mathematical meaning within a Hilbert space
formulation is not possible. Dirac basis expansion is also used, although the Hilbert space
spectral decomposition does not correspond to it.

Here we shall obtain this realization but starting from a different point. We shall just
assume some algebraic relations to be fulfilled by the operators P , Q and H , namely the
Heisenberg commutation relation and the expression of H in terms of P and Q. We shall
make an additional essential assumption: the existence of an eigenvector of the energy
operator. The operators will be defined on a common linear space that remains stable
under their actions.

From this algebraic starting point, we shall derive first that H possesses a countable
number of eigenvalues ~w(n + 1/2), n = 0, 1, 2, . . ., corresponding to some eigenvectors
φn, as it appears in the literature. The linear space spanned by the φn will be called Ψ.
In Section 3.3 this linear space is equipped with two different topologies: the usual Hilbert
space topology, which generates the Hilbert spaceH from Ψ, and a stronger nuclear topology,
which generates the space Φ from Ψ. This nuclear topology will make the elements of the
algebra continuous operators.

In Section 3.4, the space of antilinear functionals is defined, and the Rigged Hilbert
Space

Φ ⊂ H ⊂ Φ× (3.1.1)

for the harmonic oscillator is constructed. Section 3.5 gives the definition of generalized
eigenvectors. This definition will provide the proper mathematical setting for the eigenket
equations Q|x〉 = x|x〉 and P |p〉 = p|p〉. The eigenkets |p〉 and |x〉 will be continuous
antilinear functionals over Φ, i.e., they will be elements of Φ×. A statement of the Gelfand-
Maurin Theorem will be given, which will guarantee the existence of a complete set of
generalized eigenvectors of the position and momentum operators, as it is usually assumed.
It will be shown that this theorem is the mathematical statement that justifies the heuristic
Dirac basis vector expansion. In Section 3.6, we derive the Schrödinger representation of
the harmonic oscillator. In this representation the standard expressions for P , Q and H in
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terms of differential operators will be obtained. The realization of the RHS (3.1.1) by spaces
of functions and distributions is also described in Section 3.6. The space Φ will be realized
by the Schwartz space S(R), and Φ× by the space of tempered distributions S(R)×. Thus
the RHS (3.1.1) will be realized in the position representation by

S(R) ⊂ L2(R, dx) ⊂ S(R)× . (3.1.2)

Therefore, we shall provide a proper mathematical framework for the operations that
are needed in physics, and we will throw light onto the problem of how the Schrödinger
realization of the algebra of operators can be singled out. The important point is that
this realization, which is introduced ad hoc in the literature, can be derived from proper
algebraic assumptions within the RHS formalism.

3.2 Algebraic Operations

The algebra (cf. Section 2.1.3) A of observables for the one dimensional harmonic oscillator
is generated by the operators H (representing the observable energy), P (representing the
observable momentum) and Q (representing the observable position). The defining algebraic
relations are:

H =
1

2µ
P 2 +

µω2

2
Q2 , [P,Q] = −i~I , (3.2.1)

where ~ is a universal constant (Planck’s constant), µ, ω are characteristic constants of the
system (mass and frequency, respectively) and [P,Q] ≡ PQ− QP is the commutator of P
and Q. The elements of A are assumed to be linear operators defined on a linear space Ψ.
There is a scalar product ( · , · ) defined on Ψ that provides the probability amplitudes (but
Ψ is not a Hilbert space). Further, P , Q and H are supposed to be symmetric operators of
Ψ into Ψ. That is,

A : Ψ→ Ψ , (3.2.2)

and
(Aϕ, ψ) = (ϕ,Aψ), ∀ϕ, ψ ∈ Ψ , (3.2.3)

where the operator A can be P , Q or H . The assumptions about the algebra of observ-
ables stated so far do not specify the mathematical structure completely. There are many
realizations of the vector space Ψ on which A is an algebra of operators. We have to make
one further assumption in order to fully specify the realization of A, i.e., the realization of
(3.2.1). This additional requirement can be formulated in the following way:

there exists at least one non−degenerate eigenvalue of
H whose corresponding eigenvector is an element of Ψ . (3.2.4)

In short, our starting point is to assume that the physics of the harmonic oscillator is
described by an algebra of observables that satisfy the (algebraic) assumptions (3.2.1)-
(3.2.4).
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In order to construct the space Ψ, we make the elements of A act on the eigenvector of
(3.2.4). The representation of A by linear operators on Ψ obtained in this way is called the
ladder representation. The procedure to find the ladder representation is well known and
will be sketched only very briefly. One defines

a :=
1√
2

(√
µω

~
Q+

i√
µω~

P

)
, (3.2.5)

a† :=
1√
2

(√
µω

~
Q− i√

µω~
P

)
, (3.2.6)

N := a†a =
1

ω~
H − 1

2
I . (3.2.7)

These operators clearly fulfill, as a consequence of (3.2.3),

(ϕ, aψ) = (a†ϕ, ψ) , ∀ϕ, ψ ∈ Ψ , (3.2.8)

(ϕ,Nψ) = (Nϕ, ψ) , ∀ϕ, ψ ∈ Ψ . (3.2.9)

Eq. (3.2.1) implies that a and a† fulfill

[a, a†] = a a† − a†a = I . (3.2.10)

Assumption (3.2.4) implies that there exists a ϕλ 6= 0 in Ψ, such that

Nϕλ = λϕλ . (3.2.11)

From (3.2.9) and (3.2.11) it follows that

λ(ϕλ, ϕλ) = (ϕλ, Nϕλ) = (Nϕλ, ϕλ) = λ(ϕλ, ϕλ) . (3.2.12)

Therefore, λ = λ, i.e., λ is real. From the commutation relation (3.2.10), it then follows
that

N(aϕλ) = a†a aϕλ = (a a† − I)aϕλ = a(a†a− I)ϕλ
= a(N − I)ϕλ = a(λ− 1)ϕλ = (λ− 1)aϕλ . (3.2.13)

This implies that either aϕλ is an eigenvector of N with eigenvalue (λ − 1) or aϕλ = 0.
Further, from (3.2.8) and from the commutation relation (3.2.10) it follows that

‖a†ϕλ‖2 = (ϕλ, a
†aϕλ) + (ϕλ, Iϕλ) = ‖aϕλ‖2 + ‖ϕλ‖2 6= 0 , (3.2.14)

since ϕλ is different from the zero vector. This means that a†ϕλ 6= 0. In addition, equation
(3.2.10) implies that

N(a†ϕλ) = (λ+ 1)a†ϕλ , (3.2.15)

i.e., a†ϕλ is an eigenvector of N with eigenvalue (λ+ 1).
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We now start with the eigenvector ϕλ, which was assumed to exist, and successively
define the vectors

ϕλ−m = amϕλ m = 0, 1, 2, 3, . . . (3.2.16)

Since according to (3.2.13) each application of a lowers the eigenvalue by 1, we have

Nϕλ−m = (λ−m)ϕλ−m , m = 0, 1, 2, . . . (3.2.17)

This means that ϕλ−m = amϕλ, m = 0, 1, 2, . . ., are eigenvectors of N with eigenvalue
(λ − m) unless ϕλ−m is the zero vector. We shall now show that after a finite number of
steps m0, the vector ϕλ−m0

is the zero vector

ϕλ−m0
= am0ϕλ = 0 . (3.2.18)

To prove this statement, we calculate the scalar product of (3.2.16) and (3.2.17)

(ϕλ−m, Nϕλ−m) = (λ−m) (ϕλ−m, ϕλ−m) = (ϕλ−m, a
†aϕλ−m) = ‖aϕλ−m‖2 . (3.2.19)

If ϕλ−m 6= 0, then (3.2.19) leads to

(λ−m) =
‖aϕλ−m‖2
‖ϕλ−m‖2

. (3.2.20)

Since the norm of a non-zero vector is always positive, equation (3.2.20) implies that
(λ − m) ≥ 0 whenever ϕλ−m 6= 0. Now, if ϕλ−m were different from zero for every
m = 1, 2, . . ., then λ − m ≥ 0 could not be fulfilled, since λ is a fixed real number.
Therefore, there must exist an m0 ∈ N such that

ϕλ−m 6= 0 form < m0 , (3.2.21)

and
ϕλ−m0

= aϕλ−(m0−1) = 0 . (3.2.22)

This proves (3.2.18).

After normalization, we denote the last non-zero vector by

φ0 ≡
ϕλ−(m0−1)

‖ϕλ−(m0−1)‖
. (3.2.23)

From φ0 (for which aφ0 = 0) one defines the sequence of vectors

φ0

φ1 =
1√
1!
a†φ0

φ2 =
1√
2!
(a†)2φ0

.... .. .....

φn =
1√
n!
(a†)nφ0

.... .. ..... (3.2.24)

These vectors have the following properties:



3.2 Algebraic Operations 75

1. They are eigenvectors of the number operator N and of the Hamiltonian H

Nφn = nφn , n = 0, 1, 2, . . . (3.2.25)

Hφn = ~ω(n+ 1/2)φn n = 0, 1, 2, . . . (3.2.26)

2. For every φn, there exists a φn+1 that is different from the zero vector.

3. The actions of a† and a on the sequence (3.2.24) are given by

a†φn =
√
n+ 1φn+1 , aφn =

√
nφn−1 . (3.2.27)

Equation (3.2.26) is usually interpreted by saying that the energy of the harmonic oscillator
is quantized and cannot take any arbitrary value. Equation (3.2.27) means that if we start
with an eigenstate φn of H corresponding to the eigenvalue En = ~ω(n+1/2), application of
the operator a† yields an eigenvector associated with the eigenvalue En+1 = ~ω(n+1/2)+~ω,
and application of a yields, in the same way, the energy En−1 = ~ω(n+1/2)− ~ω. For this
reason, a† is said to be a creation operator and a an annihilation operator: their action on
an eigenvector of H makes an energy quantum ~ω appear or disappear.

The space Ψ of the ladder representation of A is the linear space spanned by the eigen-
vectors φ0, φ1, . . . , φn, . . . of (3.2.24), i.e., Ψ is the set of all (finite) linear combinations

ψ =
M∑

n=0

αnφn , (3.2.28)

where αn ∈ C and M is a natural number which is arbitrarily large but finite. In Ψ we have
the scalar product ( · , · ) for which (3.2.3), (3.2.8) and (3.2.9) holds. With respect to this
scalar product, the vectors φn are orthogonal and normalized,

(φn, φm) = δnm . (3.2.29)

We call the set of vectors {φn} an algebraic orthonormal basis for the space Ψ.
The set Ψ can be also viewed as the linear space of all sequences of the form

ψ ≡ (α0, α1, . . . , αM , 0, 0, . . .) ≡
M∑

n=0

αnφn , (3.2.30)

where αn ∈ C. The algebraic operations of this linear space are defined componentwise: let

ψ = (α0, α1, . . . , αM1
, 0, 0, . . .) ≡

M1∑

n=0

αnφn (3.2.31)

and

ϕ = (β0, β1, . . . , βM2
, 0, 0, . . .) ≡

M2∑

n=0

βnφn (3.2.32)
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be two elements of Ψ (M2 > M1). Then

ψ + ϕ := (α0 + β0, α1 + β1, . . . , αM1
+ βM1

, . . . , βM2
, 0, 0, . . .)

=

M2∑

n=0

(αn + βn)φn , (3.2.33)

and

αψ := (αα0, αα1, . . . , ααM1
, 0, 0, . . .) =

M1∑

n=0

(ααn)φn . (3.2.34)

The scalar product of ψ and ϕ is

(ψ, ϕ) =

M2∑

n=0

(αnφn, βnφn) =

M2∑

n=0

αn βn . (3.2.35)

Then the norm of ψ is given by

‖ψ‖2 =
M1∑

n=0

(αnφn, αnφn) =

M1∑

n=1

|αn|2 . (3.2.36)

Since the sums (3.2.30)-(3.2.36) only go up to a finite number, the question of the conver-
gence of these sums does not arise. The algebraic operations (3.2.33), (3.2.34) and (3.2.35)
show Ψ is a linear scalar product space (cf. Section 2.1.2).

We now introduce the space spanned by each φn. This is the subspace

Rn = {αφn | α ∈ C} . (3.2.37)

Rn is a one dimensional subspace called the energy eigenspace associated to the n-th eigen-
value of H , because all of its elements are eigenvectors of the operator H with eigenvalue
En = ~ω(n + 1/2). Although we can just as well work with the vectors φn, by using the
spaces Rn we obtain a formulation which immediately generalizes to the case where Rn is
not one dimensional. The space Ψ, that is given by

Ψ = {ψ = (α0, α1, . . . , αM , 0, 0, . . .) ≡
M∑

n=0

αnφn ; αn ∈ C , M ∈ N} , (3.2.38)

is usually rewritten as the algebraic direct sum of the spaces Rn:

Ψ =
∑

algebraic

⊕Rn . (3.2.39)

The right hand side of the equation (3.2.39) means that every ψ ∈ Ψ can be uniquely written
as a finite linear combination

ψ ≡ r0 + r1 + · · ·+ rM (3.2.40)

of elements rn = αnφn ∈ Rn that are orthogonal to each other (i.e., (rn, rm) = 0 if n 6= m).
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3.3 Construction of the Topologies

3.3.1 Introduction

The space Ψ has so far an algebraic structure, namely it is a linear space provided with a
scalar product. In order to be able to use certain tools (such as the Gelfand-Maurin theorem
of Section 3.5) we need to equip Ψ with a topological structure, i.e., we need to construct a
linear topological space (cf. Section 2.3).

We will define a topology in terms of the notion of sequence convergence. All the rest of
the topological notions such as continuity, denseness, boundedness, closure, completeness,
etc. will be derived from the notion of sequence convergence. When this notion fully de-
scribes the topology, the topological space is said to be first countable (cf. Section 2.2.2).
The topologies introduced in this section are all first countable. Only Section 3.4 will deal
with topologies that are not first countable.

Intuitively, a sequence {ϕn} converges to a point ϕ if whenever we follow the terms of
that sequence we get closer and closer to the limit point ϕ with respect to a certain sense of
closeness. This definition of convergence must be such that the linear and the topological
structures can be pieced together. This is accomplished by requiring that the algebraic
operations be continuous with respect to the topology under consideration. Therefore, a
linear topological space has

1. A linear structure.

2. A topology τ that provides a notion of convergence of sequences. If a sequence {ϕn}
converges to a point ϕ, then we denote

ϕn
τ−−→

n→∞
ϕ . (3.3.1)

3. The algebraic operations are continuous. That is,

(3a) If ϕn
τ−−→ϕ, then αϕn

τ−−→αϕ for every α ∈ C.

(3b) If C ∋ αn−−→α ∈ C, then αnϕ
τ−−→αϕ for every ϕ.

(3c) If ϕn
τ−−→ϕ and ψn

τ−−→ψ, then ϕn + ψn
τ−−→ϕ+ ψ.

This is not the most general definition of a linear topological space (cf. Section 2.3) but it
is sufficient when the topology is first countable.

A sequence {ϕn} will be said to be Cauchy if the terms of the sequence get more and
more close to each other as n→∞. We then write

ϕn − ϕm τ−−→
n,m→∞

0 . (3.3.2)

One may expect that whenever we follow the elements of a Cauchy sequence, we always end
up in an element of the space. However, this is the case only in certain kind of spaces, that
are called complete. Therefore, a space is complete with respect to a given topology if every
Cauchy sequence has a limit that belongs to the space. When a space is not complete, it
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can be completed by adding to it all the limit points of Cauchy sequences. In this case, the
incomplete space can be viewed as a dense set of the complete space (cf. Section 2.3.2).

We shall introduce two different topologies on Ψ, the Hilbert space topology and a
nuclear topology. Completion with respect to each topology will lead to the space H and Φ,
respectively. These two topologies will be fully described by the definition of convergence
of sequences (i.e., they are first countable).

3.3.2 Hilbert Space Topology

First, we introduce into Ψ the well known Hilbert space topology, which we shall denote by
τH. For each ψ ∈ Ψ, we define the norm of ψ by

‖ψ‖ :=
√

(ψ, ψ) , (3.3.3)

where (ψ, ψ) is the scalar product of Ψ. The norm (3.3.3) can be used to introduce a
meaning of convergence, i.e., to specify in which sense the terms of a sequence get closer
and closer to a limit point. We will say that a sequence {ψn} in Ψ converges to ψ ∈ Ψ with
respect to the Hilbert space topology τH if

‖ψn − ψ‖ → 0 as n→∞ . (3.3.4)

This means that {ψn} tends to ψ if for every ǫ > 0 there is a positive integer N(ǫ) such that
‖ψn − ψ‖ < ǫ for every n > N . Symbolically, this condition is written as

ψn
τH−−→

n→∞
ψ iff ‖ψn − ψ‖−−→

n→∞
0 . (3.3.5)

The concept of Cauchy sequence can be stated as: a sequence {ψn} in Ψ is Cauchy with
respect to τH if for every ǫ > 0 there exists a positive integer N such that ‖ψn − ψm‖ < ǫ
for every m,n > N . In other words, the sequence {ψn} is Cauchy if

‖ψn − ψm‖ → 0 as n,m→∞ . (3.3.6)

The space Ψ is not complete with respect to the Hilbert space topology. That is to say,
there exist Cauchy sequences of elements ψn in Ψ (i.e., sequences fulfilling (3.3.6)) that do
not have a τH-limit element in Ψ (i.e., there is no ψ ∈ Ψ such that (3.3.4) holds). As an
example, let us consider the following infinite sequence:

ψ0 = (
φ0

1
, 0, 0, . . .) ≡ φ0

1

ψ1 = (
φ0

1
,
φ1

2
, 0, . . .) ≡ φ0

1
+
φ1

2
.... ... .........

ψn = (
φ0

1
,
φ1

2
, . . . ,

φn
n+ 1

, 0, . . .) ≡
n∑

i=0

φi
i+ 1

.... ... ......... , (3.3.7)
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where the φn are the eigenvectors (3.2.24) of N . The sequence (3.3.7) is τH-Cauchy, because
for any positive integers n,m (m > n without loss of generality)

‖ψn − ψm‖2 =
m∑

i=n+1

‖φi‖2
(i+ 1)2

=
m∑

i=n+1

1

(i+ 1)2
−−→
n,m→∞

0 . (3.3.8)

But (3.3.7) tends, with respect to τH, to

z = (
φ0

1
,
φ1

2
, . . . ,

φn
n+ 1

,
φn+1

n + 2
, . . .) ≡

∞∑

i=0

φi
i+ 1

. (3.3.9)

which is an infinite sequence and therefore is not in Ψ. This shows that Ψ is not complete.
The space Ψ can be completed with respect to the topology τH by adding to Ψ all the

limit points of τH-Cauchy sequences of elements of Ψ. The resulting space, denoted by H,
is the Hilbert space. Ψ, that is a scalar product space which is not complete with respect
to τH, is usually called a pre-Hilbert space. The space H is the set of infinite sequences

h = (r0, r1, . . . , rn, . . .) ≡
∞∑

n=0

rn , (3.3.10)

where rn = αnφn ∈ Rn and αn ∈ C, such that

∞∑

n=0

‖rn‖2 =
∞∑

n=0

|αn|2 <∞ , (3.3.11)

or in a more compact notation

H = {h ≡ (r0, r1, . . . , rn, . . .) |
∞∑

n=0

‖rn‖2 <∞ , rn ∈ Rn} . (3.3.12)

Its topology is given by the prescription (3.3.5) for sequence convergence:

hn
τH−−→

n→∞
h⇔ ‖hn − h‖ τC−−→

n→∞
0 . (3.3.13)

It can be proven that the space H defined by (3.3.12) is complete with respect to the
topology defined by (3.3.13).

A vector h ∈ H given by (3.3.10) is uniquely determined by the sequence of complex
numbers

h ≡ (α0, α1, . . . , αn, . . .) , (3.3.14)

where rn = αnφn. This sequence is not arbitrary, but it must fulfill (3.3.11). In fact, it can
be shown that the norm (3.3.3) of any h ∈ H is given by

‖h‖2 =
∞∑

n=0

|αn|2 . (3.3.15)
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An infinite sequence (α0, α1, . . . , αn, . . .) that satisfies (3.3.11) is said to be square summable.
The set of square summable sequences is denoted by l2(C). It is clear that h ∈ H iff its
corresponding sequence (3.3.14) is square summable. Therefore, (3.3.14) and (3.3.15) set up
a one-to-one correspondence of the Hilbert space H onto the space l2(C). The spaces H and
l2(C) are, from a linear topological point of view, the same. We then say that l2(C) is the
realization of H by the space of square summable sequences. In terms of these sequences,
the space H is given by

H = {h =
∞∑

n=0

αnφn | αn ∈ C ,
∞∑

n=0

|αn|2 <∞} . (3.3.16)

The αn of (3.3.14) can be obtained as the scalar product of h with φn

αn = (φn, h) , n = 0, 1, 2, . . . (3.3.17)

Thus we can write any element h ∈ H as

h ≡
∞∑

n=0

φn(φn, g) ≡
∞∑

n=0

|φn)(φn, g) , (3.3.18)

in analogy to the three-dimensional case

~x =

3∑

i=1

~ei(~ei · ~x) =
3∑

i=1

~ei xi . (3.3.19)

Equation (3.3.18) is usually interpreted by saying that the {φn} form an orthonormal basis
for H and that the αn are the components along the basis vectors φn.

We are now going to show that H is actually a τH-completion of Ψ. First, the algebraic
operations on Ψ can be readily extended to the Hilbert space H. The sum of two elements

h ≡ (α0, α1, . . . , αn, . . .) ≡
∞∑

n=0

αnφn (3.3.20)

and

g ≡ (β0, β1, . . . , βn, . . .) ≡
∞∑

n=0

βnφn (3.3.21)

of H is defined componentwise as

h+ g := (α0 + β0, α1 + β1, . . . , αn + βn, . . .) ≡
∞∑

n=0

(αn + βn)φn . (3.3.22)

It can be proven that if h and g are elements of H, i.e., the sequences (3.3.20) and (3.3.21)
satisfy (3.3.11), then h+ g is also an element of H, i.e., it obeys

∞∑

n=0

|αn + βn|2 <∞ . (3.3.23)
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The multiplication of an element h of H by a complex number α is defined by

αh := (αα0, αα1, . . . , ααn, . . .) ≡
∞∑

n=0

(ααn)φn . (3.3.24)

The scalar product on H is defined by

(h, g) =
∞∑

n=0

(αnφn, βnφn) =
∞∑

n=0

αn βn . (3.3.25)

If h and g are in H, then it can be shown that the series (3.3.25) converges and that this
scalar product is well defined. Therefore, H is a linear scalar product space that is complete
with respect to the topology τH generated by this scalar product, i.e., H is a Hilbert space.
Since every element ψ ∈ Ψ is given by a finite sequence of the form

ψ = (r0, r1, . . . , rM , 0, 0, . . .) (3.3.26)

that obviously satisfies (3.3.11), the space Ψ is a subset of H. The algebraic operations
(3.3.22), (3.3.24) and (3.3.25) on H clearly extend the operations (3.2.33), (3.2.34) and
(3.2.35) on Ψ. We can see that Ψ is dense in H with respect to this topology. In fact, every
element

h ≡ (α0, α1, . . . , αn, . . .) ≡
∞∑

n=0

αnφn (3.3.27)

of H is the τH-limit of a sequence of elements of Ψ with the form

ψn ≡ (α0, α1, . . . , αn, 0, 0, . . .) ≡
n∑

i=0

αiφi . (3.3.28)

In other words, H is the τH-completion of Ψ with respect to the topology defined by the
norm ‖ψ‖ =

√
(ψ, ψ).

In terms of the spaces Rn, the space H is usually written as

H =
∑

Hilbert

⊕ Rn . (3.3.29)

The right hand side of (3.3.29) is usually called the Hilbertian direct sum or orthogonal
direct sum of the Rn because the spaces Rn are orthogonal to each other, since (rn, rm) = 0
for n 6= m, where rn ∈ Rn and rm ∈ Rm.

An example of an element of H is the sequence

z ≡ (1,
1

2
,
1

3
, . . . ,

1

n
, . . .) ≡

∞∑

n=0

φn
n+ 1

(3.3.30)
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of (3.3.9). For this sequence, it holds that

‖z‖2 =
∞∑

n=0

‖φn‖2
(n+ 1)2

=
∞∑

n=1

1

n2
=
π2

6
. (3.3.31)

z is the τH-limit element of the Cauchy sequence (3.3.7), because for every ψn in (3.3.7)

‖ψn − z‖2 =
∞∑

i=n+1

‖φi‖2
(i+ 1)2

=
∞∑

i=n+1

1

(i+ 1)2
−−→
n→∞

0 . (3.3.32)

Summarizing, we started with the linear scalar product space Ψ of finite linear combi-
nations of the eigenvectors φn. In this space, we introduced the topology τH through the
meaning of sequence convergence (3.3.5). The space Ψ was not complete with respect to
τH, i.e., there were Cauchy sequences of elements of Ψ that did not have a τH-limit element
in Ψ. Ψ was completed to a space H by adjoining to it all limit elements of τH-Cauchy
sequences. Thus, the Hilbertian direct sum was obtained by completing the algebraic direct
sum with respect to τH:

Ψ =
∑

algebraic

⊕ Rn 7−→ τH−completion 7−→ H =
∑

Hilbert

⊕ Rn . (3.3.33)

The operators of the algebra of observables A can be considered now as linear operators
defined on a subdomain of the Hilbert space. These operators can be extended to larger
subdomains of H (see Section 3.3.5). But these extensions are not continuous with respect
to τH. Moreover, their domains do not remain stable under the actions of the operators.
Therefore, algebraic operations such as the sum or multiplication of two operators are not
always allowed. Since in physics these kind of operations are always assumed to be well
defined, it is reasonable to search for a space Φ that

1. remains stable under the action of the elements of the algebra A,

A : Φ→ Φ , (3.3.34)

where A is any element of A.

2. Every A ∈ A is continuous with respect to certain topology on Φ. This continuity
will allow us to extend the operators from Ψ to their extension on Φ in a unique way.

The domain Φ is characteristic of the particular physical system (i.e., of the particular alge-
bra of observables) upon consideration. The construction of this domain for the harmonic
oscillator is the subject of the next section.
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3.3.3 Nuclear Topology

We now construct the space Φ, which will be the completion of Ψ with respect to a nuclear
topology τΦ. We take the original scalar product ( · , · ) and define the quantities

(ϕ, ψ)p := (ϕ, (N + I)pψ) , ∀ϕ, ψ ∈ Ψ , p = 0, 1, 2, . . . (3.3.35)

and

‖ψ‖p :=
√
(ψ, ψ)p , ∀ψ ∈ Ψ . (3.3.36)

From the properties of the linear operator N , it is easy to see that (ϕ, ψ)p of (3.3.35) fulfills
the conditions (2.1.12)-(2.1.14) of a scalar product and that the quantities of (3.3.36) form
an increasing sequence of norms

‖ψ‖0 ≤ ‖ψ‖1 ≤ ‖ψ‖2 ≤ · · · (3.3.37)

Further, these norms are compatible, i.e., if a sequence converges to zero with respect to
one norm and is a Cauchy sequence with respect to another, then it also converges to zero
with respect to this other norm (cf. Section 2.4.1).

We now define the notion of convergence that will determine the nuclear topology τΦ.
A sequence {ψn} of elements in Ψ converges to an element ψ with respect to the topology
τΦ if {ψn} converges to ψ with respect to every norm in (3.3.36):

ψn
τΦ−−→

n→∞
ψ ⇔ ‖ψn − ψ‖p → 0 , for every p = 0, 1, 2, . . . (3.3.38)

The reason why we introduce the scalar products (3.3.35) and the topology (3.3.38) is
that the operator N will be continuous with respect to τΦ (cf. Section 3.3.5). Moreover, due
to the special structure of the algebra of the harmonic oscillator, the continuity of N will
imply the continuity of the rest of the observables of this algebra (cf. Section 3.3.5).

From ψn
τΦ−−→ψ it follows that ψn

τH−−→ψ, but not vice versa. Therefore τΦ is stronger
(finer) than τH, and τH is weaker (coarser) than τΦ.

A sequence {ψn} in Ψ is τΦ-Cauchy if for every p and for every ǫ > 0 there exists a
positive integer N = N(ǫ, p) such that

‖ψn − ψm‖p < ǫ for every n,m > N , (3.3.39)

i.e., {ψn} is τΦ-Cauchy if it is Cauchy with respect to every norm of (3.3.36).
We now complete Ψ with respect to τΦ by adding to Ψ the limit points of all τΦ-Cauchy

sequences. The complete linear topological space obtained in this way is denoted by Φ.
Φ is called a countably Hilbert space (cf. Section 2.4). Since there are more τH-Cauchy
sequences than τΦ-Cauchy sequences (because a τH-Cauchy sequence must fulfill (3.3.39)
only for p = 0), this implies

Ψ ⊂ Φ ⊂ H . (3.3.40)

Thus, Ψ is τΦ-dense in Φ, and since Ψ is τH-dense in H, Φ is τH-dense in H.
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In order to construct Φ explicitly, let us see which of the infinite sequences that are
elements of H, i.e., that fulfill (3.3.11), are also elements of Φ. A sequence

ϕ = (r0, r1, . . . , rn, . . .) , rn ∈ Rn , (3.3.41)

is an element of Φ iff it is the limit point of the sequence

ψn = (r0, r1, . . . , rn, 0, 0, . . .) (3.3.42)

of elements of Ψ with respect to τΦ, i.e., iff

‖ψn − ϕ‖p → 0 , for every p = 0, 1, 2, . . . (3.3.43)

Equation (3.3.43) is equivalent to

((ψn − ϕ), (N + I)p(ψn − ϕ))→ 0 , for every p = 0, 1, 2, . . . , (3.3.44)

which is equivalent to

∞∑

i=n+1

(ri, (N + I)pri) =

∞∑

i=n+1

(i+ 1)p‖ri‖2−−→
n→∞

0 , for every p = 0, 1, 2, . . . (3.3.45)

Therefore, ϕ is the τΦ-limit point of a τΦ-Cauchy sequence of elements of Ψ iff it fulfills
(3.3.45). Then the space Φ is given by

Φ = {ϕ =

∞∑

n=0

αnφn | αn ∈ C ,

∞∑

n=0

(n + 1)p|αn|2 <∞ for every p = 0, 1, 2, . . .} . (3.3.46)

Obviously, Φ is a linear space under the algebraic operations inherited from H.
If we denote the completion of Ψ with respect to each norm ‖ψ‖p of (3.3.36) by Φp, for

every p = 0, 1, 2, . . ., then it can be shown that

Φ =
∞⋂

p=0

Φp . (3.3.47)

Φ is also called the τΦ-direct sum of the spaces Rn, that is denoted by

Φ =
∑

nuclear

⊕Rn . (3.3.48)

This τΦ-direct sum has been constructed by completing the algebraic direct sum with respect
to the τΦ topology

Ψ =
∑

algebraic

⊕ Rn 7−→ τΦ−completion 7−→
∑

nuclear

⊕ Rn . (3.3.49)

The operators in the algebra of observables can be extended to Φ (cf. Section 3.3.5).
These extensions will be proven to be continuous with respect to τΦ and the space Φ will
be proven to remain stable under the action of the operators of the algebra. Therefore, all
algebraic operations will be allowed. This is, in fact, the very reason why we have introduced
the space Φ.



3.3 Construction of the Topologies 85

3.3.4 Physical Interpretation of Ψ, Φ and H
To see what these various spaces might mean for physics, we recall that Rn is the energy
eigenspace corresponding to the energy eigenvalue

En = ~ω
(
n +

1

2

)
. (3.3.50)

If h = (α0, α1, . . . , αn, . . .) =
∑∞

n=0 αnφn, where αn = (φn, h), then

h ∈ H ⇔
∞∑

n=0

|αn|2 <∞ , (3.3.51)

h ∈ Φ ⇔
∞∑

n=0

(n + 1)p|αn|2 <∞ for p = 0, 1, 2, . . . , (3.3.52)

h ∈ Ψ ⇔ all αn but a finite number are equal to 0 . (3.3.53)

Clearly, direct experimental data can only tell us something about Ψ. In fact for most
real physical systems whose idealization is the harmonic oscillator, e.g. diatomic molecules,
only the very lowest energy levels are relevant; for higher energy the diatomic molecule
is no longer a harmonic oscillator and finally not even an oscillator. Φ and H are both
idealizations, though Φ appears “closer” to reality.

The reason why we prefer the mathematical idealization provided by Φ over the one pro-
vided by H can be vaguely summarized by saying that Φ admits Dirac’s bra-ket formalism.
Two aspects of this formalism are:

1. All algebraic operations involving the observables are allowed and no questions re-
garding the domain of definition arise.

2. For every observable there exists a complete system of eigenvectors such that every
wave function can be expanded in terms of these eigenvectors.

The first aspect follows from the fact that all the elements of the algebra A leave invariant
Φ, are continuous operators with respect to τΦ and therefore uniquely defined on the whole
space Φ. This will be discussed in the next section. The second aspect will need the concepts
of dual space and generalized eigenfunction, and will be discussed in Section 3.5.

3.3.5 Extension of the Algebra of Operators

The operators of the algebra of observables were assumed to be defined on the space Ψ. Since
Ψ ⊂ H, these observables can be considered as linear operators defined on the subdomain
Ψ of the Hilbert space H. They can be extended to larger subdomains of H by using the
notion of closure (see Section 2.5.3). If ψn ∈ Ψ and ψn

τH−−→ f , but f 6∈ Ψ, then Aψn ∈ Ψ
for every n but A is not defined on f . If Aψn

τH−−→g, then we define the closure A of A by
Af = g. We can do this only for those f ∈ H which are τH-limit points of some sequences
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ψn ∈ Ψ and for which Aψn τH-converges. The domain D(A) of A is the set of elements for
which the above procedure can be applied. Evidently, the closure of an operator extends
the operator itself. Thus, in correspondence to the relation

Ψ ⊂ H (3.3.54)

between the spaces, we have the relation

A ⊂ A (3.3.55)

between the operators. However, in general, D(A) 6= H. This means that there are elements
h in H on which A is not defined, i.e., ‖Ah‖ =∞.

As an example, we consider the operator N . This operator can be extended from Ψ to
larger subdomains of H. But N cannot be extended to the whole of H. For instance, the
action of N cannot be extended to the Hilbert space element

z ≡ (1,
1

2
, . . . ,

1

n+ 1
, . . .) (3.3.56)

because

ψn ≡ (1,
1

2
, . . . ,

1

n+ 1
, 0, . . .)

τH−−→
n→∞

z , (3.3.57)

but

Nψn ≡ (0, 1,
1

2
,
2

3
, . . . ,

n

n+ 1
, 0, . . .)

τH−−→
n→∞

(0, 1,
1

2
,
2

3
, . . . ,

n

n+ 1
, . . .) , (3.3.58)

which is not an element of H. In fact, the largest subdomain of H to which N can be
extended is given by

{h =
∞∑

n=0

αnφn |
∞∑

n=0

n2|αn|2 <∞} . (3.3.59)

The extension of any other operator A of the algebra A can be constructed in a similar way.
If h =

∑∞
n=0 αnφn is an element of H, then the action of the extension of A (that is also

denoted by A) on h is given by

Ah = A

( ∞∑

n=0

αnφn

)
:=

∞∑

n=0

αn(Aφn) . (3.3.60)

This extension, however, is not defined for every element of the Hilbert space, but only for
those h ∈ H for which ‖Ah‖ <∞. Therefore, the operators of A cannot be extended to the
whole of H and their extensions are not τH-continuous. The domains of the extensions of
the operators of A are, in general, different for different operators, and do not remain stable
under the action of the extensions. In order to avoid domain questions, we need the space
Φ. This space is the largest subspace of H on which all the extensions of the operators are
well defined and that remains stable under the action of these extensions. From now on, we
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will always consider the domain of the operators to be Φ. We will denote the (Hilbert space)
extension of P , Q, H . . . to Φ also by P , Q, H . . . These extensions are also symmetric,

(Aϕ, ψ) = (ϕ,Aψ) , ∀ϕ, ψ ∈ Φ , (3.3.61)

where A can be P , Q or H .
It can be shown that the operatorH is not only symmetric but also essentially self-adjoint

(e.s.a.) (cf. Section 2.5.3), i.e., it can be shown that

H = H† . (3.3.62)

In fact, it can be proven (see reference [65]) that the requirement that H has at least one
eigenvector (see (3.2.4)) is equivalent to the requirement that H is e.s.a.:

There exists a ϕE such that HϕE = EϕE iff H = H† . (3.3.63)

We remark that either of these requirements leads to a representation of A which integrates
to a representation of the group generated by P , Q and I (Weyl group): the requirement
that H is e.s.a. because of the Nelson theorem (see [65]) and the requirement that H has
one eigenvector because it leads to the ladder representation, and ladder representations are
always integrable.

Since N = 1/(~ω)H − 1/2I, N is also e.s.a. That is,

N † = N . (3.3.64)

As a consequence of the fact that P and Q are elements of the Lie algebra of the Weyl group,
it follows that P and Q are also e.s.a. by a theorem of Nelson and Stinespring (see [66]).
That is,

P † = P , Q† = Q . (3.3.65)

H + I is, except for some constant factors, the Nelson operator, and is also e.s.a.

In our example, one can easily see thatN is e.s.a. without invoking the Nelson theorem.
It can be easily proved by using one of the criteria of essentially self-adjointness:

Lemma: An operator A is e.s.a. if (A+ I)−1 is continuous and has a dense domain in
H.
The spectrum (cf. Section 2.5) of (N +1)−1 is 1/(n+1), n = 0, 1, 2, . . . Consequently,
it is a continuous operator. Its domain is dense in H. Therefore, N is e.s.a. As a
consequence, N + I is e.s.a. Further, (N + I)p is e.s.a.1 for every p = 1, 2, . . .

The extension of any operator A of A from Ψ to Φ is constructed as follows: given
any element ϕ =

∑∞
n=0 αnφn of Φ, the sequence ψn =

∑n
i=0 αiφi of elements of Ψ converge

1That (N + I)p is e.s.a. can be proved in many ways. It also follows from the fact that (N + I)p is an
elliptic element in the enveloping algebra of a group representation (see reference [66]).
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to ϕ with respect to τΦ, i.e., ψn
τΦ−−→ϕ. The action of A on ϕ is defined by Aϕ := τΦ −

limn→∞Aψn, or

Aϕ :=
∞∑

n=0

αnAφn . (3.3.66)

These extensions are unique if the operators are τΦ-continuous on Ψ (cf. Section 2.3.4). Since
the product and the sum of two continuous operators are continuous operators, the elements
of our algebra A are continuous if a and a† are continuous operators. In particular, P , Q and
H are continuous if a and a† are continuous. In a space on which the topology can be defined
by the convergence of sequences, i.e., a space in which the first axiom of countability holds,
a linear operator A is continuous iff for all sequences {ϕn} with ϕn

τΦ−−→ 0 it follows that
Aϕn

τΦ−−→ 0 (cf. Section 2.3.4). Since our topology τΦ satisfies the first axiom of countability,
the operator a† is continuous if from ϕn

τΦ−−→0 it follows that a†ϕn
τΦ−−→0:

To prove that a† is τΦ-continuous we use a lemma (see Appendix 3.7.4) that states
that for every norm ‖ψ‖p of (3.3.36) there is a real constant κ <∞ such that

(ψ, a(N + I)pa†ψ) ≤ κ(ψ, (N + I)p+1ψ) , ∀ψ ∈ Ψ . (3.3.67)

Let ψn
τΦ−−→ 0 as n→∞. Then ‖ψn‖p → 0 for every p = 0, 1, 2, . . .,

(ψn, (N + I)pψn)→ 0 for every p = 0, 1, 2, . . . (3.3.68)

To show that a†ψn
τΦ−−→0, we have to show that

‖a†ψn‖q → 0 (3.3.69)

for every q = 0, 1, 2, . . ., i.e., that

(a†ψn, (N + I)qa†ψn) = (ψn, a(N + I)qa†ψn)→ 0 (3.3.70)

for every q = 0, 1, 2, . . . By (3.3.67)

(ψn, a(N + I)qa†ψn) ≤ κ(ψn, (N + I)q+1ψn) . (3.3.71)

By (3.3.68) the right hand side of (3.3.71) tends to zero for every q = 0, 1, 2, . . ., and
consequently also the left hand side, which proves (3.3.70). Then a† is continuous.
The proof of the τΦ-continuity of a is analogous.

We remark that the convergence of ‖a†ϕn‖q → 0 as n → ∞ for a fixed q follows from
the convergence of ‖ϕn‖q+1 → 0. Therefore it is important to have a countably infinite
rather than a finite number of norms; in the case of a finite number of norms, a† is not a
continuous operator, since the topology generated by a finite number of norms is equivalent
to the topology generated by one norm. In particular, this implies that a† cannot be a
continuous operator with respect to the Hilbert space topology.

We have shown that a and a†, and therewith the elements of the algebra of observables,
are τΦ-continuous operators on the linear topological space Ψ. Their τΦ-continuous exten-
sions to Φ are then unique. We denote the τΦ-extensions of the operators a, a†, P , Q,
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H, . . . to Φ also by a, a†, P , Q, H, . . . Domain questions do not arise when we perform the
algebraic operations, because the operators are defined on the whole space Φ, and because
Φ remains invariant under their action. It is worthwhile noting that the τΦ-extension to Φ
of any operator A is the same as the Hilbert space extension of A to Φ.

The second aspect of the Dirac formalism, the existence of a complete set of eigenvectors,
follows from the nuclear spectral theorem (see Section 3.5 below). In order to be able to
apply this theorem to our example, we need to prove that the topology τΦ is nuclear.

Before introducing the notion of nuclear topology, we need the following definition: a
bounded self-adjoint operator B defined on a Hilbert space H is Hilbert-Schmidt if B can
be written as

B =

∞∑

k=1

λkPk , (3.3.72)

where the Pk are projection operators (cf. Section 2.5.1) onto finite dimensional spaces Hk

and
∑∞

k=1(|λk| dimHk)
2 < ∞. Instead of giving the original definition of nuclear space

(cf. Section 2.6.1), we shall use a theorem by Roberts (see [10]) which gives a necessary and
sufficient condition for a space to be nuclear: a linear topological space Φ is nuclear if there
exists an e.s.a. τΦ-continuous operator A ∈ A, whose inverse is Hilbert-Schmidt.

It is now very easy to see that our Φ is nuclear because N , and therefore N + I, is
e.s.a., the spectrum of (N + I)−1 is (n + 1)−1, n = 0, 1, 2, . . ., Rn is one dimensional and∑∞

n=0 1/(n+ 1)2 <∞. Thus N + I is the operator that fulfills the above definition.

Having established that Φ is nuclear, we can now adduce the nuclear spectral theorem
to show that the essentially self-adjoint operators P and Q each has a complete set of
eigenvectors in the sense of Dirac. Unlike the compact operators, for which such a set
of vectors can be found from among the elements of the corresponding Hilbert space, the
eigenvectors given by the nuclear spectral theorem neither reside in the space Φ nor in H.
Instead, these vectors acquire mathematical sense as elements of the topological dual of Φ,
and therewith the more precise terminology generalized eigenvectors. Before presenting the
nuclear spectral theorem in Section 3.5 we shall discuss the dual space of Φ, the subject of
the next section.

3.4 The RHS of the Harmonic Oscillator

3.4.1 The Conjugate Space

As mentioned above, the generalized eigenvectors of the Dirac basis vector expansion will
be described by continuous antilinear functionals over the space Φ. This is the notion that
we are about to present (see also Section 2.3.4).

An antilinear functional F on the linear space Φ is a function F (ϕ) from Φ into the
complex plane C which satisfies

F (αϕ+ βψ) = αF (ϕ) + βF (ψ) , ∀ϕ, ψ ∈ Φ , ∀α, β,∈ C . (3.4.1)
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In the bra-ket notation F (ϕ) = 〈ϕ|F 〉, Eq. (3.4.1) reads

〈αϕ+ βψ|F 〉 = α〈ϕ|F 〉+ β〈ψ|F 〉 . (3.4.2)

In the space Φ, on which the topology τΦ is defined, we can use the notion of continuity
with respect to this topology to introduce the concept of continuous mapping: a function
F is continuous if the image of every convergent sequence is also convergent,

ϕn
τΦ−−→

n→∞
ϕ =⇒ F (ϕn)

τC−−→
n→∞

F (ϕ) , (3.4.3)

where
τΦ−−→ indicates convergence with respect to the topology τΦ and

τC−−→ means conver-
gence in the sense of complex numbers.

A continuous antilinear functional F on Φ is a function from Φ into C that is antilinear
and continuous. One can prove that a functional F on the countably Hilbert space Φ is
τΦ-continuous iff there exist a positive constant K and a norm ‖ · ‖q among the collection
of norms (3.3.36) that obey

|F (ϕ)| < K‖ϕ‖q , ∀ϕ ∈ Φ . (3.4.4)

We now consider the collection of all continuous antilinear functionals over Φ, which is
denoted by Φ×. The sum of two functionals and the multiplication of a functional by a
number are defined by:

(αF1 + βF2)(ϕ) = αF1(ϕ) + βF2(ϕ) , ∀ϕ ∈ Φ , ∀α, β ∈ C , (3.4.5)

or in bra-ket notation
〈ϕ|αF1 + βF2〉 = α〈ϕ|F1〉+ β〈ϕ|F2〉 . (3.4.6)

One can prove that if F1, F2 ∈ Φ×, i.e., if F1 and F2 satisfy (3.4.1) and (3.4.3), then αF1+βF2

is also in Φ×. Thus, Φ× is a linear space under the operations defined by (3.4.5).
The dual space of the Hilbert space H can be constructed in a similar way. A function

F from H into C is a τH-continuous antilinear functional if

1. F is antilinear,

F (αf + βg) = αF (f) + βF (g) , ∀f, g ∈ H , ∀α, β ∈ C . (3.4.7)

2. F is τH-continuous,
fn

τH−−→ f =⇒ F (fn)
τC−−→F (f) . (3.4.8)

The adjoint space H× of H is the collection of all τH-continuous antilinear functionals over
H. The space H× can be endowed with a linear structure if the sum of two functionals and
the multiplication of a functional by a number are defined as in (3.4.5).

From the relation Φ ⊂ H, it can be shown that

H× ⊂ Φ× . (3.4.9)
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Let F ∈ H×. If {fn} is any sequence of elements of H that converges to f ∈ H with
respect to τH, then F (fn) converges to F (f),

fn
τH−−→ f =⇒ F (fn)

τH−−→F (f) . (3.4.10)

Let ϕn be a sequence of elements of Φ that converges to ϕ ∈ Φ with respect to τΦ.
Since ϕn

τΦ−−→ϕ implies that ϕn
τH−−→ϕ, if follows from (3.4.10) that F (ϕn)

τH−−→F (ϕ).
Therefore,

ϕn
τΦ−−→ϕ =⇒ F (ϕn)

τH−−→F (ϕ) , (3.4.11)

which proves that F ∈ Φ×.

3.4.2 Construction of the Rigged Hilbert Space

We are now in a position to construct the Rigged Hilbert Space for the Harmonic Oscillator.
We begin this construction considering the antilinear functional on H defined by

Ff(g) := (g, f) , ∀g ∈ H , (3.4.12)

where f is a fixed element of H. It is easy to see that Ff , which is determined by the vector
f ∈ H, fulfills the condition (3.4.7) if the function ( · , · ) fulfills the conditions for a scalar
product. Further, Ff ∈ H×, i.e., it also fulfills (3.4.8). In order to prove this, we take a
sequence gn of elements of H that converges to g ∈ H with respect to τH. In a Hilbert
space, the τH-convergence implies that

(gn, h)
τC−−→ (g, h) (3.4.13)

for each h ∈ H. This scalar product convergence for each h ∈ H is called the weak
convergence of gn to g, in contrast to the norm convergence gn

τH−−→ g (called also strong
convergence in H). Applying Eq. (3.4.13) to f of (3.4.12), it follows that Ff(gn) → Ff(g).
Thus, Eq. (3.4.12) defines a τH-continuous antilinear functional for every f ∈ H. Further-
more, the converse is also true (see Frechet-Riesz Theorem in Section 2.3.4), i.e., for every
antilinear τH-continuous functional F (H) ∈ H× there exists a unique vector fF ∈ H such
that

〈g|F (H)〉 = F (H)(g) = (g, fF ) , for every g ∈ H . (3.4.14)

Therefore we can identify the Hilbert space H and its conjugate space H× by equating the
functional F (H) ∈ H× with the vector fF ∈ H given by (3.4.14)

H× ∋ F (H) ≡ fF ∈ H . (3.4.15)

Then we have that
Ψ ⊂ Φ ⊂ H ≃ H× . (3.4.16)

For τH-continuous functionals F (H) the symbols 〈 · | · 〉 and ( · , · ) are equivalent after the
identification F (H) ≡ fF . This identification is possible because the action of the functional
F (H) at any vector g ∈ H is equal to the scalar product of g with fF :

〈g|F (H)〉 = 〈g|fF 〉 = (g, fF ) . (3.4.17)
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In the bra-ket notation, the identification F (H) ≡ fF is written as |F (H)〉 ≡ |fF ) or even
as |F 〉 ≡ |f). However, for the class of τΦ-continuous functionals F the symbol 〈ϕ|F 〉 (the
action of the functional F at the point ϕ) is equal to (ϕ, F ) (the scalar product of ϕ and
F ) only if F ∈ H×. That is,

〈ϕ|F 〉 = 〈ϕ|F (H)〉 = (ϕ, F ) only if F ≡ F (H) ∈ H× . (3.4.18)

From Eqs. (3.4.9) and (3.4.16), it follows that

Φ ⊂ H ⊂ Φ× . (3.4.19)

This triplet of spaces is the Rigged Hilbert space (RHS) or the Gelfand Triplet for the
Harmonic oscillator.

In the space Φ×, one can introduce various topologies and therewith various meanings of
sequence convergence (cf. Section 2.4.2). An example is the weak topology, that is denoted
by τ× or by τW (cf. Section 2.4.2). This topology leads to a meaning of sequence convergence
that is analogous to the weak convergence in H: a sequence of functionals {Fγ}∞γ=1 ⊂ Φ×

converges (weakly) to a functional F with respect to τ× if

〈ϕ|Fγ〉 → 〈ϕ|F 〉 , for every ϕ ∈ Φ . (3.4.20)

However, this notion of sequence convergence does not specify the weak topology completely,
i.e., τ× is not first countable.

Once Φ× is equipped with the topology τ×, we can construct its dual space, that is
denoted by Φ××. The elements of Φ×× are the τ×-continuous antilinear functionals ϕ̃ on
Φ×, i.e., the mappings ϕ̃ from Φ× into C that satisfy

1. ϕ̃ is linear,

ϕ̃(αF1 + βF2) = αϕ̃(F1) + βϕ̃(F2) , ∀F1, F2 ∈ Φ× and ∀α, β ∈ C , (3.4.21)

or in bra-ket notation

〈αF1 + βF2|ϕ̃〉 = α〈F1|ϕ̃〉+ β〈F2|ϕ̃〉 . (3.4.22)

2. ϕ̃ is continuous with respect to τ×.

The space Φ×× is also a linear topological space if addition and multiplication are defined
by

〈F |αϕ̃1 + βϕ̃2〉 = α〈F |ϕ̃1〉+ β〈F |ϕ̃2〉 (3.4.23)

and the (weak) convergence is defined by

ϕ̃γ
τ××

−−→ ϕ̃⇔ 〈F |ϕ̃γ〉 → 〈F |ϕ̃〉 for every F ∈ Φ× . (3.4.24)

One can prove that to each element ϕ ∈ Φ there corresponds an antilinear continuous
functional ϕ̃ in Φ×× defined by

ϕ̃(F ) = F (ϕ) , (3.4.25)
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or in the Dirac’s notation
〈F |ϕ̃〉 = 〈ϕ|F 〉 . (3.4.26)

Thus, we can identify every element ϕ̃ ∈ Φ×× with an element ϕ ∈ Φ through (3.4.26) and
vice versa. Further, it can be shown that the convergence defined by (3.4.24) is the same
as the convergence with respect to τΦ. Therefore, the spaces Φ×× and Φ are, from a linear
topological point of view, the same and can be identified

Φ×× ≃ Φ . (3.4.27)

The Hilbert space H certainly satisfies (3.4.27) because it already satisfies H× ≃ H. Since
the functionals over H are given by (3.4.12), the Hilbert space relation that corresponds to
the relation (3.4.26) is

(f, h) = (h, f) , (3.4.28)

which is a property of the scalar product.

3.4.3 Continuous Linear Operators on the Rigged Hilbert Space

The operators of the algebra of observables were assumed to be defined on the linear scalar
product space Ψ. Later on, they were extended to the space Φ in a unique way. We now
extend their actions to the dual space Φ×. For every operator A on Φ, one can define the
conjugate operator (also called the dual operator) A× on Φ× by

(A×F )(ϕ) := F (Aϕ) , ∀ϕ ∈ Φ , ∀F ∈ Φ× , (3.4.29)

or in bra-ket notation
〈ϕ|A×|F 〉 = 〈Aϕ|F 〉 . (3.4.30)

If A is a τΦ-continuous operator on Φ, then A× is a τ×-continuous operator on Φ×. In
particular, this implies that

A×Fγ
τ×−−→A×F whenever Fγ

τ×−−→F . (3.4.31)

We have defined the notion of continuous operator through the notion of sequence
convergence. This is possible only in spaces where the first axiom of countability is
satisfied. The Hilbert space and the space Φ are such spaces. In these cases, every
continuous operator is bounded and every bounded operator is continuous. If the
spaces are not first countable, the notion of continuity of an operator cannot be fully
specified by the notion of sequence convergence. This is why in the space Φ×—that
is not first countable—operators A× that fulfill (3.4.31) are not necessarily bounded.

If a τΦ-continuous operator A is also symmetric, then we have in correspondence to the
relation (3.4.19) between the spaces the relation

A ⊂ A ⊂ A† ⊂ A× (3.4.32)

between the operators. When the operator A is also e.s.a., Eq. (3.4.32) becomes

A ⊂ A = A† ⊂ A× . (3.4.33)

In particular, the adjoint operators P×, Q×, H× of the operators P , Q, H are τ×-continuous
operators on Φ× and satisfy (3.4.33).
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3.5 Basis Systems, Eigenvector Decomposition and the

Gelfand-Maurin Theorem

The next section is presented a heuristic motivation for Dirac basis vector expansion. The
mathematical details are covered in Section 3.5.2.

3.5.1 Basis Systems and Eigenvector Decomposition—a Heuristic

Introduction

The simplest example of basis system and eigenvector decomposition is given by the three-
dimensional space R3. In R3 it is customary to choose a system of three orthonormal vectors
e1, e2, e3 satisfying

ei · ej = δij , i, j = 1, 2, 3 , (3.5.1)

where ei · ej is the scalar product of ei and ej and δij is the Kronecker delta defined by

δij =

{
1 if i = j
0 if i 6= j .

(3.5.2)

The basis system fulfilling (3.5.1) can be chosen somewhat arbitrarily. But it is convenient
to choose it in such a way that the particular physical problem under consideration takes its
simplest mathematical form. For example, if one describes a three-dimensional rigid body
with moment of inertia tensor I, then it is useful to choose the basis system {ei} such that

ei · I · ej = I(j)δij, (3.5.3)

i.e., to choose the {ei} to be eigenvectors of the (rank 2) tensor I. Every vector v ∈ R3 can
be expanded with respect to this basis system of eigenvectors of I,

v =

3∑

i=1

ei vi , (3.5.4)

where the vi = ei ·v are the coordinates (or components) of the vector v with respect to the
basis {ei} of eigenvectors of the symmetric tensor I.

In analogy to the three-dimensional space R3, one introduces a system of basis vectors
in a general linear space Φ. If Φ is an N -dimensional linear space, then there are N linearly
independent vectors {ei}Ni=1 that form an orthonormal basis system for Φ. We denote these
basis vectors ei also by |ei). The scalar products of the elements of the basis system are
written in one of the following ways:

ei · ej ≡ (ei, ej) ≡ (ei|ej) = δij, i, j = 1, 2, . . . , N . (3.5.5)

As the basis system for the space Φ, it is often extremely convenient to choose the eigen-
vectors of an operator A which represents an important observable (most frequently one
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chooses the energy operator H , the position operator Q or the momentum operator P ).
Therefore, one seeks a set of basis vectors ei ∈ Φ which also fulfill

Aei = aiei (3.5.6)

for some ai ∈ C. These eigenvectors are often labeled by their eigenvalues ai and denoted
by

ei ≡ |ai) . (3.5.7)

It can be proven that if A is a Hermitian operator on an N -dimensional space Φ, then there
exists an orthonormal basis system of eigenvectors of A,

A|ai) = ai|ai) , i = 1, 2, . . . , N , (3.5.8)

(ai|aj) = δij , i, j = 1, 2, . . . , N , (3.5.9)

such that every vector ϕ ∈ Φ can be written as

ϕ =

N∑

i=1

|ai)(ai|ϕ) . (3.5.10)

This result is the spectral theorem for a Hermitian operator A defined on a finite dimensional
scalar product space Φ. Eq. (3.5.10) is called the spectral decomposition of the vector ϕ or
the eigenvector expansion of ϕ with respect to the basis system {|ai)}. The complex numbers

ϕi ≡ (ai|ϕ) (3.5.11)

are the components of the vector ϕ with respect to the basis {|ai)}. The set of ai’s (which
are real if A is Hermitian) is called the spectrum of A.

In general, the dimension of the linear space Φ is not finite. In this case, the above result
cannot be applied, and a proper generalization to the infinite dimensional case is needed.
In this infinite dimensional case, there are two possibilities depending on the spectrum of
the observable upon consideration. When the possible measurements of an observable are
elements of a discrete set of numbers, then only a discrete set of eigenvalues is necessary.
In this case, only an infinite dimensional generalization of (3.5.8)-(3.5.10) is needed. How-
ever, there seem to be observables in physics whose possible measurements are elements of
a continuous set of numbers (e.g., the momentum and position can, in many cases, take
any real value). In this second case, we need not only the infinite dimensional general-
ization of (3.5.8)-(3.5.10) but also the continuous infinite dimensional generalization. This
generalization is the Dirac basis vector expansion (cf. [1]) or, in mathematical terms, the
Gelfand-Maurin Theorem (cf. [5]). This theorem is valid under certain conditions on the
space Φ. Since the eigenvector decomposition is essential in quantum physics, we will only
consider spaces for which this theorem holds.

To explain the Gelfand-Maurin Theorem in detail requires much more mathematics.
These mathematics are provided in Section 3.5.2. In this section, we just give an intuitive
statement, which can be accepted in analogy to (3.5.10).



96 3 The Rigged Hilbert Space of the Harmonic Oscillator

We consider the cases of an infinite discrete number of eigenvalues and a continuous set
of eigenvalues in parallel. The self-adjoint operator with discrete spectrum will be called
H . Its spectrum will consist of the infinitely many real eigenvalues En, n = 0, 1, 2, . . . The
self-adjoint operator with continuous spectrum will be denoted by Q.2 The spectrum of
Q will be the continuous interval of real numbers [m,M ]. Then the (heuristic) spectral
theorem asserts:

There exists a system of eigenvectors, |En) in the discrete case and |x〉 in the continuous
case,

H|En) = En|En), n = 0, 1, 2, . . . , (3.5.12)

Q|x〉 = x|x〉, −∞ < m ≤ x ≤M < +∞, (3.5.13)

such that every ϕ ∈ Φ can be expanded in terms of these eigenvectors,

ϕ =

∞∑

n=0

|En)(En|ϕ), (3.5.14)

ϕ =

∫ M

m

dx|x〉〈x|ϕ〉 , (3.5.15)

and ϕ = 0 if and only if all its components are zero, i.e., (En|ϕ) = 0 for all En or 〈x|ϕ〉 = 0
for all x.3 A system of eigenvectors |En) or |x〉 with these properties is called complete or a
basis system. The |x〉 are called kets, the 〈x| are called bras and the 〈x|ϕ〉 are called bra-kets
(see [1]). The bra-ket 〈x|ϕ〉 is a generalization of the usual scalar product.

Thus the spectral theorem asserts the existence of a complete system of eigenvectors of
a self-adjoint operator. (En|ϕ) or 〈x|ϕ〉 are called the coordinates or components of ϕ with
respect to the basis system {|En)} or {|x〉}. They can be thought of, in analogy to the
N -dimensional case stated in Eq. (3.5.11), as the scalar products of the eigenvectors with
the vector ϕ

(En|ϕ) = (|En), ϕ) , (3.5.16)

〈x|ϕ〉 = (|x〉, ϕ) . (3.5.17)

Thus the (En|ϕ) are the discrete infinite dimensional generalization of the ϕi in (3.5.11),
and the 〈x|ϕ〉 are the continuous infinite dimensional generalizations of the ϕi.

Whereas the |En) are proper eigenvectors, i.e., they are normalizable, the |x〉 are not.
This is why the |x〉 are called generalized eigenvectors or eigenkets and denoted by corner-
kets | · 〉, in contrast to the normalizable eigenvectors |En), that are denoted by round-
kets | · ). Though we can manipulate the corner-kets as if they were proper eigenvectors,

2For instance, H can be the Hamiltonian for the harmonic oscillator and Q the position operator for the
harmonic oscillator.

3The simple nondegenerate form (3.5.14), (3.5.15) is valid if the operator A (H or Q) is cyclic, i.e., if
there exists an f ∈ Φ such that {Anf ≡ f(n)} spans the entire space Φ. This means that any ϕ ∈ Φ can be
written as ϕ =

∑
n f(n)c(n), where c(n) are complex numbers. Degenerate spectra, which occur when more

than one quantum number is needed, will be discussed in Section 3.7.2.
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mathematically there is an important difference between the discrete basis vectors |En) and
the continuous basis vectors |x〉: the |En) are in Φ while the |x〉 are in Φ×, the space of
continuous antilinear functionals over Φ. Further, (En|ϕ) is indeed the scalar product of
the normalized vector |En) with ϕ, whereas 〈x|ϕ〉 is the action of the functional |x〉 at the
vector ϕ.

If an operator H has discrete spectrum En, n = 0, 1, 2 . . ., then all the corresponding
eigenvectors |En) enter into the discrete basis vector expansion (3.5.14) and there are no
other eigenvectors that enter into this basis vector expansion. If an operator Q has a
continuous spectrum, then in general—and this depends upon the properties of the space
Φ—there are more generalized eigenvectors of Q (i.e., more kets which fulfill (3.5.13)) than
appear in the eigenvector expansion (3.5.15). Whereas the discrete eigenvalues of a self-
adjoint operator are always real, the generalized eigenvalues of a self-adjoint operator need
not be real. They can be real or complex, and even if they are real, they do not necessarily
belong to the spectrum, i.e., appear in the integral (3.5.15). However, for a self-adjoint
operator there is always a real subset of the set of generalized eigenvalues such that the set
of corresponding eigenvectors is complete.

The most general form of the spectral theorem for an operator A representing a physical
observable is a combination of (3.5.14) and (3.5.15)

ϕ =
∑

i

|ai)(ai|ϕ) +
∫
da|a〉〈a|ϕ〉 , (3.5.18)

where the sum runs over the discrete spectrum of A and the integral runs over the continuous
spectrum of A.4 This is the case for the Hamiltonian of the hydrogen atom. It is possible
that some or all of the values ai appearing in the sum also appear in the integral. In that
case, they are called discrete eigenvalues embedded in the continuous spectrum. If this
happens for ak, then |ak) is still orthogonal to all the |a〉 including |ak〉

(ak|a〉 = 0 , (ak|ak〉 = 0 . (3.5.19)

To see that the coordinates (En|ϕ) are indeed what their notation indicates, namely the
scalar product of the vector ϕ with the basis vector |En), we calculate the scalar product of
(3.5.14) with the eigenvector |Em):

(|Em), ϕ) =
∞∑

n=0

(|Em), |En))(En|ϕ) . (3.5.20)

4The nuclear spectral theorem for an arbitrary self-adjoint operator actually does not assert (3.5.18)
but rather (3.5.43) with a general measure dµ(x), and it does not say anything about the spectral measure
dµ(x) in addition to the assertion of its existence. However, all operators used in this dissertation are of the
special kind that either dµ(x) = ρ(x)dx with ρ(x) a positive smooth measurable function (such operators
are said to have an absolutely continuous spectrum) or dµ(x) =

∑
i δ(x − xi)dx (these are the operators

with discrete spectrum), or they have both an absolutely continuous and a discrete spectrum. So (3.5.18),
after a normalization change (3.5.45), is the most general form used in this dissertation.
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Since |Em) and |En) are eigenvectors of the same Hermitian operator H ,

(|Em), |En)) = 0 if En 6= Em . (3.5.21)

For En = Em we normalize them

(|En), |En)) = ‖ |En) ‖2 = 1 . (3.5.22)

We combine (3.5.21) and (3.5.22) and obtain

(|Em), |En)) = (Em|En) = δEnEm = δnm , n,m = 0, 1, 2, . . . . (3.5.23)

Thus, the eigenvectors of the self-adjoint operator H have the property (3.5.5) as required
for orthonormal basis vectors. Inserting (3.5.23) into (3.5.20) one obtains

(|Em), ϕ) =
∞∑

n=0

δmn(En|ϕ) = (Em|ϕ) . (3.5.24)

This is the expected identity (3.5.16).
The spectral theorem (3.5.14) leads to other spectral decompositions: one can omit the

arbitrary vector ϕ ∈ Φ on both sides of (3.5.14) and obtain the spectral resolution of the
identity operator I

I =

∞∑

n=0

|En)(En| , (3.5.25)

where the quantities |En)(En| are called projection operators. One can also apply the oper-
ator H to both sides of (3.5.14)

Hϕ =
∞∑

n=0

H|En)(En|ϕ) =
∞∑

n=0

En|En)(En|ϕ) , (3.5.26)

and then omit the arbitrary vector ϕ on both sides

H =

∞∑

n=0

En|En)(En| . (3.5.27)

This identity between the operatorH and the weighted sum of projection operators |En)(En|
is called the spectral resolution of the self-adjoint operator H with a discrete spectrum.

The scalar product of any two elements ϕ, ψ ∈ Φ can be written in terms of the compo-
nents of these vectors along the basis vectors |En) as

(ψ, ϕ) =

∞∑

n=0

(ψ|En)(En|ϕ) =
∞∑

n=0

(En|ψ) (En|ϕ) . (3.5.28)
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In particular, if one chooses ψ = ϕ, then one obtains

‖ϕ‖2 = (ϕ, ϕ) =

∞∑

n=0

(ϕ|En)(En|ϕ) =
∞∑

n=0

|(En|ϕ)|2. (3.5.29)

Equation (3.5.28) is the analog to the formula

v · x =
3∑

i,j=1

vi ei·ej xj =
3∑

i=1

vi xi (3.5.30)

for the ordinary scalar product in R3.
In the three-dimensional space R3, a vector v is specified by its components (v1, v2, v3)

with respect to the basis system {e1, e2, e3}. Moreover, any sequence of three real numbers
(v1, v2, v3) determines a vector v. In the discrete infinite dimensional case, any vector ϕ is
also completely specified by its components (En|ϕ) with respect to a given basis |En). But,
unlike the three-dimensional case, the sequence of components

((E0|ϕ), (E1|ϕ), (E2|ϕ), . . . , (En|ϕ), . . .) (3.5.31)

is not arbitrary but has to fulfill

∞∑

n=0

|(En|ϕ)|2 <∞ , (3.5.32)

i.e., it must be square summable (cf. Eq. (3.5.29)). The sequence (3.5.31) is called the
realization of ϕ by the sequence of its components. In the case of a Hilbert space H, each
ϕ ∈ H is associated to a sequence of components (3.5.31) that fulfills (3.5.32), and H is said
to be realized by the space of infinite square summable sequences.

The elements of the space Φ are usually required to satisfy further conditions besides
(3.5.32). The ϕ ∈ Φ must be such that every operator A representing a physical observable
is defined on the whole space Φ. This implies that Aϕ must be well defined for each ϕ ∈ Φ,
i.e., (Aϕ,Aϕ) must be finite. If the observable under consideration is represented by the
operator H , then H and all of its powers must be well defined on Φ, i.e., (Hpϕ,Hpϕ) must
be finite for each p = 0, 1, 2, . . . This leads to

(Hpϕ,Hpϕ) =

∞∑

n=0

(ϕ|Hp|En)(En|Hp|ϕ)

=

∞∑

n=0

E2p
n |(En|ϕ)|2 <∞ for any p = 0, 1, 2, . . . (3.5.33)

Thus, not only {(En|ϕ)}∞n=0 but also {Ep(En|ϕ)}∞n=0, p = 1, 2, . . ., have to be square
summable for any ϕ ∈ Φ. When each element of a space Φ is associated to a sequence

ϕ↔ ( (E0|ϕ), (E1|ϕ), . . . , (En|ϕ), . . .) (3.5.34)
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which fulfills (3.5.33), we say that Φ is realized by the space of rapidly decreasing infinite
sequences.

We now turn to the continuous spectrum case and repeat the above considerations for
this case. We calculate the scalar product of ϕ with the generalized eigenvector |x〉 5 using
Eq. (3.5.15)

(|x〉, ϕ) =
∫ +∞

−∞
dy (|x〉, |y〉) 〈y|ϕ〉 , (3.5.35)

where we have assumed that the continuous spectrum runs over the whole real line (which
is the case for e.g. the position operator Q of the harmonic oscillator). Using the definition

〈x|y〉 ≡ (|x〉, |y〉) , (3.5.36)

Eq. (3.5.35) can be rewritten as

(|x〉, ϕ) =
∫ +∞

−∞
dy 〈x|y〉〈y|ϕ〉 . (3.5.37)

In analogy to the N -dimensional case (3.5.10), 〈x|ϕ〉 is the component of the vector ϕ along
the direction of the basis vector |x〉, while (|x〉, ϕ) is the “scalar product” of ϕ with the basis
vector |x〉. This analogy also suggests that the component of ϕ along |x〉 should be given
by the “scalar product” of ϕ with |x〉, i.e., it should be of the form 〈x|ϕ〉 ≡ (|x〉, ϕ). Then,
one would have

〈x|ϕ〉 =
∫ +∞

−∞
dy 〈x|y〉 〈y|ϕ〉 . (3.5.38)

The components 〈y|ϕ〉 are functions of the continuous variable y in the same way as the scalar
products (En|ϕ) are functions of the discrete variable En. Equation (3.5.38) therefore says
that the mathematical quantity 〈x|y〉 has the property that it maps the function ϕ(y) =
〈y|ϕ〉 by integration into ϕ(x) = 〈x|ϕ〉, its value at the fixed point x. There is no well-
behaved (or even a locally integrable) function 〈x|y〉 which has the property (3.5.38).

Quantities like 〈x|y〉, which are defined by integration, are called distributions or gener-
alized functions (see, for example, [67]). The distribution 〈x|y〉 defined by (3.5.38) is called
the Dirac delta function (though it is not a function). It is denoted in analogy to (3.5.23)
by

〈x|y〉 = δ(x− y) . (3.5.39)

δ(x−y) is the continuous analog to δEnEm : the Kronecker delta is usually defined by (3.5.2),
but it could as well have been defined as the function that maps any sequence {(En|ϕ)} by
summation into (Em|ϕ), the m-th component of the sequence,

(Em|ϕ) =
∞∑

n=0

δEmEn(En|ϕ) . (3.5.40)

5More precisely, we should say that we calculate the value (|x〉, ϕ) of the functional |x〉 at the vector
ϕ ∈ Φ.
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Defining the Kronecker delta by (3.5.40) gives a clearer analogy to (3.5.38).
The |x〉 are not dimensionless. They have the dimension 1/

√
dim(dx). For example, if

dx has the dimension cm, then 〈x′|x〉 has the dimension cm−1, and |x〉 has the dimension
cm−1/2.

The eigenvectors |En) are normalized according to (3.5.23). The normalization (3.5.39)
for the generalized eigenvectors |x〉 is called δ-function normalization.

Instead of the generalized eigenvectors with δ-function normalization (3.5.39), one can
also choose generalized eigenvectors of Q with a different normalization. One can define a
new set of generalized eigenvectors by

|x}ρ := |x〉
1√
ρ(x)

, (3.5.41)

where ρ(x) is a real nonnegative and integrable function. These new kets are still eigenvec-
tors of the operator Q,

Q|x}ρ = x|x}ρ . (3.5.42)

Now instead of (3.5.15), the eigenfunction expansion in terms of the |x}ρ kets reads

ϕ =

∫
dµ(x) |x}ρ ρ{x|ϕ〉 , (3.5.43)

where dµ(x) = ρ(x) dx. In order for the new components of ϕ (the ρ{x|ϕ〉) to be the scalar
product of ϕ with the new eigenvectors |x}ρ, i.e., in order that

ρ{x|ϕ〉 =
∫
dµ(y) ρ{x|y}ρ ρ{y|ϕ〉 , (3.5.44)

one has to demand
dµ(y) ρ{x|y}ρ = dy 〈x|y〉 = dy δ(x− y) . (3.5.45)

So, the normalization of the new generalized eigenvectors is

ρ{x|y}ρ =
(dµ(y)

dy

)−1

δ(x− y) = ρ−1(y)δ(x− y). (3.5.46)

Thus, when the integration contains the weight function ρ(x), the generalized eigenvector
normalization will contain the factor ρ−1(x).

The most appropriate choice for ρ(x) depends upon the property of the operator Q and
its relation to the other operators of the problem. The choice ρ(x) = 1 is not always the
most convenient. For instance, it may be convenient to choose ρ(x) in such a way that the
measure dµ(x) in (3.5.43) is invariant under some important symmetry transformation of
the physical system.

The scalar product of ϕ ∈ Φ with ψ ∈ Φ is given in the notation of (3.5.38) by

(ψ, ϕ) = 〈ψ|ϕ〉 =
∫ +∞

−∞
dx 〈ψ|x〉 〈x|ϕ〉 . (3.5.47)
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In the same way

(ϕ, ψ) =

∫ +∞

−∞
dx 〈ϕ|x〉 〈x|ψ〉 . (3.5.48)

Taking complex conjugates on both sides of (3.5.48), we get

(ϕ, ψ) =

∫ +∞

−∞
dx 〈ϕ|x〉 〈x|ψ〉 . (3.5.49)

But the scalar product fulfills

(ψ, ϕ) = (ϕ, ψ) . (3.5.50)

Thus, comparing (3.5.47) and (3.5.49) we see that the following relation is natural:

〈x|ψ〉 = 〈ψ|x〉 , ψ ∈ Φ , |x〉 ∈ Φ× . (3.5.51)

Using the notation

〈x|ϕ〉 ≡ ϕ(x) (3.5.52)

and (3.5.51), one can write (3.5.47) in the form

(ψ, ϕ) =

∫ +∞

−∞
dxψ(x)ϕ(x) . (3.5.53)

In particular, if one chooses ψ = ϕ, one obtains

‖ϕ‖2 = (ϕ, ϕ) =

∫ +∞

−∞
dxϕ(x)ϕ(x) =

∫ +∞

−∞
dx |ϕ(x)|2. (3.5.54)

This implies that the components of a vector ϕ ∈ Φ with respect to the continuous basis
system |x〉 cannot be given by any arbitrary function ϕ(x). Rather, they can be given only
by those functions for which the integral on the right-hand side of Eq. (3.5.54) exists, i.e.,
the functions ϕ(x) must be at least square integrable.

The association of ϕ with its components

Φ ∋ ϕ↔ 〈x|ϕ〉 = ϕ(x) (3.5.55)

is called the realization of the space Φ by the space of functions ϕ(x). The function ϕ(x) =
〈x|ϕ〉 is called the wave function of the vector ϕ; in particular, if Q is the position operator,
then ϕ(x) is called the position wave function.

If the integrals in (3.5.53) and (3.5.54) are ordinary Riemann integrals, then the linear
space of functions ϕ(x) is not complete with respect to the norm defined by (3.5.54). This
means that there will be sequences of functions ψn(x) that are Cauchy sequences,

‖ψn − ψm‖2 =
∫ +∞

−∞Riemann

dx |ψn(x)− ψm(x)|2 → 0 as n,m→∞ , (3.5.56)
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but for which there exists no function ψ(x) which is the limit element of that sequence,

‖ψn − ψ‖2 =
∫ +∞

−∞Riemann

dx |ψn(x)− ψ(x)|2 → 0 as n→∞ . (3.5.57)

In order to obtain a complete space of functions with respect to the scalar product
(3.5.53), one has to replace the Riemann integrals in (3.5.56) and in (3.5.57) by Lebesgue
integrals. Then, for any sequence of (Lebesgue) square integrable functions ψn(x) satisfying

‖ψn − ψm‖2 =
∫ +∞

−∞Lebesgue

dx |ψn(x)− ψm(x)|2 → 0 as n,m→∞ , (3.5.58)

there is always a (Lebesgue) square integrable function ψ(x) satisfying

‖ψn − ψ‖2 =
∫ +∞

−∞Lebesgue

dx |ψn(x)− ψ(x)|2 → 0 as n→∞ . (3.5.59)

The (complete) space of Lebesgue square integrable functions is denoted by L2(R). Just
like the space of infinite square summable sequences, the space L2(R) of square integrable
functions is a realization of the Hilbert space.

The elements of the space Φ of physical states ϕ are required, in addition to be square
normalizable, to be such that the operator Q and all of its powers be well defined on every
ϕ ∈ Φ. Then one must have

‖Qpϕ‖2 = (Qpϕ,Qpϕ) =

∫ +∞

−∞
dx x2p|ϕ(x)|2 <∞ , p = 0, 1, 2, . . . (3.5.60)

Thus, the functions ϕ(x) that belong to the realization that fulfills (3.5.60) must decrease
faster than any power of 1/x. If other operators are also to be defined everywhere on Φ,
further conditions will have to be imposed on the components 〈x|ϕ〉 of ϕ ∈ Φ. Consequently,
the realization of Φ by a space of functions must be a subset of L2(R).

For instance, we can define a linear operator P on the space Φ by giving a prescription
for its action on each function ϕ(x) which realizes a vector ϕ ∈ Φ. Let this operator be
defined by

〈x|ϕ〉 → 〈x|Pϕ〉 := 1

i

d

dx
〈x|ϕ〉 (3.5.61)

for every ϕ ∈ Φ. We also define, according to (3.5.13), the operator Q on Φ by

〈x|ϕ〉 → 〈x|Qϕ〉 := x 〈x|ϕ〉 (3.5.62)

for each ϕ ∈ Φ. If we demand that Qp and P p, p = 0, 1, 2, . . ., are well defined at every
ϕ ∈ Φ, then the functions ϕ(x) must be infinitely differentiable, rapidly decreasing functions,
i.e., in addition to (3.5.60) the ϕ(x) must be in C∞(R) and must satisfy

‖P pϕ‖2 = (P pϕ, P pϕ) =

∫ +∞

−∞
dx

∣∣∣∣
dpϕ(x)

dxp

∣∣∣∣
2

<∞ , p = 0, 1, 2, . . . (3.5.63)
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The requirement that QqP pϕ, q, p = 0, 1, 2, . . ., is well defined leads to the conditions

‖QqP pϕ‖2 =
∫ +∞

−∞
dx

∣∣∣∣x
q d

pϕ(x)

dxp

∣∣∣∣
2

<∞ , p, q = 0, 1, 2, . . . . (3.5.64)

This means that the realization of the space Φ is the linear space of infinitely differen-
tiable complex-valued functions which together with their derivatives vanish at infinite more
rapidly than any power of 1/x. This space is the Schwartz space S(R), and we call these
functions well behaved. Conditions (3.5.64) are equivalent to

lim
x→±∞

xn
dm

dxm
ϕ(x) = 0 , n,m = 0, 1, 2, . . . (3.5.65)

The space S(R) is not complete with respect to the norm convergence defined through
(3.5.54). In fact, its completion with respect to this norm is the space L2(R). However,
S(R) is a complete countably Hilbert space with respect to the topology generated by the
countable number of scalar products

(ψ, ϕ)p := (ψ, (P 2 +Q2 +
1

2
I)pϕ) =

∫ ∞

−∞
dxψ(x)

(
− d2

dx2
+ x2 +

1

2

)p
ϕ(x) , p = 0, 1, 2, . . .

(3.5.66)
A sequence ϕn ∈ S(R) converges to ϕ ∈ S(R) with respect to this topology if

‖ϕn − ϕ‖p −−→
n→∞

0 , p = 0, 1, 2, . . . , (3.5.67)

where ‖ϕ‖p =
√

(ϕ, ϕ)p.
In Section 3.6.3, we shall show that the Schwartz space is the realization of the space Φ

for the harmonic oscillator.
The Lebesgue integral, though mathematically well defined, is not easy to handle in

practical computations, while Riemann integrations are easy to calculate. In physics, the
Riemann integral is the one that is exclusively used to perform computations. The Hilbert
space uses Lebesgue integration, whereas the space Φ uses Riemann integration. This makes
Φ a much simpler space to work with and much more suitable for representing the physical
wave functions than the Hilbert space. As an example, the integrals (3.5.54) in L2(R)
are Lebesgue integrals, whereas the integrals (3.5.66) in S(R) are Riemann integrals. This
makes S(R) a much easier space to handle than L2(R).

3.5.2 Gelfand-Maurin Theorem

We are now in a position to address the Gelfand-Maurin Theorem, which provides the
mathematical justification for the heuristic Dirac basis vector expansion.

Before stating the Gelfand-Maurin Theorem, let us review the situation in finite dimen-
sional spaces Ψ and in the Hilbert space H.

A nonzero vector h in Ψ or in H is called an eigenvector of an operator A defined on Ψ
or on H if there exists a complex number λ, called the eigenvalue, such that

Ah = λh . (3.5.68)
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Theorem Every self-adjoint operator A defined on an N -dimensional scalar product space
Ψ has a complete system of orthonormal eigenvectors hi = |λi) ∈ Ψ, i = 1, 2, . . . , N ,

A|λi) = λi|λi) , (3.5.69)

(λi|λj) = δij , (3.5.70)

such that every h ∈ Ψ can be expanded as

h =

N∑

i=1

|λi)(λi|h) . (3.5.71)

The set Sp(A) = {λ1, λ2, . . . , λN} of the eigenvalues of A is called the spectrum of A.

For an infinite dimensional Hilbert spaceH this statement is no longer true. For example,
it is well known that the differential operator

Pϕ(x) = −idϕ
dx

(x) (3.5.72)

and the multiplication operator
Qϕ(x) = xϕ(x) (3.5.73)

have no eigenvectors in L2(R). However, there is a class of operators in the Hilbert space
called compact operators for which the generalization of (3.5.69)-(3.5.71) holds.

A bounded operator A on a Hilbert space H is said to be compact if for every bounded
sequence {hn} ⊂ H, {Ahn} has a subsequence convergent in H. A self-adjoint compact
operator A on an infinite dimensional Hilbert space H has only a discrete spectrum which
coincides with the set of its eigenvalues, Sp(A) = {λ1, λ2, . . . , λn, . . .}. In this case, the
statements (3.5.69)-(3.5.71) for operators on finite dimensional spaces carry over to the
infinite dimensional case.

Theorem For any compact self-adjoint operator A defined on a Hilbert space H, there
exists an orthonormal set of eigenvectors hi ≡ |λi), λi ∈ Sp(A) = {λ1, λ2, . . . , λn, . . .},

A|λi) = λi|λi) , (3.5.74)

(λi|λj) = δij , (3.5.75)

such that every h ∈ H can be expanded as

h =

∞∑

i=1

|λi)(λi|h) , (3.5.76)

where each eigenvalue λi is repeated according to its (finite) multiplicity.

The observables that usually appear in Quantum Mechanics are described by unbounded
operators defined on some dense subdomains of the Hilbert space. In this case, the (Hilbert
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space) spectrum of the operator is not discrete in general, but has a continuous part (cf. Sec-
tion 2.5.3). For example, P and Q in (3.5.72) and (3.5.73) each has a continuous spectrum
which coincides with the real line. When the spectrum of an operator has a continuous
part, the spectral decompositions (3.5.71) and (3.5.76) are no longer valid because there are
no vectors in the Hilbert space that are eigenvectors corresponding to eigenvalues in the
continuous part of the spectrum. In order to extend (3.5.71) and (3.5.76) to the case where
the spectrum has a continuous part, we need the Gelfand-Maurin Theorem which is stated
below.

Dirac formalism is the way physicists handle continuous spectrum. For instance, the
operators P and Q, as defined in (3.5.72) and (3.5.73), have a continuous spectrum that
covers the whole real line but do not have any eigenvector in H. Nevertheless, physicists,
following Dirac, always associate an eigenket to each element of the continuous spectrum of
P and of Q,

P |p〉 = p|p〉 , p ∈ R , (3.5.77)

Q|q〉 = q|q〉 , q ∈ R , (3.5.78)

and use the assumption that these eigenvectors form a “complete” system in the sense that
every ϕ can be written as

ϕ =

∫ +∞

−∞
dp |p〉〈p|ϕ〉 , (3.5.79)

ϕ =

∫ +∞

−∞
dq |q〉〈q|ϕ〉 . (3.5.80)

When we omit ϕ in (3.5.79) and in (3.5.80), we obtain the resolution of the identity

I =

∫ +∞

−∞
dp |p〉〈p| , (3.5.81)

I =

∫ +∞

−∞
dq |q〉〈q| . (3.5.82)

However, the kets |p〉 and |q〉 are not in the Hilbert space, and the eigenvalues p and q are
not proper eigenvalues. The eigenkets corresponding to elements in the continuous spectrum
of an operator acquire mathematical meaning as generalized eigenvectors corresponding to
generalized eigenvalues in the sense of the following definition:

Definition Let A be a τΦ-continuous operator on Φ and A× its dual extension to Φ×. A
generalized eigenvector of the operator A corresponding to the generalized eigenvalue λ is
an antilinear functional F ∈ Φ× such that

F (Aϕ) = λF (ϕ) , ∀ϕ ∈ Φ , (3.5.83)

or in bra-ket notation
〈Aϕ|F 〉 = 〈ϕ|A×F 〉 = λ〈ϕ|F 〉 . (3.5.84)
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Equations (3.5.83) and (3.5.84) are often written as

A×F = λF or A×|F 〉 = λ|F 〉 , (3.5.85)

respectively. Following Dirac, the ket in (3.5.85) is often labeled by its eigenvalue, |F 〉 ≡ |λ〉.
Then we write

A×|λ〉 = λ|λ〉 . (3.5.86)

If A is essentially self-adjoint, we may also write

A|λ〉 = λ|λ〉 . (3.5.87)

Let us assume that A has a generalized eigenvector in the Hilbert space, i.e., F ≡ f in
equation (3.5.84) is an element of H. Then (3.5.84) reads

(Aϕ, f) = (ϕ,A†f) = λ(ϕ, f) (3.5.88)

for every ϕ ∈ Φ. Since Φ is τH-dense in H, (3.5.88) implies that

A×F ≡ A†f = λf . (3.5.89)

Thus, a generalized eigenvector which is also an element of the Hilbert space is an ordinary
eigenvector of the Hilbert space adjoint operator corresponding to the same eigenvalue.

To avoid complications which are inessential for our main purposes and inapplicable for
the particular problem of the one-dimensional harmonic oscillator, we restrict ourselves here
to cyclic operators.

Definition An operator A defined on a subdomain D(A) of a Hilbert space H is cyclic if
there exists a vector f ∈ D(A) such that {Akf}∞k=0 spans the entire Hilbert space.

For instance, the operators P and Q in (3.5.72) and (3.5.73) are cyclic because the sets

{Qkφ0 , k = 0, 1, 2, . . .} (3.5.90)

and
{P kφ0 , k = 0, 1, 2, . . .} , (3.5.91)

where φ0 is the zero-th Hermite polynomial, both span H.
If A has a continuous spectrum, the spectral decomposition (3.5.76) is not possible in the

Hilbert space. However, a generalization of (3.5.76), called the Gelfand-Maurin Theorem or
the Nuclear Spectral Theorem, is possible in the Rigged Hilbert Space.

Theorem (Gelfand-Maurin Theorem or Nuclear Spectral Theorem) Let Φ ⊂ H ⊂ Φ× be
a Rigged Hilbert Space and A a cyclic, e.s.a., τΦ-continuous operator. Then, for each λ in
the spectrum of A, there exists a generalized eigenvector Fλ ≡ |λ〉,

A×|λ〉 = λ|λ〉 , λ ∈ Sp(A) , (3.5.92)
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i.e.,
〈Aϕ|λ〉 = 〈ϕ|A×|λ〉 = λ〈ϕ|λ〉 , ∀ϕ ∈ Φ . (3.5.93)

Furthermore, there is some uniquely defined positive measure dµ(λ) on Sp(A) such that for
every ϕ, ψ ∈ Φ

(ψ, ϕ) =

∫

Sp(A)

dµ(λ)〈ψ|λ〉〈λ|ϕ〉 , (3.5.94)

where
〈λ|ϕ〉 = 〈ϕ|λ〉 . (3.5.95)

Furthermore, if f(λ) is a well-behaved function on Sp(A), then

(ψ, f(A)ϕ) =

∫

Sp(A)

dµ(λ)〈ψ|λ〉〈λ|ϕ〉f(λ) (3.5.96)

If we set ψ = ϕ in (3.5.94), we see that if all the components 〈λ|ϕ〉 of the spectral
decomposition of ϕ with respect to the operator A vanish, then ‖ϕ‖ = 0, i.e., ϕ = 0.
Because of this property, the set of generalized eigenvectors |λ〉 occurring in (3.5.92) is
called complete in analogy to the completeness of the system of ordinary eigenvectors in a
Hilbert space.

In general, an e.s.a. operator has more generalized eigenvectors than those that appear in
the spectral decomposition (3.5.94). In particular, a generalized eigenvalue may be complex.

The spectral decomposition provided by the Gelfand-Maurin theorem needs not be
unique and it is also valid in many cases when Φ is not a nuclear space.

The statement of the Gelfand-Maurin Theorem is still too general for the purposes of
Quantum Mechanics. For the cases of physical interest, the measure dµ(λ) that appears in
this theorem has a discrete and an absolutely continuous part, i.e., it can be written as

dµ(λ) =
∑

discrete
spectrum

µ(λi)δ(λ− λi) + ρ(λ)dλ . (3.5.97)

After a delta-normalization given by (3.5.41), equations (3.5.94) and (3.5.97) yield

(ψ, ϕ) =
∑

discrete
spectrum

(ψ|λi)(λi|ϕ) +
∫
continuous
spectrum

dλ 〈ψ|λ〉〈λ|ϕ〉 , ϕ, ψ ∈ Φ . (3.5.98)

Eq. (3.5.98) is the form in which the Gelfand-Maurin theorem is used in physics because
it is precisely the Dirac basis vector expansion. This expansion treats the elements of the
discrete spectrum and the elements of the continuous spectrum of the operator A on the
same footing: there is always an eigenvector corresponding to each element of the spectrum
of the operator. If this element belongs to the discrete spectrum, then the corresponding
eigenket is an ordinary eigenvector (i.e., it is square normalizable). If the element is in the
continuous part of the spectrum, then the corresponding eigenket is a generalized eigenvector



3.6 Gelfand-Maurin Theorem Applied to the Harmonic Oscillator 109

(i.e., it is a functional). It is worthwhile noting that the spectral decomposition (3.5.98) is
only valid for elements ψ, ϕ in the space Φ, but not for every element h in the Hilbert space
H.

The Gelfand-Maurin Theorem provides a mathematical rephrasing of several formal
expressions used in Quantum Mechanics. For instance, omission of ψ in (3.5.98) leads to
the spectral decomposition of any wave function ϕ ∈ Φ ,

ϕ =
∑

i

|λi)(λi|ϕ) +
∫
dλ|λ〉〈λ|ϕ〉 . (3.5.99)

In the same way, we can obtain the spectral resolution of the identity operator

I =
∑

i

|λi)(λi|+
∫
dλ |λ〉〈λ| (3.5.100)

and of the operator itself

A =
∑

i

λi |λi)(λi|+
∫
dλ λ |λ〉〈λ| . (3.5.101)

As an example, Eq. (3.5.79) is a particular case of (3.5.94) with Sp(P ) = R, λ = p ∈ R

and dµ(λ) = dp, the Lebesgue measure on R, and similarly for the position operator.

3.6 Gelfand-Maurin Theorem Applied to the Harmonic

Oscillator

In this section, we will apply the Gelfand-Maurin Theorem to the operators of the algebra of
observables of the harmonic oscillator. We will show that the defining algebraic assumptions
(3.2.1)-(3.2.4) and the τΦ-continuity of the algebra of observables lead to the Schrödinger
representation in the Schwartz space S(R). The operators P , Q and H will be realized by
the standard differential operators and the space Φ will be realized by the Schwartz space.

3.6.1 Spectral Theorem Applied to the Energy Operator

We now recall the spectral properties of H . These spectral properties were derived in the
construction of the RHS for the harmonic oscillator.

The spectrum of H is the discrete set

Sp(H) = {En = ~ω(n+
1

2
) , n = 0, 1, 2, . . .} . (3.6.1)

Corresponding to each eigenvalue En, there is an eigenvector φn ≡ |n) of H :

H|n) = En|n) . (3.6.2)
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The eigenvectors |n) are proper eigenvectors, i.e., |n) ∈ Φ, rather than generalized eigenvec-
tors, i.e., elements of Φ×. These eigenvectors form a basis system for Φ, i.e., every ϕ ∈ Φ
can be written as

ϕ =
∞∑

n=0

|n)(n|ϕ) , (3.6.3)

where the components (n|ϕ) ∈ C satisfy

∞∑

n=0

(n+ 1)p |(n|ϕ)|2 <∞ (3.6.4)

for every p = 0, 1, 2, . . .

3.6.2 Spectral Theorem Applied to the Position and Momentum

Operators

We now want to calculate the spectra of the operators Q and P and the generalized eigen-
vectors that correspond to the elements of these spectra. These generalized eigenvectors
will be continuous antilinear functionals over the space Φ constructed in Section 3.3.

We first determine whether the Gelfand-Maurin Theorem of Section 3.5.2 can be applied
to the operators Q and P . The space Φ, whose topology is defined by the countable number
of scalar products

(ϕ, ψ)p = (ϕ, (N + I)pψ) , (3.6.5)

was proved to be a nuclear space (cf. Section 3.3.5). The operators position Q and momen-
tum P were proved to be τΦ-continuous (cf. Section 3.3.5). Q and P are cyclic operators,
since the sets

{Qnφ0 | n = 0, 1, 2, . . .} (3.6.6)

and
{P nφ0 | n = 0, 1, 2, . . .} , (3.6.7)

where φ0 is the zeroth eigenvector of the Hamiltonian operator, both span the whole of H.
Therefore, we can apply the Gelfand-Maurin to these operators. This theorem assures the
existence of a complete set of generalized eigenvectors of the operators Q and P ,

Q×|x〉 = x|x〉 , x ∈ Sp(Q) , (3.6.8)

P×|p〉 = p|p〉 , p ∈ Sp(P ) , (3.6.9)

and either of these two sets can be used for the spectral decomposition of any vector ϕ in
Φ:

ϕ =

∫

Sp(Q)

dµ(x) |x〉〈x|ϕ〉 , (3.6.10)

or

ϕ =

∫

Sp(P )

dµ(p) |p〉〈p|ϕ〉 , (3.6.11)
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where dµ(x) and dµ(p) are measures on Sp(Q) and Sp(P ), respectively.
It is well known that the spectrum of both P and Q is the real line. However, it is not

so widely known that the derivation of this is far from being trivial (see [68] and references
therein). The approach of a physicist is usually the reverse of the one described here, namely
a physicist finds the defining assumptions (3.2.1)-(3.2.4) of the harmonic oscillator from the
spectra of Q and P , which are conjectured from experimental data to be the real line. We
shall derive these spectra in the present section. We will see that dµ(x) = dx, Sp(Q) = R,
dµ(p) = dp and Sp(P ) = R. We shall see that the set of generalized eigenvalues of Q (of
P ) agrees with the spectrum of Q (of P ) when we choose for the space Φ in the RHS
the countably Hilbert space defined by the countable number of scalar products (3.6.5).
However, since the set of generalized eigenvalues depends upon the choice of the space Φ,
we could choose a different countably Hilbert space and obtain also complex generalized
eigenvalues of the essentially self-adjoint operator Q (or P ).

We begin by examining for which values x ∈ C the equation

Q×|x〉 = x|x〉 (3.6.12)

can be fulfilled, i.e., for which complex numbers x the equation

〈Qϕ|x〉 = 〈ϕ|Q×|x〉 = x〈ϕ|x〉 (3.6.13)

holds for every ϕ ∈ Φ. Since every ϕ ∈ Φ can be expanded in terms of the basis of
eigenvectors φn = |n) of H as in (3.6.3), it will be sufficient to know for which x the
equation

(n|Q×|x〉 = x(n|x〉 (3.6.14)

holds for every |n).
From (3.2.5), (3.2.6) and (3.2.27) it follows that

Q|n) =

√
~

2µω
(a + a†)|n)

=

√
~

2µω

(√
n|n− 1) +

√
n + 1|n+ 1)

)
. (3.6.15)

Taking the “scalar product” of this equation with |x〉 we obtain

(n|Q×|x〉 =
√

~

2µω
(
√
n(n− 1|x〉+

√
n + 1(n+ 1|x〉) . (3.6.16)

Equation (3.6.16) is mathematically well defined even though we used the term “scalar
product” of Q|n) with |x〉, which is not well defined since |x〉 ∈ Φ×. The precise
meaning of (3.6.16) is as follows: since |n) ∈ Φ, so is ϕ ≡ Q|n), because Q leaves Φ
invariant. Therefore, we can consider the value of the functional |x〉 ≡ Fx ∈ Φ× at
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the point ϕ ∈ Φ, Fx(ϕ) = 〈ϕ|Fx〉. According to (3.4.25), this is related to the value
of the functional ϕ̃ ∈ Φ×× ≡ Φ at the point Fx ∈ Φ× by

Fx(ϕ) = ϕ̃(Fx) , (3.6.17)

or in bra-ket notation
〈ϕ|Fx〉 = 〈Fx|ϕ̃〉 ≡ 〈Fx|ϕ〉 , (3.6.18)

where the identification Φ×× ∋ ϕ̃ ≡ ϕ ∈ Φ was used. Returning to ϕ ≡ Q|n) = Qφn,
(3.6.18) is written as

〈x|Q|n) = 〈x|Qφn〉 = 〈Qφn|x〉 = (n|Q×|x〉 . (3.6.19)

This is the quantity that appears on the left hand side of (3.6.16). The quantities
(n− 1|x〉 and (n+ 1|x〉 are similarly defined by choosing ϕ = |n− 1) and ϕ = |n+ 1)
respectively.

On the other hand, taking the scalar product of (3.6.12) with |n), (more precisely, the
action of the functional Q×|x〉 at |n)) we obtain

(n|Q×|x〉 = x (n|x〉 . (3.6.20)

Comparing (3.6.16) with (3.6.20) yields

x (n|x〉 =
√

~

2µω

(√
n(n− 1|x〉+

√
n+ 1(n + 1|x〉

)
, (3.6.21)

or with n+ 1 = m,

√
m(m|x〉 =

√
2µω

~
x(m− 1|x〉 −

√
m− 1(m− 2|x〉 . (3.6.22)

Since Eq. (3.6.15) is valid for n = 1, 2, . . . , Eq. (3.6.22) is valid for m = 2, 3, . . . For n = 0
(m = 1), we obtain instead of (3.6.15)

Q|0) =
√

~

2µω

√
0 + 1 |0 + 1) =

√
~

2µω
|1) , (3.6.23)

and instead of (3.6.22)
√
1 (1|x〉 =

√
2µω

~
x (0|x〉 . (3.6.24)

Thus we see that (3.6.22) is a recurrence relation for (m|x〉: if (0|x〉 is known, we can
determine (1|x〉 by (3.6.24) and then determine (2|x〉 by (3.6.22). With (1|x〉 and (2|x〉 we
can determine (3|x〉 by (3.6.22), and so on.

To find out what the transition coefficients (m|x〉 are, we introduce

y ≡
√
µω

~
x (3.6.25)
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and

fn(y) ≡
√
2nn!

(n|x〉
(0|x〉 , (3.6.26)

which is defined for all x such that (0|x〉 6= 0 (if (0|x〉 = 0, then by (3.6.22) and (3.6.24)
(n|x〉 = 0 for all n). Then from (3.6.22) it follows that

√
m

2mm!
fm(y) =

√
2

2m−1(m− 1)!
y fm−1(y)−

√
m− 1

2m−2(m− 2)!
fm−2(y) , (3.6.27)

or
fm(y) = 2yfm−1(y)− 2(m− 1)fm−2(y) (3.6.28)

From (3.6.24) we have
f1(y) = 2yf0(y) , (3.6.29)

and from (3.6.26)
f0(y) = 1 . (3.6.30)

Equations (3.6.28)-(3.6.30) are the recurrence relations for the Hermite functions and have
solutions for any complex number y. Thus for any complex value x there is a solution
(n|x〉 of the recurrence relation (3.6.22). Since Q is an e.s.a. operator, the (Hilbert space)
spectrum of Q must be real (cf. Section 2.5.3). Therefore the generalized eigenvalues that
appear in the integral decomposition (3.6.10) must be real, and we need to consider only
the solutions fm(y) for y ∈ R.

For real values of y, the solutions fm(y) of (3.6.28)-(3.6.30) are the Hermite polynomials:

fn(y) = Hn(y) = (−1)ney2 d
n(e−y

2

)

dyn
. (3.6.31)

Thus from (3.6.26) we can obtain the transition coefficient (n|x〉 for every real value of x for
which (0|x〉 is defined. We restrict ourselves to those solutions of (3.6.22) for which (0|x〉 is
finite, because |(0|x〉|2, the probability for obtaining the value x in a measurement of Q in
the ground state Λ0 = |φ0)(φ0|, is assumed to be finite.

Combining (3.6.25), (3.6.26) and (3.6.31), we have

(n|x〉 = 1√
2nn!

(0|x〉Hn

(√µω

~
x
)

(3.6.32)

for −∞ < x < +∞.
Since every ϕ ∈ Φ can be expanded as

ϕ =

∞∑

n=0

|n)(n|ϕ) , (3.6.33)

the |x〉 can be defined at each ϕ by

〈x|ϕ〉 =
∞∑

n=0

〈x|n)(n|ϕ) . (3.6.34)



114 3 The Rigged Hilbert Space of the Harmonic Oscillator

The quantities 〈x|ϕ〉 ≡ ϕ(x) are called the position wave functions or the wave functions in
the position representation. The quantities 〈x|n) ≡ φn(x) are called the energy eigenfunc-
tions, since they fulfill

〈x|H|n) = En〈x|n) . (3.6.35)

Because of Eq. (3.6.34), the energy eigenfunctions 〈x|n) can be viewed also as “transition
elements” between the x- and the n-representation.

If we consider the expansion

φn =

∫

Sp(Q)

dµ(x) |x〉〈x|φn) (3.6.36)

of the energy eigenvectors φn in terms of the eigenkets of Q as a functional acting on the
generalized eigenvector Fx′ = |x′〉 ∈ Φ×, x′ ∈ Sp(Q), then according to (3.6.18) we obtain
from (3.6.36)

φ̃n(Fx′) = 〈x′|φn〉 =
∫

Sp(Q)

dµ(x) 〈x′|x〉〈x|φn〉 . (3.6.37)

Thus dµ(x) 〈x′|x〉 must be the Dirac measure, i.e., the distribution defined by (3.6.37) must
have the property of the Dirac delta-function

dµ(x) 〈x′|x〉 = dx δ(x′ − x) . (3.6.38)

We now calculate the scalar product of φn = |n) and φm = |m) using (3.6.36)

δmn = (φm, φn) = (m|n) =
∫

Sp(Q)

dµ(x) (m|x〉 〈x|n) . (3.6.39)

We shall make use of
〈x|n) = (n|x〉 . (3.6.40)

We insert (3.6.32) and (3.6.40) into (3.6.39) and obtain

√
1

2n2mn!m!

∫

Sp(Q)

dµ(x) |(0|x〉|2 Hm(

√
µω

~
x)Hn(

√
µω

~
x) = δmn . (3.6.41)

Comparing (3.6.41) with the orthogonality relations for the Hermite polynomials,

1

n!2n
√
π

∫ +∞

−∞
dy e−y

2

Hm(y)Hn(y) = δnm , (3.6.42)

and taking into account that the Hermite polynomials are only orthogonal polynomials if
associated with the interval −∞ < y < +∞ and the weight e−y

2

(one can define Hn(y) by
(3.6.42) and derive (3.6.28)-(3.6.30) for real y) we conclude

dµ(x) |(0|x〉|2 = dx

√
µω

π~
e−(µω/~)x2 (3.6.43)
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and
Sp(Q) = {x | −∞ < x < +∞} . (3.6.44)

If we agree to normalize the generalized eigenvectors such that

〈x′|x〉 = δ(x′ − x) , (3.6.45)

then according to (3.6.38)
dµ(x) = dx . (3.6.46)

From (3.6.43) and (3.6.46) we conclude

|(0|x〉|2 =
√
µω

π~
e−(µω/~)x2 . (3.6.47)

Thus, up to an arbitrary phase factor (which we choose to be unity),

(0|x〉 =
(µω
π~

)1/4
e−(µω/2~)x2 . (3.6.48)

With this and (3.6.32) we obtain the transition coefficients (n|x〉 between the x- and n-
basis, i.e., the harmonic-oscillator energy wave eigenfunctions φn(x):

(n|x〉 =
(µω
π~

)1/4 1√
2nn!

Hn

(√µω

~
x
)
e−(µω/2~)x2 = 〈x|n) = φn(x) . (3.6.49)

We now repeat for the operator P the procedure that we have gone through for the
operator Q. The generalized eigenvectors of P will be denoted by |p〉:

P×|p〉 = p|p〉 . (3.6.50)

The action of P on |n) is, using (3.2.5), (3.2.6) and (3.2.27),

P |n) = −i
√

~µω

2
(a− a†)|n)

= −i
√

~µω

2

(√
n|n− 1)−

√
n+ 1|n+ 1)

)
. (3.6.51)

If we apply the functional |p〉 ∈ Φ× on the vector P |n) ∈ Φ and use (3.6.50), we obtain

p〈p|n) = −i
√

~µω

2

(√
n〈p|n− 1)−

√
n + 1〈p|n+ 1)

)
, (3.6.52)

or

p(n|p〉 = i

√
~µω

2

(√
n(n− 1|p〉 −

√
n+ 1(n+ 1|p〉

)
. (3.6.53)
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If we introduce the new quantities (n|p} defined by

(n|p} := i−n(n|p〉 , (3.6.54)

then

i(n− 1|p〉 = in(n− 1|p} , (3.6.55)

−i(n + 1|p〉 = in(n+ 1|p} , (3.6.56)

so (3.6.53) may be written as

p(n|p} =
√

~µω

2

(√
n(n− 1|p}+

√
n + 1(n+ 1|p}

)
. (3.6.57)

We see that this is exactly the same recurrence relation as in (3.6.21), with x
√
µω/~ replaced

by p/
√
µω~. Thus by the same argument as for (n|x〉, we find (using (3.6.54)) that

(n|p〉 = in
( 1

πµω~

)1/4 1√
2nn!

Hn

( 1√
~µω

p
)
e−p

2/2µω~ . (3.6.58)

Therefore, the eigenvectors |n) of the energy operator H for the harmonic oscillator have
the very particular property that the transition coefficients (3.6.49) between these vectors
and the x-basis have the same functional form as the transition coefficients (3.6.58) between
these vectors and the p-basis except for a phase factor.

By the same argument as above for the operator Q, we conclude that the spectrum of
P is continuous,

Sp(P ) = {p | −∞ < p <∞} , (3.6.59)

and that if we normalize the generalized eigenvectors |p〉 according to

〈p′|p〉 = δ(p′ − p) , (3.6.60)

then the measure dµ(p) is the Lebesgue measure on the real line,

dµ(p) = dp . (3.6.61)

The transition coefficients 〈p|n) in

|n) =
∫ +∞

−∞
dp |p〉〈p|n) (3.6.62)

are called the energy wave eigenfunctions in the momentum representation and are denoted
by

φ̂n(p) ≡ 〈p|n) . (3.6.63)

Also, for any arbitrary vector ϕ the transition coefficient

ϕ̂(p) = 〈p|ϕ〉 (3.6.64)
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in

ϕ =

∫ +∞

−∞
dp |p〉〈p|ϕ〉 (3.6.65)

is called the momentum wave function or the wave function in the momentum representation
of ϕ. We have used the notation ϕ̂(p) = 〈p|ϕ〉 instead of the notation ϕ(p) = 〈p|ϕ〉 because
the function ϕ̂(p) of p is in general different to the function ϕ(x) = 〈x|ϕ〉 of x. Therefore, to
avoid confusion, we label the two different functions ϕ̂(p) and ϕ(x) by two different symbols.

3.6.3 Realizations of the RHS of the Harmonic Oscillator by Spaces
of Functions

Thus far, we have obtained the matrix elements of Q in the x-representation,

〈x|Q|n) = x〈x|n) , 〈x|Q|ϕ〉 = x〈x|ϕ〉 , (3.6.66)

and the matrix elements of P in the p-representation,

〈p|P |n) = p〈p|n) , 〈p|P |ϕ〉 = p〈p|ϕ〉 . (3.6.67)

We now want to calculate 〈x|P |ϕ〉, the matrix elements of P in the x-representation,
and 〈p|Q|ϕ〉, the matrix elements of Q in the p-representation. We do this in two steps:

1. We introduce the new mathematical objects 〈x|p〉 and 〈p|x〉. They are generalizations
of the scalar product, but are the “scalar products” between the eigenvectors |x〉 ∈ Φ×

and |p〉 ∈ Φ×. Thus, they are something like the 〈x|y〉 in (3.5.39) of Section 3.5, i.e.,
distributions that are defined by integration. Like the (n|x〉 and the (n|p〉 in (3.6.36)
and (3.6.62), the 〈x|p〉 (and 〈p|x〉) are transition coefficients between basis systems.
But whereas 〈x|n) are transition coefficients between the continuous basis system {|x〉}
and the discrete basis system {|n)}, the 〈x|p〉 are the transition coefficients between
the continuous basis system {|x〉} and the continuous basis system {|p〉}.

2. We compute 〈x|P |ϕ〉 and 〈p|Q|ϕ〉 using the expressions for 〈x|p〉 and 〈p|x〉.

The mathematical object 〈p|x〉 appears when we take the “scalar product” of

φn =

∫ +∞

−∞
dx |x〉〈x|n) (3.6.68)

with |p〉 (or, more precisely, we consider φn as a functional at the generalized eigenvector
|p〉 ∈ Φ×, p ∈ Sp(P ), and use (3.6.68)):

〈p|n) =
∫ +∞

−∞
dx 〈p|x〉〈x|n) . (3.6.69)
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On the other hand, the mathematical object 〈x|p〉 appears when we take the scalar product
of

φn =

∫ +∞

−∞
dp |p〉〈p|n) (3.6.70)

with 〈x| (or, more precisely, we consider φn as a functional acting on the generalized eigen-
vector |x〉 ∈ Φ×, x ∈ Sp(Q), and use (3.6.70)):

〈x|n) =
∫ +∞

−∞
dp 〈x|p〉〈p|n) . (3.6.71)

In (3.6.69) and (3.6.71), 〈x|n) and 〈p|n) are given by (3.6.49) and (3.6.58), respectively.
The Hermite polynomials have the property

ine−η
2/2Hn(η) =

∫ +∞

−∞
dξ

eiξη√
2π

e−ξ
2/2Hn(ξ) , (3.6.72)

where η = p√
~µw

and ξ =
√

µw
~
x. Inserting (3.6.49) and (3.6.58) into this relation, it follows

that

(n|p〉 =
∫ +∞

−∞
dx

eixp/~√
2π~

(n|x〉 , (3.6.73)

or taking the complex conjugate

〈p|n) =
∫ +∞

−∞
dx

e−ixp/~√
2π~

〈x|n) . (3.6.74)

Comparing (3.6.74) with (3.6.69), we find that the 〈p|x〉 are given by

〈p|x〉 = 1√
2π~

e−ixp/~ . (3.6.75)

In the same way one obtains from (3.6.71) and (3.6.72)

〈x|p〉 = 1√
2π~

eixp/~ . (3.6.76)

Eqs. (3.6.75) and (3.6.76) together give

〈x|p〉 = 〈p|x〉. (3.6.77)

It is now simple to calculate the matrix element of P in the basis of generalized eigenvectors
of Q using (3.6.76):

〈x|P |ϕ〉 =

∫ +∞

−∞
dp p 〈x|p〉〈p|ϕ〉 =

∫ +∞

−∞
dp p

eixp/~√
2π~
〈p|ϕ〉

=

∫ +∞

−∞
dp

~

i

∂

∂x
〈x|p〉〈p|ϕ〉 = ~

i

d

dx

∫ +∞

−∞
dp 〈x|p〉〈p|ϕ〉 . (3.6.78)
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Thus

〈x|P |ϕ〉 = ~

i

d

dx
〈x|ϕ〉 . (3.6.79)

In the same way using (3.6.75) one obtains

〈p|Q|ϕ〉 = −~
i

d

dp
〈p|ϕ〉 . (3.6.80)

Therewith, we have shown that the operators Q and P are “realized” in the space of position
wave functions 〈x|ϕ〉 = ϕ(x) by the multiplication operator

Qϕ(x) = xϕ(x) (3.6.81)

and by the differentiation operator

Pϕ(x) =
~

i

d

dx
ϕ(x) , (3.6.82)

respectively. These are the standard expressions that are usually assumed to represent
the position and momentum operators. We have derived them here from the Heisenberg
commutation relation [P,Q] = −i~I, the relation H = 1

2µ
P 2 + µω2

2
Q2, and the additional

assumption of the existence of an eigenvector of H .
We shall now derive the position representation of the energy operator H , i.e., we shall

calculate the matrix element 〈x|H|n). In this position representation, the energy eigenvalue
equation

Hφn = Enφn (3.6.83)

is called the time-independent Schrödinger equation. The Hamiltonian for the harmonic
oscillator is given by

H =
1

2µ
P 2 +

µω2

2
Q2 . (3.6.84)

Let us take the matrix element of H between 〈x| and |n) (or, more precisely, the action of
of the functional 〈x| at the point H|n)):

〈x|H|n) = 1

2µ
〈x|P 2|n) + µω2

2
〈x|Q2|n) . (3.6.85)

From (3.6.79), it follows that

〈x|P 2|n) = 〈x|P 2|φn〉

=
~

i

d

dx
〈x|P |φn〉

=
(~
i

)2 d2
dx2
〈x|φn〉

=
(~
i

)2 d2
dx2
〈x|n) . (3.6.86)
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From (3.6.66),
〈x|Q2|n) = x2〈x|n) . (3.6.87)

Inserting (3.6.86) and (3.6.87) into (3.6.85), we have for the matrix element of the energy
operator

〈x|H|n) = − ~2

2µ

d2

dx2
〈x|n) + µω2

2
x2〈x|n)

=
(
− ~2

2µ

d2

dx2
+
µω2

2
x2
)
〈x|n) . (3.6.88)

Therefore, the Schrödinger representation of the eigenvalue equation (3.6.83) reads

(
− ~2

2µ

d2

dx2
+
µω2

2
x2
)
φn(x) = Enφn(x) , (3.6.89)

where 〈x|n) = φn(x) is given in terms of the n-th Hermite polynomial as in (3.6.49).
Eq. (3.6.89) is the time-independent Schrödinger equation. This equation, that is usu-
ally taking as the starting point in the study of the harmonic oscillator, has been derived
here from the algebraic assumptions (3.2.1)-(3.2.4).

So far we have discussed the action of the operators Q, P and H on the wave functions
ϕ(x) = 〈x|ϕ〉 without specifying the particular properties of these functions. We shall now
show that as a consequence of the properties of the space Φ, it follows that the position
realization of Φ is the Schwartz space S(R) (cf. Section 2.4.1):

Since the space Φ remains stable under the action of the algebra of observables, Φ
remains stable under the action of any power of P and Q. This means that the quantities

(ϕ,Qnϕ) =

∫ +∞

−∞
dx xn |ϕ(x)|2 <∞ , n = 0, 1, 2, . . . , (3.6.90)

(ϕ, Pmϕ) = (−i~)m
∫ +∞

−∞
dxϕ(x)

dm

dxm
ϕ(x) <∞ , m = 0, 1, 2, . . . , (3.6.91)

(ϕ,QnPmϕ) = (−i~)m
∫ +∞

−∞
dxϕ(x) xn

dm

dxm
ϕ(x) <∞ , n,m = 0, 1, 2, . . . (3.6.92)

must be well defined for every ϕ ∈ Φ. This implies that the functions ϕ(x) = 〈x|ϕ〉 in the
realization space must be infinitely differentiable and that the functions and their derivatives
must decay at infinity faster than any power of x. Therefore, ϕ(x) ∈ S(R). Moreover, the
topology on Φ is equivalent to the topology on S(R). To show that equivalence, we recall
that the topology on Φ is described by the following prescription for sequence convergence:
a sequence ϕk ∈ Φ converges to ϕ ∈ Φ if

‖ϕk − ϕ‖p → 0 , p = 0, 1, 2, . . . , (3.6.93)

where ‖ϕ‖p =
√

(ϕ, (N + I)p). In the realization ofΦ, the conditions (3.6.93) are equivalent
to the following: a sequence ϕk(x) = 〈x|ϕk〉, which is the realization of the τΦ-convergent
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sequence ϕk → ϕ, converges to ϕ(x) = 〈x|ϕ〉 if the xn dm

dxm
ϕk(x) converge uniformly on

every bounded region to xn dm

dxm
ϕ(x) for each n,m = 0, 1, 2, . . . Therefore the topology of

the realization of Φ is equivalent to the topology of the Schwartz space.
Since the space Φ is realized by the Schwartz space S(R), the dual space Φ× is realized

by the space of tempered distributions S(R)×. The realization of the generalized eigenvector
|x〉 of Q is the Dirac delta function (see Eq. (3.6.45)), which is a distribution that belongs
to S(R)×,

Φ× ∋ |x〉 ←→ 〈x′|x〉 = δ(x′ − x) ∈ S(R)× . (3.6.94)

The realization of the generalized eigenvector |p〉 of P is the exponential function eixp, which
is also a distribution,6

Φ× ∋ |p〉 ←→ 〈x|p〉 = 1√
2π~

eixp/~ ∈ S(R)× . (3.6.95)

To say that δ(x′ − x) and 1√
2π~
eixp/~ are distributions in S(R)× means that they only make

sense as kernels of integrals that involve functions ϕ(x) ∈ S(R),
∫ +∞

−∞
dx′δ(x′ − x)ϕ(x′) = ϕ(x) , ϕ(x) ∈ S(R) , (3.6.96)

∫ +∞

−∞
dp

1√
2π~

eixp/~ϕ̂(p) = ϕ(x) , ϕ(x) ∈ S(R) , (3.6.97)

or in bra-ket notation ∫ +∞

−∞
dx′〈x|x′〉〈x′|ϕ〉 = 〈x|ϕ〉 , (3.6.98)

∫ +∞

−∞
dp 〈x|p〉〈p|ϕ〉 = 〈x|ϕ〉 . (3.6.99)

Finally, it is clear that the Hilbert space H is realized by the space of Lebesgue square
integrable functions L2(R, dx).

Summarizing, each vector ϕ in the vector space Φ can be fully characterized by its
components with respect to the continuous basis system of eigenvectors |x〉 of Q,

ϕ =

∫ +∞

−∞
dx |x〉〈x|ϕ〉 . (3.6.100)

Thus to the vector ϕ corresponds the function 〈x|ϕ〉 = ϕ(x) and to the vector Pϕ corre-
sponds the function 〈x|P |ϕ〉 ≡ Pϕ(x). Equation (3.6.79) then states that in the realization
of the space of vectors ϕ by the space of wave functions 〈x|ϕ〉 = ϕ(x), the momentum
operator is realized by the differential operator times ~/i,

P ←→ −i~ d

dx
, (3.6.101)

6The exponential function is not square integrable.
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Eq. (3.6.66) states that the position operator is realized by the operator of multiplication
by x

Q←→ x , (3.6.102)

and Eq. (3.6.88) states that the energy operator is realized by the differential operator

H ←→
(
− ~2

2µ

d2

dx2
+
µω2

2
x2
)
. (3.6.103)

The realization of the space Φ for the harmonic oscillator given by the association

Φ ∋ ϕ←→ ϕ(x) = 〈x|ϕ〉 ∈ S(R) (3.6.104)

between the vector ϕ and its “continuous components” 〈x|ϕ〉 = ϕ(x) establishes an equiva-
lence between two Rigged Hilbert Spaces, the RHS of the harmonic oscillator

Φ ⊂ H ⊂ Φ× (3.6.105)

and the RHS of Schwartz space functions

S(R) ⊂ L2(R, dx) ⊂ S×(R) . (3.6.106)

This realization is called the Schrödinger (position) representation or the x-representation.
We stress that the Schrödinger representation could not be derived from the Heisenberg

commutation relation
[P,Q] = −i~I (3.6.107)

and the relation

H =
1

2µ
P 2 +

µω2

2
Q2 (3.6.108)

alone, but required an additional assumption: the operator H has at least one proper
eigenvector in the space of states.

It is usually very useful to show the realizations of the abstract mathematical objects
(RHS, operators, functions, eigenvectors) through a diagram. For instance, the position
representation of the operator Q is visualized by the following diagram:

x-representation diagram for the operator Q

Q, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |x〉

l l l l l l

x, ϕ(x) = 〈x|ϕ〉 ∈ S(R) ⊂ L2(R, dx) ⊂ S(R)× ∋ 〈x′|x〉 = δ(x− x′)
(3.6.109)

On the top line of the diagram (3.6.109), we have the abstract objects. On the bottom line,
we have the x-realizations of all these abstract objects: Q is realized by the multiplication



3.6 Gelfand-Maurin Theorem Applied to the Harmonic Oscillator 123

operator, ϕ is realized by the position wave function ϕ(x), Φ by the Schwartz space S(R), H
by the Hilbert space of square integrable functions L2(R, dx), Φ× by the space of tempered
distributions S(R)× and |x〉 by the Dirac delta function δ(x− x′).

In a similar way, we can construct the position representation diagram for the momentum
operator P ,

x-representation diagram for the operator P

P, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |p〉

l l l l l l

−i~ d
dx
, ϕ(x) = 〈x|ϕ〉 ∈ S(R) ⊂ L2(R, dx) ⊂ S(R)× ∋ 〈x|p〉 = eixp/~√

2π~

(3.6.110)
As in the diagram (3.6.109), the top line of (3.6.110) contains the abstract mathematical
objects and the bottom line contains their x-realizations.

The x-diagram for the energy operator reads

x-representation diagram for the operator H

H, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |n〉

l l l l l l

−~2

2µ
d2

dx2
+ µω2

2
x2, ϕ(x) ∈ S(R) ⊂ L2(R, dx) ⊂ S(R)× ∋ φn(x)

(3.6.111)

The momentum representation leads to similar considerations. The operator P is realized
by the multiplication operator (see Eq. (3.6.67))

Pϕ̂(p) = pϕ̂(p) , (3.6.112)

and the operator Q by the differentiation operator (see Eq. (3.6.80))

Qϕ̂(p) = −~
i

d

dp
ϕ̂(p) . (3.6.113)

The space Φ is realized by the Schwartz space of functions ϕ̂(p). In the p-representation,
the generalized eigenvector |x〉 is realized by the exponential function

Φ× ∋ |x〉 ←→ 〈p|x〉 = 1√
2π~

e−ipx/~ , (3.6.114)

and the eigenvector |p〉 by the Dirac delta function

Φ× ∋ |p〉 ←→ 〈p′|p〉 = δ(p′ − p) . (3.6.115)
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As a consequence of (3.6.114),

ϕ̂(p) = 〈p|ϕ〉 =
∫ +∞

−∞
dx 〈p|x〉〈x|ϕ〉 =

∫ +∞

−∞
dx

1√
2π~

e−ixp/~ϕ(x) , (3.6.116)

Therefore, we can transform from the position representation ϕ(x) into the momentum
representation ϕ̂(p) using (3.6.95) and (3.6.116). Note that Eqs. (3.6.95) and (3.6.116) show
that the x- and the p-representation are related by the Fourier transform.

We can also construct diagrams similar to those constructed for the position represen-
tation. For instance, the p-representation of the position operator leads to

p-representation diagram for the operator Q

Q, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |x〉

l l l l l l

−~

i
d
dp
, ϕ̂(p) = 〈p|ϕ〉 ∈ S(R) ⊂ L2(R, dp) ⊂ S(R)× ∋ 〈p|x〉 = 1√

2π~
e−ipx/~

(3.6.117)
For the momentum operator we have:

p-representation diagram for the operator P

P, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |p〉

l l l l l l

p, ϕ̂(p) = 〈p|ϕ〉 ∈ S(R) ⊂ L2(R, dp) ⊂ S(R)× ∋ 〈p′|p〉 = δ(p′ − p)
(3.6.118)

Finally, the p-representation diagram for the energy operator reads

p-representation diagram for the operator H

H, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |n)

l l l l l l

−~2µω2

2
d2

dp2
+ 1

2µ
p2, ϕ̂(p) ∈ S(R) ⊂ L2(R, dp) ⊂ S(R)× ∋ 〈p|n) = φ̂n(p)

(3.6.119)

For the sake of completeness, we recall the energy representation ϕ(n) = (n|ϕ〉. In this
representation, the variable n ≡ En is discrete, and the realization of the vectors ϕ are given
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by sequences of complex numbers ϕ(n) = (n|ϕ〉 rather than by functions. The Hilbert space
H is realized by the sequence of square integrable functions (3.3.51) and the space Φ by the
space of rapidly decreasing sequences (3.3.52). The matrix elements of the operators H , Q
and P are

(n|H|m) = En δnm , (3.6.120)

(m|Q|n) =
√

~

2µω

(√
n δm,n−1 +

√
n+ 1 δm,n+1

)
, (3.6.121)

and

(m|P |n) = −i
√

~µω

2

(√
n δm,n−1 −

√
n+ 1 δm,n+1

)
, (3.6.122)

respectively. In this representation, these operators are visualized as infinite matrices whose
entries are given by the equations (3.6.120)-(3.6.122).

3.6.4 Summary

In the preceding sections, we have constructed the Rigged Hilbert Space for the one-
dimensional harmonic oscillator. We started out with the algebra of observables A generated
by P , Q and H . These operators fulfill the algebraic relations

[P,Q] = −i~I , H =
1

2µ
P 2 +

µw2

2
Q2 . (3.6.123)

The elements of A were assumed to be symmetric operators defined on a linear space Ψ,

(Aϕ, ψ) = (ϕ,Aψ) , ϕ, ψ ∈ Ψ , A ∈ A , (3.6.124)

where ( · , · ) is the scalar product that provides the probabilities. This space Ψ was assumed
to remain stable under the action of the elements of A. We made the crucial additional
assumption that the operator H has at least one eigenvector7 φ0 in the space Ψ,

Hφ0 =
1

2
~ωφ0 . (3.6.125)

From this one eigenvector we defined the vectors

|n) = 1√
n!
(a†)nφ0 , n = 0, 1, 2, . . . , (3.6.126)

which fulfill

H|n) = ~ω(n+ 1/2)|n) . (3.6.127)

7This is equivalent to the assumption that H is essentially self-adjoint on the invariant dense subspace
of the algebra A.
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These eigenvectors span the linear space Ψ. With respect to the scalar product on Ψ, the
eigenvectors |n) are orthonormal to each other,

(n|m) = δnm . (3.6.128)

The space Ψ was completed to the Hilbert space H using the topology generated by the
norm

‖ϕ‖ =
√

(ϕ, ϕ) . (3.6.129)

The (complete) Hilbert space H is

H = {ϕ =
∞∑

n=0

|n)(n|ϕ) |
∞∑

n=0

|(n|ϕ)|2 <∞} . (3.6.130)

The operators in the algebra of observables were extended from Ψ into larger subdomains of
H. However, these extensions are not continuous with respect to the Hilbert space topology,
and the domains do not remain stable under the action of the operators. In order to find
a common invariant subdomain Φ for the algebra A that is endowed with a topology that
makes these observables continuous operators, we introduced the sequence of scalar products

(ϕ, ψ)p = (ϕ, (N + I)pψ) , p = 0, 1, 2, . . . (3.6.131)

The completion of Ψ with respect to the topology generated by these scalar products is the
space

Φ = {ϕ =
∞∑

n=0

|n)(n|ϕ) |
∞∑

n=0

(n+ 1)p |(n|ϕ)|2 <∞ , p = 0, 1, 2, . . .} . (3.6.132)

The elements of the algebra A were extended continuously into Φ. The space Φ remains
stable under the action of these extensions and all these extensions are continuous with
respect to the topology on Φ. Therefore, all the algebraic calculations needed in physics
involving the elements of the algebra of observables are allowed.

The operators P and Q are essentially self-adjoint8 and have a continuous spectrum
that coincides with the real line. In order to associate an eigenvector to each element of the
spectrum of these operators, we introduced the adjoint space Φ× and constructed the RHS

Φ ⊂ H ⊂ Φ× . (3.6.133)

In this RHS, the Gelfand-Maurin Theorem holds. This theorem assured the existence of a
complete system of generalized eigenvectors of Q

Q×|x〉 = x|x〉 , |x〉 ∈ Φ× , (3.6.134)

8As a consequence of H being essentially self-adjoint.
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such that any ϕ ∈ Φ was expanded in terms of these generalized eigenvectors of Q,

ϕ =

∫ +∞

−∞
dx |x〉〈x|ϕ〉 . (3.6.135)

Eq. (3.6.135) is the mathematical rephrasing of the heuristic Dirac basis vector expansion.
Using the spectral decomposition (3.6.135), we derived the x-realization of the abstract

ϕ by functions ϕ(x) in the Schwartz space,

Φ ∋ ϕ ←→ ϕ(x) = 〈x|ϕ〉 ∈ S(R) . (3.6.136)

In particular, to every eigenvector |n) of H there corresponds a function 〈x|n) = φn(x),

|n) ←→ 〈x|n) = φn(x) , (3.6.137)

given in terms of the Hermite polynomials. The x-representation of the operator Q is the
multiplication operator

Qϕ ←→ xϕ(x) , (3.6.138)

the x-representation of the operator P is given by the differentiation operator

Pϕ ←→ ~

i

d

dx
ϕ(x) , (3.6.139)

and the x-representation of the Hamiltonian is

Hϕ ←→
(
− ~2

2µ

d2

dx2
+
µω2

2
x2
)
ϕ(x) . (3.6.140)

The realization of Φ given by the association between the vector ϕ and its “continuous
components” ϕ(x) yields the realization of the abstract RHS

Φ ⊂ H ⊂ Φ× (3.6.141)

by the RHS of Schwartz space functions

S(R) ⊂ L2(R, dx) ⊂ S×(R) . (3.6.142)

The generalized eigenvector |x〉 of Q is realized by the Dirac delta function

Φ× ∋ |x〉 ←→ 〈x′|x〉 = δ(x′ − x) ∈ S(R)× , (3.6.143)

and the generalized eigenvector |p〉 of P by the exponential function

Φ× ∋ |p〉 ←→ 〈x|p〉 = 1√
2π~

eixp/~ ∈ S(R)× . (3.6.144)

Therewith, we have derived the Schrödinger representation of the harmonic oscillator
from the algebraic assumptions (3.6.123)-(3.6.125). We remark again that the Schrödinger
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representation is only one of the many possible representations of (3.6.123), and that it is
the additional assumption (3.6.125) which singles out the Schrödinger representation among
all the possible representations.9

From a mathematical point of view, the RHS formulation extends the Hilbert space
formulation and justifies the mathematically undefined operations that physicists are accus-
tomed to in their calculations. In particular, using the Rigged Hilbert Space formalism we
are able to reproduce the main features of the Dirac formalism.

3.7 A Remark Concerning Generalizations

3.7.1 Realization of the Abstract RHS by Spaces of Functions

The realization of the RHS of the harmonic oscillator by the RHS of Schwartz functions
suggests that any RHS associated to the spectral decomposition of an operator can be
realized by spaces of functions.

Let A be an operator defined on the RHS Φ ⊂ H ⊂ Φ× and

ϕ =

∫

Sp(A)

dµ(λ) |λ〉〈λ|ϕ〉 (3.7.1)

be the spectral decomposition of ϕ ∈ Φ provided by the Gelfand-Maurin Theorem. The
quantity 〈λ|ϕ〉 which appears in this spectral decomposition may be regarded as a complex
function of the real variable λ ∈ Sp(A), i.e., we can define

ϕ(·) : Sp(A) 7−→ C

λ 7−→ ϕ(λ) := 〈λ|ϕ〉 . (3.7.2)

(In this section, we shall write ϕ(·) when we want to speak about a function and ϕ(λ) when
we want to speak about the value of this function at a particular point λ). If we write

(ϕ, ϕ) =

∫

Sp(A)

dµ(λ) 〈ϕ|λ〉 〈λ|ϕ〉 =
∫

Sp(A)

dµ(λ) |〈λ|ϕ〉|2 , (3.7.3)

we immediately realize that ϕ(·) in (3.7.2) must be a square integrable function with respect
to dµ(λ). We shall denote the space of functions fulfilling (3.7.3) as L2(Sp(A), dµ(λ)). The
scalar product on L2(Sp(A), dµ(λ)) is defined as

(ϕ(·), ψ(·))L2 :=

∫

Sp(A)

dµ(λ)ϕ(λ)ψ(λ) . (3.7.4)

9There are several equivalent forms of the assumption (3.6.125):
(a) The assumption that H is essentially self adjoint.
(b) The assumption that P , Q, and I are the generators of a group, the Weyl group (subgroup of the

symmetry group of non-relativistic space-time, the Galilei group).
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If ϕ, ψ ∈ Φ, we have

(ϕ(·), ψ(·))L2 =

∫

Sp(A)

dµ(λ) 〈ϕ|λ〉 〈λ|ψ〉 = (ϕ, ψ) . (3.7.5)

Thus the mapping ϕ ↔ ϕ(·) that takes ϕ ∈ H into the function ϕ(·) ∈ L2(Sp(A), dµ(λ))
preserves the scalar products,

(ϕ, ψ)H = (ϕ(·), ψ(·))L2 . (3.7.6)

Further, this mapping is obviously linear, because 〈λ|αϕ + βψ〉 = α〈λ|ϕ〉 + β〈λ|ψ〉 for
α, β ∈ C. Thus, this mapping can be represented by means of a linear operator U † such
that

U † : Φ 7−→ L2(Sp(A), dµ(λ))

ϕ 7−→ U †ϕ = ϕ(·) . (3.7.7)

Since U † preserves scalar products, U † is an isometry (cf. Section 2.5.2). Moreover, it can
be proved that the image of Φ by U † is dense in L2(Sp(A), dµ(λ)). Therefore, U † has a
unique extension to H. This extension (which we also denote by U †) is a unitary operator
from H onto L2(Sp(A), dµ(λ)),

U † : H 7−→ L2(Sp(A), dµ(λ))

f 7−→ U †f . (3.7.8)

It is important to remark that the equation f(λ) = 〈λ|f〉, i.e., the statement that the value
of the function f(·) at the point λ equals the action of the functional 〈λ| at f , holds only
when f is an element of Φ. For a general f in H, the corresponding U †f ≡ f(·) has no
meaning as a function, but only as a class of equivalence of functions which differ on a set
of zero Lebesgue measure.

We can endow U †Φ with a topology τλ by transporting the topology of Φ into U †Φ via
U †. Since Φ is assumed to satisfy the first axiom of countability, so does U †Φ. Therefore, we
can transport the topology τΦ on Φ into U †Φ by using the notion of sequence convergence.
Then, we say that ϕn(·)→ ϕ(·) with respect to τλ iff ϕn → ϕ with respect to τΦ. With this
definition, all topological properties are transferred from Φ into U †Φ by means of U †. In
particular, U †Φ is a τλ-complete nuclear space, and it is τλ-dense in L2(Sp(A), dµ(λ)), i.e.,
for any f(·) ∈ L2(Sp(A), dµ(λ)) there exists a sequence of functions {ϕn(·)}∞n=1 in U

†Φ such
that ∫

Sp(A)

dµ(λ) |ϕn(λ)− f(λ)|2−−→
n→∞

0 . (3.7.9)

Our next step is to extend the operator U † on Φ to an operator U× on Φ×. This operator
is defined by

〈U †ϕ|U×Fλ〉 := 〈ϕ|Fλ〉 , ϕ ∈ Φ , Fλ ∈ Φ× . (3.7.10)
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U× is a well defined linear operator from Φ× into (U †Φ)×. To show this, we just need to
prove that U×Fλ is a continuous antilinear functional on U †Φ. The antilinearity follows
from the definition (3.7.10), and the continuity from the fact that if U †ϕn → U †ϕ, then

〈U †ϕn|U×Fλ〉 = 〈ϕn|λ〉 → 〈ϕ|λ〉 = 〈U †ϕ|U×Fλ〉 . (3.7.11)

Therefore, U×Fλ is an element of (U †Φ)×.

The action of U× extends the action of U †. This means that if f ∈ H, then U×f = U †f .
In fact,

〈U †ϕ|U×f〉 = 〈ϕ|f〉 ≡ (ϕ, f) = (U †ϕ, U †f) ≡ 〈U †ϕ|U †f〉 (3.7.12)

for any ϕ ∈ Φ or, equivalently, for any U †ϕ ∈ U †Φ. Therefore, the functionals U×f and
U †f can be identified.

One can also prove that U× : Φ× → (U †Φ)× is continuous when Φ× is endowed with
the τ× topology and (UΦ)× with the τ×λ topology. Hence

U×Φ× = (U †Φ)× (3.7.13)

and both spaces have the same linear topological structure.

In summary, we have constructed a realization of the RHS

Φ ⊂ H ⊂ Φ× (3.7.14)

by the RHS of spaces of functions

U †Φ ⊂ L2(Sp(A), dµ(λ)) ⊂ (U †Φ)× (3.7.15)

using the unitary operator U † provided by the Gelfand-Maurin Theorem.

At this point, it is important to stress that the unitary operator U † which yields the
realization ofΦ ⊂ H ⊂ Φ× depends drastically on A (the operator providing the generalized
eigenvectors). The dependence of the space L2(Sp(A), dµ(λ)) on A is twofold: both Sp(A)
and dµ(λ) depend on A. However, it is also possible that two different observables A and
B (with two different U †’s) lead to the same space L2(Sp(A), dµ(λ)). For instance, in
the case of the harmonic oscillator we have seen that A = Q and B = P both lead to
L2(Sp(A), dµ(λ)) = L2(R). However, the Gelfand-Maurin theorem for Q gives a unitary
operator U † from H onto L2(R), and for P gives the operator V † = F U †, where F is the
Fourier transform operator.

Along with the realization of the vectors of the triplet Φ ⊂ H ⊂ Φ×, we can also consider
a realization of observables. If A is an operator on Φ, then U †AU is the corresponding
operator on U †Φ. We call U †AU the realization of A on U †Φ.

As we did in the case of the harmonic oscillator, we show the realization of an abstract
RHS through the following diagram:
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A, ϕ ∈ Φ ⊂ H ⊂ Φ× ∋ |λ〉

↓ ↓ U † ↓ U † ↓ U× ↓

U †AU, U †ϕ = ϕ(·) ∈ U †Φ ⊂ L2(Sp(A), dµ(λ)) ⊂ Φ× ∋ U×|λ〉

(3.7.16)

The top line of the diagram (3.7.16) contains the abstract mathematical objects, and
the bottom line contains their realizations.

An abstract RHS and its realization are equivalent Rigged Hilbert Spaces—there is no
linear topological property that distinguishes one from the other. This suggests the following
definition:

Definition Two Rigged Hilbert Spaces Φ ⊂ H ⊂ Φ× and Ψ ⊂ G ⊂ Ψ× are equivalent iff
there exists a unitary operator U † from H onto G such that

1. U †H = G, U †Φ = Ψ.

2. U † and U are continuous with respect to the topologies on Φ and Ψ.

As a consequence, U † can be extended to an operator U× : Φ× → Ψ× defined by

〈U †ϕ|U×F 〉 = 〈ϕ|F 〉 . (3.7.17)

This extension U× is a bicontinuous bijective10 linear mapping from Φ× onto Ψ× and hence
U×Φ× = Ψ×.

The RHS spectral decomposition

ϕ =

∫

Sp(A)

dµ(λ) |λ〉〈λ|ϕ〉 (3.7.18)

of ϕ ∈ Φ is a “continuous infinite dimensional” generalization of the Hilbert space spectral
decomposition of a compact self-adjoint operator. However, there are some differences
between these two spectral decompositions. The content of (3.7.18) is that any vector in Φ
can be written in terms of the generalized eigenvectors of A. Therefore, the eigenvectors of
A× form a “system of generators” for the space Φ. This system of generators is not a basis
for Φ in the usual Hilbert space sense for the following reasons:

1. The vectors |λ〉 do not, in general, belong to Φ or to H.
10One-to-one, onto, with continuous inverse.
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2. The finite or countably infinite sum

ϕ =

∞∑

n=0

cnen =

∞∑

n=0

(en, ϕ)en (3.7.19)

in the Hilbert space spectral decomposition is replaced by an integral

ϕ =

∫

Sp(A)

dµ(λ) |λ〉 〈λ|ϕ〉 . (3.7.20)

In the Hilbert space spectral decomposition (3.7.19), cn is the discrete coefficient (or weight)
for en. The cn can be viewed as the n-th component of ϕ with respect to the basis en. In the
RHS spectral decomposition (3.7.20), ϕ(λ) = 〈λ|ϕ〉 is the continuous coefficient (or weight)
for |λ〉. For a fixed λ ∈ Sp(A), ϕ(λ) = 〈λ|ϕ〉 can be viewed as the “λ-th” component of ϕ
with respect to the system of generators |λ〉.

The decomposition (3.7.19) leads to a realization of the Hilbert space H by the space
of sequences {cn} of complex numbers having the property

∑∞
n=0 |cn|2 < ∞. Analogously,

(3.7.20) leads to a realization of the space Φ by the space of functions ϕ(λ).

The Gelfand-Maurin Theorem allows us to spectrally decompose the scalar product of
any two vectors ϕ, ψ ∈ Φ as

(ψ, ϕ) =

∫

Sp(A)

dµ(λ) 〈ϕ|λ〉〈λ|ψ〉 . (3.7.21)

In analogy to (3.7.21), we also spectrally decompose the action of any functional F at a
vector ϕ,

〈ϕ|F 〉 =
∫

Sp(A)

dµ(λ) 〈ϕ|λ〉〈λ|F 〉 . (3.7.22)

Hence, quantities of the type 〈λ|F 〉 are distributions that are well defined only as a kernel
of integration whenever we write the action of a functional F as an integral operator. As
an example, the functional |x〉 that associates to any ϕ ∈ S(R) the value of the function at
the point x,

|x〉 : S(R) 7−→ C

ϕ 7−→ 〈ϕ|x〉 := ϕ(x) , (3.7.23)

can be written as an integral operator:

〈ϕ|x〉 =
∫ +∞

−∞
dx 〈ϕ|x′〉〈x′|x〉 . (3.7.24)

The functional |x〉 in (3.7.23) is the Schwartz delta functional, whereas the distribution
〈x′|x〉 in (3.7.24) is the Dirac delta function,

〈x′|x〉 = δ(x′ − x) . (3.7.25)

Therefore, the Dirac delta function appears when we spectrally decompose the action of the
Schwartz delta function as an integral operator.
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3.7.2 General Statement of the Gelfand-Maurin Theorem

The version of the Gelfand-Maurin Theorem stated in Section 3.5.2 is only suitable for
cyclic operators. In general, the linear operators in the algebra of observables are not
cyclic. Then more than one quantum number is needed to characterize pure states, and one
needs a complete system of commuting operators to obtain a complete set of generalized
eigenvectors.

Definition The collection of operators {Ak}Nk=1 is a system of commuting operators if

1. [Ai, Ak] = 0 for all i, k = 1, . . . , N ,

2.
∑N

k=1 A
2
k is essentially self-adjoint.

Let A be the algebra generated by a collection of operators {Ak}Nk=1. Then the collection
{Ak}Nk=1 is said to be a complete system if there exists a vector ϕ ∈ Φ such that the space

{Aϕ | A ∈ A} (3.7.26)

spans the Hilbert space H.

The notions of generalized eigenvector and generalized eigenvalue of an operator can be
extended to the case of a system {Ak}Nk=1. An antilinear functional F on Φ is a generalized
eigenvector for a system {Ak}Nk=1 if for every k = 1, . . . , N there exists a complex number
λ(k) such that

A×
k F = λ(k)F . (3.7.27)

The numbers λ ≡ (λ(1), λ(2), . . . , λ(N)) are called generalized eigenvalues corresponding to
the generalized eigenvector F ≡ |λ(1), λ(2), . . . , λ(N)〉.

Theorem (Gelfand-Maurin Theorem) Let {Ak}Nk=1 be a complete system of commuting,
e.s.a., τΦ-continuous operators on the Rigged Hilbert Space Φ ⊂ H ⊂ Φ×. Then, there
exists a set of generalized eigenvectors,

|λ(1), λ(2), . . . , λ(N)〉 ∈ Φ× , (3.7.28)

A×
k |λ(1), λ(2), . . . , λ(N)〉 = λ(k)|λ(1), λ(2), . . . , λ(N)〉 , (3.7.29)

λ(k) ∈ Λ(k) = Sp(Ak) , (3.7.30)

and a uniquely defined measure dµ(λ) on Λ = Λ(1) × Λ(2) × · · · × Λ(N), (where × denotes
the Cartesian product), such that for every ψ, ϕ ∈ Φ

(ψ, ϕ) =

∫

Λ

dµ(λ) 〈ψ|λ(1), λ(2), . . . , λ(N)〉〈λ(1), λ(2), . . . , λ(N)|ϕ〉 , (3.7.31)

or omitting ψ,

ϕ =

∫

Λ

dµ(λ) |λ(1), λ(2), . . . , λ(N)〉〈λ(1), λ(2), . . . λ(N)|ϕ〉 . (3.7.32)
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This theorem gives the mathematical formulation of the famous Dirac conjecture if the
starting point is a precisely defined algebra of observables.

The mathematical task that has to be accomplished if one starts out with a well de-
fined algebra is to find a complete commuting system and its spectrum. The problem of
determining when a system is complete is far from trivial. Already for the simplest cases of
enveloping algebras of group representations the number of commuting observables is not
independent of the particular commuting system.

The problem of the physicist is usually the reverse. From the experimental data one
finds out how many quantum numbers are required, and what their possible values are.
This gives a minimum number of operators for the complete commuting system because
the “matrix elements” of the Ak’s calculated from the properties of this algebra must agree
with the experimental values of the corresponding observables.

3.7.3 Generalization of the Algebra of Operators

The construction of the nuclear space Φ carried out for the harmonic oscillator can be
immediately generalized to more general algebras of operators. The analog of the lemma
(3.3.67) is

(ϕ,X(∆ + I)pXϕ) ≤ κ(ϕ, (∆ + I)p+1ϕ) , (3.7.33)

where X is one of the generators Xi and ∆ =
∑
X2
i is the Nelson operator (Laplacian).

Eq. (3.7.33) holds for all enveloping algebras (lemma by Nelson). Therewith the continuity
of the algebra in a linear topological space in which the topology is defined by the countable
number of scalar products

(ϕ, ψ)p = (ϕ, (∆ + I)pψ) (3.7.34)

follows immediately. Further, if ∆ is e.s.a., then all symmetric generators are also e.s.a. (the-
orems by Nelson and Stinespring).

Eq. (3.7.33) is much stronger than what is required for the proof of the continuity of the
generators. The continuity of the generators (and therewith of the whole algebra) can be
proved if instead of p + 1 on the right hand side of (3.7.33) one has p + n, where n is any
positive integer. Therefore, it appears that the continuity of the generators can already be
proved for any finitely generated associative algebra.

The nuclearity is a much harder property to establish. It has been proven for the cases
that the algebra is the enveloping algebra E(G) of the following groups G:

1. G is nilpotent (because then E(G) is isomorphic to the enveloping algebra generated
by Pα, Qα, α = 1, 2, . . .m, with [Pα, Qβ] = −δαβI for some m (a theorem by Kirillov
in [69]) and we have just an m-dimensional generalization of the harmonic oscillator).

2. G is semi-simple (Bohm in [70]).

3. G = AΘK, where Θ stands for semidirect product, with A Abelian and K compact
(B. Nagel in [71]).

4. G is the Poincare group, for some of the representations (see [71]).
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3.7.4 Appendix: Continuity of the Algebra of the Harmonic Os-

cillator

In this appendix, we provide a proof for Eq. (3.3.67)

(ψ, a(N + I)pa†ψ) ≤ κ(ψ, (N + I)p+1ψ) , ∀ψ ∈ Ψ . (3.7.35)

Before proceeding with the proof, we need some preliminary results. From the com-
mutation relation (3.2.10), it follows that

(N + I)a† = a†(N + 2I) , (3.7.36)

a(N + I) = (N + 2I)a . (3.7.37)

It also holds that

(ψ, (N + I)ψ) ≤ (ψ, (N + I)2ψ) , ∀ψ ∈ Ψ . (3.7.38)

Eq. (3.7.38) comes from the fact that N is a positive operator, i.e., (ψ,Nψ) ≥ 0 for
each ψ in Ψ and then

(ψ, (N + I)2ψ)− (ψ, (N + I)ψ) = (Nψ,Nψ) + (ψ,Nψ)

= ‖Nψ‖2 + (ψ,Nψ) ≥ 0 . (3.7.39)

From the positive definiteness of N , it also follows that if m and n are positive integers
and m ≤ n, then

(ψ, (N + I)mψ) ≤ (ψ, (N + I)nψ) , ∀ψ ∈ Ψ . (3.7.40)

We are now going to prove Eq. (3.7.35) by induction. Eq. (3.7.35) is true for p = 1,
because

(ψ, a(N + I)a†ψ) = (ψ, aa†(N + 2I)ψ)

= (ψ, (N + I)(N + 2I)ψ)

= (ψ, (N + I)2ψ) + (ψ, (N + I)ψ)

≤ 2(ψ, (N + I)2ψ) , (3.7.41)

where in the last step we have made use of Eq. (3.7.38).
We now assume that (3.7.35) is true for p ≤ q, i.e.,

(ψ, a(N + I)pa†ψ) ≤ κ(ψ, (N + I)p+1ψ) , ∀ψ ∈ Ψ , p = 1, 2, . . . , q . (3.7.42)

We have to prove that (3.7.35) is also true for p = q + 1 using (3.7.42). So we calculate

(ψ, a(N + I)q+1a†ψ) = (ψ, a(N + I)(N + I)q−1(N + I)a†ψ)

= (ψ, (N + 2I)a(N + I)q−1a†(N + 2I)ψ) (3.7.43)

= ((N + 2I)ψ, a(N + I)q−1a†(N + 2I)ψ)
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≤ κ((N + 2I)ψ, (N + I)q(N + 2I)ψ) (3.7.44)

= κ[((N + I)ψ, (N + I)q(N + I)ψ) + (ψ, (N + I)qψ)

+((N + I)ψ, (N + I)qψ) + (ψ, (N + I)q(N + I)ψ)]

= κ[(ψ, (N + I)q+2ψ) + (ψ, (N + I)qψ)

+(ψ, (N + I)q+1ψ) + (ψ, (N + I)q+1ψ)]

≤ 4κ(ψ, (N + I)q+2ψ) , (3.7.45)

where we have used Eqs. (3.7.36)-(3.7.37) in step (3.7.43), Eq. (3.7.42) in step (3.7.44) and
Eq. (3.7.40) in the last step.

Consequently, (3.7.35) has been shown to be fulfilled also for p = q + 1 and, therefore,
it is true for any integer p.



Chapter 4

A Rigged Hilbert Space of the Square
Barrier Potential

In this chapter, we construct a RHS of the square barrier Hamiltonian. In order to do it, we
shall use the Sturm-Liouville theory. This theory provides the direct integral decomposition
of the Hilbert space. From this direct integral decomposition, we shall construct the RHS.

CHARLIE [Stopping HAPPY’s movement and reply. To BIFF]
Nobody dast blame this man. You don’t understand: Willy
was a salesman. And for a salesman, there is no rock bottom
to the life. He don’t put a bolt to a nut, he don’t tell you
the law or give you medicine. He’s a man way out there in
the blue, riding on a smile and a shoeshine. And when they
start not smiling back—that’s an earthquake. And then you
get yourself a couple of spots on your hat, and you’re fin-
ished. Nobody dast blame this man. A salesman is got to
dream, boy. It comes with the territory.

BIFF: Charley, the man didn’t know who he was.

HAPPY[infuriated]: Don’t say that!

BIFF: Why don’t you come with me, Happy?

HAPPY: I’m not licked that easily. I’m staying right in this
city, and I’m gonna beat this racket! [He looks at BIFF, his chin

set.] The Loman Brothers!

BIFF: I know who I am, kid.

Arthur Miller, Death of a Salesman
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4.1 Introduction

In the previous chapter, we have constructed the RHS of the harmonic oscillator. This sys-
tem has a Hamiltonian whose spectrum is discrete, i.e., the solutions of the time independent
Schrödinger equation corresponding to the harmonic oscillator are square normalizable. Be-
cause the spectrum of its Hamiltonian has no continuous part, the harmonic oscillator cannot
have scattering states.

We now turn to study systems whose time independent Schrödinger equation has non-
square normalizable solutions. That is, systems whose Hamiltonian has a continuous spec-
trum. We shall focus on the square barrier potential, because its Schrödinger equation can
be solved explicitly. The square barrier potential will give us the long-sought example of the
Rigged Hilbert Space generated by a Schrödinger Hamiltonian with continuous spectrum.

First, we review the gist of the Dirac formalism for the case of a Hamiltonian with
continuous spectrum. The dynamical equation that governs the behavior of a quantum
system at any time is the time dependent Schrödinger equation:

i~
∂

∂t
ϕ(t) = Hϕ(t) , (4.1.1)

where H denotes the Hamiltonian of the system and ϕ(t) denotes the value of the wave
function ϕ at time t. The Dirac formalism solves this equation formally as follows: for
each energy E in the spectrum Sp(H) of the Hamiltonian, there exists a ket |E〉 that is an
eigenvector of H ,

H|E〉 = E|E〉 , E ∈ Sp(H) . (4.1.2)

These eigenkets form a complete basis system that expands any wave function ϕ as

ϕ =

∫
dE |E〉〈E|ϕ〉 ≡

∫
dE ϕ(E)|E〉 . (4.1.3)

The time dependent solution of Eq. (4.1.1) is obtained by Fourier-transforming the time
independent solution (4.1.3),

ϕ(t) =

∫
dE e−iEt/~ ϕ(E) . (4.1.4)

If the spectrum of the Hamiltonian has a continuous part, and if the energy E belongs
to this continuous part of the spectrum, then the corresponding eigenket |E〉 that solves
Eq. (4.1.2) is not square integrable, i.e., |E〉 is not an element of the Hilbert space.

It is the purpose of this chapter to show that the Rigged Hilbert Space is the mathe-
matical framework that supports the above formal manipulations. We will show that the
expansion (4.1.3) is not valid for every element of the Hilbert space H, but only for those ϕ
that belong to the space of wave functions Φ ⊂ H. We will also show that the kets |E〉 can
be understood mathematically as continuous antilinear functionals over the space of wave
functions Φ, i.e., |E〉 ∈ Φ×.
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According to the RHS mathematics, equation (4.1.2) means that

〈Hϕ|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ . (4.1.5)

The action of H can be extended to the kets |E〉 in Φ× as follows:

〈ϕ|H×|E〉 = 〈Hϕ|E〉 , ∀ϕ ∈ Φ . (4.1.6)

Because H is continuous on Φ, the operator H× is a uniquely defined extension of H . Using
the definition (4.1.6), we rewrite Eq. (4.1.5) as

〈ϕ|H×|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ . (4.1.7)

Omitting the arbitrary ϕ in this equation leads to

H×|E〉 = E|E〉 , (4.1.8)

which is the same as Eq. (4.1.2). (Note that in Eq. (4.1.8) we have denoted the action of
the Hamiltonian on the ket |E〉 by H× and not just by H . We shall use this notation in
order to stress that the Hamiltonian is acting on vectors that lie outside the Hilbert space.)

The statement of the Nuclear Spectral Theorem [5] only assures the existence of the
generalized eigenvectors |E〉, but it does not say how to construct them or how to construct
the space Φ, which is assumed to be given beforehand. In this chapter, we provide an
example of a Hamiltonian with continuous spectrum where all the quantities are explicitly
constructed. As mentioned above, this example is the three-dimensional square barrier
potential. We shall use the Sturm-Liouville theory (Weyl theory) [30] to find the RHS of
this potential.

By applying the Sturm-Liouville theory to the Schrödinger equation of the square barrier
potential, we will obtain a domainD(H) on which the Hamiltonian is self-adjoint. The Green
functions, the spectrum, and the unitary transformation that diagonalizes our Hamiltonian
will be also computed. The diagonalization of the Hamiltonian will allow us to obtain the
energy (spectral) representation and the direct integral decomposition of the Hilbert space
induced by our Hamiltonian. We will see why this direct integral decomposition is not
enough for the purposes of Quantum Mechanics and why the RHS is necessary. Next, we
will construct the space Φ. The RHS

Φ ⊂ H ⊂ Φ× (4.1.9)

of the square barrier potential will follow. Dirac kets will be accommodated as elements of
Φ×, and the Schwartz delta functional will appear in the energy (spectral) representation of
the triplet (4.1.9). The Nuclear Spectral Theorem will be proved, and it will be shown that
this theorem is just a restatement of the (heuristic) Dirac basis vector expansion (4.1.3).
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4.2 Sturm-Liouville Theory Applied to the Square Bar-

rier Potential

4.2.1 Schrödinger Equation in the Position Representation

In order to calculate the set of real generalized eigenvalues of the square barrier Hamil-
tonian (the physical spectrum) and their corresponding generalized eigenvectors, we solve
equation (4.1.8) in the position representation,

〈~x|H×|E〉 = E〈~x|E〉 . (4.2.1)

The expression of the Hamiltonian in the position representation is

〈~x|H×|E〉 =
(−~2

2m
∆+ V (~x)

)
〈~x|E〉 , (4.2.2)

where ∆ is the three-dimensional Laplacian and

V (~x) = V (r) =





0 0 < r < a
V0 a < r < b
0 b < r <∞

(4.2.3)

is the square barrier potential. Writing Eqs. (4.2.1) and (4.2.2) in spherical coordinates
and restricting ourselves to the case of zero angular momentum, we obtain the radial time-
independent Schrödinger equation,

(
− ~2

2m

d2

dr2
+ V (r)

)
χ(r;E) = Eχ(r;E) . (4.2.4)

Thus our Hamiltonian in the radial representation is given by the differential operator

h ≡ − ~2

2m

d2

dr2
+ V (r) . (4.2.5)

Throughout this chapter, the symbol h will be used to denote the formal differential operator
(4.2.5).

The Sturm-Liouville theory studies the differential operator

d

dx
(p(x)

d

dx
) + q(x) , (4.2.6)

where p(x) and q(x) are functions of the real variable x, x running over an interval of
the real axis. In our example, x will be the radial coordinate r running over the interval
[0,∞), p(x) the constant −~2/2m and q(x) the square barrier potential (4.2.3). In this case,
the Sturm-Liouville differential operator (4.2.6) coincides with the Schrödinger differential
operator (4.2.5) and therefore we are allowed to apply the Sturm-Liouville theory to our
problem.
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Mathematically, all the information about the differential operator h provided by the
Sturm-Liouville theory (resolvent, spectrum, spectral representation,...) is obtained from
the generalized eigenvalue equation

hχ(r, E) =

(
− ~2

2m

d2

dr2
+ V (r)

)
χ(r, E) = Eχ(r, E) , E ∈ C , (4.2.7)

with various boundary conditions. As mentioned in the introduction, the “monoenergetic”
eigensolutions of (4.2.7) are not in general square integrable, i.e., they are not in the Hilbert
space. Those “monoenergetic” eigensolutions will be associated to antilinear functionals
FE ∈ Φ× by

FE(ϕ) ≡
∫ ∞

0

dr ϕ(r)χ(r;E) . (4.2.8)

These functionals are generalized eigenvectors of the Hamiltonian H ,

H×FE = EFE , (4.2.9)

or more precisely,

〈ϕ|H×|FE〉 = 〈Hϕ|FE〉 = E〈ϕ|FE〉 , ∀ϕ ∈ Φ . (4.2.10)

From a physical point of view, Eq. (4.2.7) is the time-independent Schrödinger equation.
Different boundary conditions imposed upon it yield either Dirac kets, Lippmann-Schwinger
kets or Gamow kets.

4.2.2 Self-Adjoint Extension

Our first objective will be to define a linear operator on a Hilbert space corresponding to
the formal differential operator h and investigate its self-adjoint extensions. Among all
the possibilities, we shall choose the self-adjoint extension that fits spherically symmetric
potentials. Later sections will deal with the spectral properties of this self-adjoint extension
and with the RHS induced by it.

The Hilbert space that is in the RHS of the square barrier potential is realized by the
space L2([0,∞), dr) of square integrable functions f(r) defined on the interval [0,∞). In this
section, we find a subdomain D(H) of this Hilbert space on which the differential operator
h is self-adjoint. This domain must be a proper dense linear subspace of L2([0,∞), dr). The
action of h must be well-defined on D(H), and this action must remain in L2([0,∞), dr).
We need also a boundary condition that assures the self-adjointness of the Hamiltonian.
Among all the possible boundary conditions that provide a self-adjoint extension (see Ap-
pendix 4.4.1), we choose f(0) = 0. These requirements can be written as

f(r) ∈ L2([0,∞), dr) , (4.2.11a)

(hf)(r) ∈ L2([0,∞), dr) , (4.2.11b)

f(r) ∈ AC2[0,∞) , (4.2.11c)

f(0) = 0 , (4.2.11d)
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where AC2[0,∞) denotes the space of functions whose derivative is absolutely continuous
(cf. Appendix 4.4.1). Condition (4.2.11a) just means that the wave functions are square nor-
malizable. Condition (4.2.11b) assures that the action of h on any f(r) is square integrable.
Condition (4.2.11c) is the weakest condition sufficient for the second derivative of f(r) to
be well-defined. In our example, this condition implies that f(r) and f ′(r) are continuous
at r = a and at r = b. Equation (4.2.11d) selects, among all the possible possible boundary
conditions that provide a domain on which the differential operator h is self-adjoint (see
Appendix 4.4.1), the self-adjoint extension needed in physics.

The reason why we choose (4.2.11d) is the following: in physics [1, 54, 72, 73], the set
of boundary conditions imposed on the Schrödinger equation (4.2.7) always includes

χ(0;E) = 0 , (4.2.12a)

χ(r;E), and χ′(r;E) are continuous at r = a and at r = b . (4.2.12b)

Condition (4.2.12b) is implied by (4.2.11c), so we just need to recover (4.2.12a). This is why
we impose (4.2.11d).

The set of conditions (4.2.11) leads to the domain

D(H) = {f(r) | f(r), hf(r) ∈ L2([0,∞), dr), f(r) ∈ AC2[0,∞), f(0) = 0} . (4.2.13)

In choosing (4.2.13) as the domain of our formal differential operator h, we define a linear
operator H by

(Hf)(r) := hf(r) =

(
− ~2

2m

d2

dr2
+ V (r)

)
f(r) , f(r) ∈ D(H) . (4.2.14)

4.2.3 Resolvent and Green Functions

The Green function is the kernel of integration needed to write the resolvent of H as an
integral operator,

(E −H)−1 f(r) =

∫ ∞

0

G(r, s;E)f(s) ds . (4.2.15)

In Dirac notation this equation reads

〈r|(E −H)−1|f〉 =
∫ ∞

0

〈r|(E −H)−1|s〉〈s|f〉 ds , (4.2.16)

and therefore
G(r, s;E) = 〈r|(E −H)−1|s〉 . (4.2.17)

The so-called outgoing and incoming Green functions are defined by

G±(r, s;E) = lim
µ→0+

G(r, s;E ± iµ) . (4.2.18)

The procedure to compute the Green function of our operator (4.2.14) is explained in [30]
(see also [74]). For the sake of completeness, we include in Appendix 4.4.2 the statement
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of the theorem that is used to calculate G(r, s;E). The expression of the Green function
will be given in terms of eigenfunctions of the differential operator h subject to different
boundary conditions (cf. Theorem 1 in Appendix 4.4.2).

We shall consider three regions of the complex plane and compute the Green function
for each region separately. In all our calculations, we will use the following branch of the
square root function:

√
· : {E ∈ C | − π < arg(E) ≤ π} 7−→ {E ∈ C | − π/2 < arg(E) ≤ π/2} . (4.2.19)

Region ℜ(E) < 0, ℑ(E) 6= 0

For ℜ(E) < 0, ℑ(E) 6= 0, the Green function (see Theorem 1 in Appendix 4.4.2) is given
by

G(r, s;E) =





− 2m/~2√
−2m/~2 E

χ̃(r;E) Θ̃(s;E)

2J̃3(E)
r < s

− 2m/~2√
−2m/~2 E

χ̃(s;E) Θ̃(r;E)

2J̃3(E)
r > s

ℜ(E) < 0 , ℑ(E) 6= 0 . (4.2.20)

The eigenfunction χ̃(r;E) satisfies the Schrödinger equation (4.2.7) and the boundary con-
ditions

χ̃(0;E) = 0 , (4.2.21a)

χ̃(r;E) ∈ AC2([0,∞)) , (4.2.21b)

χ̃(r;E) is square integrable at 0 . (4.2.21c)

The boundary conditions (4.2.21) can be written as

χ̃(0;E) = 0 , (4.2.22a)

χ̃(a− 0;E) = χ̃(a+ 0;E) , (4.2.22b)

χ̃′(a− 0;E) = χ̃′(a + 0;E) , (4.2.22c)

χ̃(b− 0;E) = χ̃(b+ 0;E) , (4.2.22d)

χ̃′(b− 0;E) = χ̃′(b+ 0;E) , (4.2.22e)

χ̃(r;E) is square integrable at 0 , (4.2.22f)

and lead to

χ̃(r;E) =





e

√
− 2m

~2
Er − e−

√
− 2m

~2
Er

0 < r < a

J̃1(E)e

√
− 2m

~2
(E−V0)r + J̃2(E)e

−
√

− 2m
~2

(E−V0)r a < r < b

J̃3(E)e

√
− 2m

~2
Er

+ J̃4(E)e
−
√

− 2m
~2
Er

b < r <∞ .

(4.2.23)

The functions J̃1− J̃4 are such that χ̃(r;E) satisfies the boundary conditions (4.2.22), and
their expressions are given in Eq. (4.4.12) of Appendix 4.4.2.
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The eigenfunction Θ̃(r;E) satisfies the Schrödinger equation (4.2.7) and the boundary
conditions

Θ̃(r;E) ∈ AC2([0,∞)) , (4.2.24a)

Θ̃(r;E) is square integrable at ∞ . (4.2.24b)

The boundary conditions (4.2.24) can be written as

Θ̃(a− 0;E) = Θ̃(a+ 0;E) , (4.2.25a)

Θ̃′(a− 0;E) = Θ̃′(a + 0;E) , (4.2.25b)

Θ̃(b− 0;E) = Θ̃(b+ 0;E) , (4.2.25c)

Θ̃′(b− 0;E) = Θ̃′(b+ 0;E) , (4.2.25d)

Θ̃(r;E) is square integrable at ∞ , (4.2.25e)

and lead to

Θ̃(r;E) =





Ã1(E)e

√
− 2m

~2
Er

+ Ã2(E)e
−
√

− 2m
~2
Er

0 < r < a

Ã3(E)e

√
− 2m

~2
(E−V0)r + Ã4(E)e

−
√

− 2m
~2

(E−V0)r a < r < b

e
−
√

− 2m
~2
Er

b < r <∞ .

(4.2.26)

The functions Ã1−Ã4 are such that Θ̃(r;E) satisfies the boundary conditions (4.2.25), and
their expressions are given in Eq. (4.4.13) of Appendix 4.4.2.

Region ℜ(E) > 0, ℑ(E) > 0

When ℜ(E) > 0, ℑ(E) > 0, the expression of the Green function is

G(r, s;E) =





2m/~2√
2m/~2 E

χ(r;E)Θ+(s;E)
2iJ4(E)

r < s

2m/~2√
2m/~2 E

χ(s;E)Θ+(r;E)
2iJ4(E)

r > s
ℜ(E) > 0, ℑ(E) > 0 . (4.2.27)

The eigenfunction χ(r;E) satisfies the Schrödinger equation (4.2.7) and the boundary con-
ditions (4.2.21),

χ(r;E) =





sin(
√

2m
~2
Er) 0 < r < a

J1(E)e
i
√

2m
~2

(E−V0)r + J2(E)e
−i

√
2m
~2

(E−V0)r a < r < b

J3(E)e
i
√

2m
~2
Er

+ J4(E)e
−i

√
2m
~2
Er

b < r <∞ .

(4.2.28)

The functions J1 − J4 are determined by the boundary conditions (4.2.22), and their ex-
pressions are listed in Eq. (4.4.16) of Appendix 4.4.2.
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The eigenfunction Θ+(r;E) satisfies the Schrödinger equation (4.2.7) and the boundary
conditions (4.2.24),

Θ+(r;E) =





A+
1 (E)e

i
√

2m
~2
Er

+A+
2 (E)e

−i
√

2m
~2
Er

0 < r < a

A+
3 (E)e

i
√

2m
~2

(E−V0)r +A+
4 (E)e

−i
√

2m
~2

(E−V0)r a < r < b

e
i
√

2m
~2
Er

b < r <∞ .

(4.2.29)

The functions A+
1 − A+

4 are determined by the boundary conditions (4.2.25), and their
expressions are listed in Eq. (4.4.17) of Appendix 4.4.2.

Region ℜ(E) > 0, ℑ(E) < 0

In the region ℜ(E) > 0, ℑ(E) < 0, the Green function reads

G(r, s;E) =





− 2m/~2√
2m/~2 E

χ(r;E)Θ−(s;E)
2iJ3(E)

r < s

− 2m/~2√
2m/~2 E

χ(s;E)Θ−(r;E)
2iJ3(E)

r > s
ℜ(E) > 0, ℑ(E) < 0 . (4.2.30)

The eigenfunction χ(r;E) is given by (4.2.28). The eigenfunction Θ−(r;E) satisfies the
Schrödinger equation (4.2.7) and the boundary conditions (4.2.24),

Θ−(r;E) =





A−
1 (E)e

i
√

2m
~2
Er

+A−
2 (E)e

−i
√

2m
~2
Er

0 < r < a

A−
3 (E)e

i
√

2m
~2

(E−V0)r +A−
4 (E)e

−i
√

2m
~2

(E−V0)r a < r < b

e
−i

√
2m
~2
Er

b < r <∞ .

(4.2.31)

The functions A−
1 − A−

4 are such that Θ−(r;E) and its derivative are continuous at r = a
and at r = b. Their expressions are listed in Eq. (4.4.19) of Appendix 4.4.2.

4.2.4 Diagonalization of H and Eigenfunction Expansion

In the present section, we diagonalize our Hamiltonian H and construct the expansion of
the wave functions in terms of the eigenfunctions of the differential operator h. In order
to do so, we will compute the spectrum of H and then construct a unitary operator U
that transforms from the position representation into the energy representation. We will
see that the spectrum of H is the positive real line [0,∞). In the energy representation, H
will act as the multiplication operator, the Hilbert space will be realized by L2([0,∞), dE)
and the domain of the Hamiltonian will be realized by the maximal domain on which the
multiplication operator is well-defined. On our way, we shall take advantage of some results
of the Sturm-Liouville theory that are proved in [30]. For the sake of completeness, we
include in Appendix 4.4.3 the statements of the theorems that are used in this section.
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Spectrum of H

We first compute the spectrum Sp(H) of the operator H by applying Theorem 4 of Ap-
pendix 4.4.3 (see also [30]). Since H is self-adjoint, its spectrum is real. This spectrum
is the subset of the real line on which the Green function fails to be analytic. This non-
analyticity of G(r, s;E) will be built into the functions θ±ij(E) that appear in Theorem 4 of
Appendix 4.4.3.

From the expression of the Green function computed above, it is clear that the subsets
(−∞, 0) and (0,∞) should be studied separately. We will denote either of these subsets by
Λ.

Subset Λ = (−∞, 0)

We first take Λ from Theorem 4 of Appendix 4.4.3 to be (−∞, 0). We choose a basis
for the space of solutions of the equation hσ = Eσ that is continuous on (0,∞) × Λ and
analytically dependent on E as

σ1(r;E) =





B̃1(E)e
√

− 2m
~2
Er

+ B̃2(E)e−
√

− 2m
~2
Er

0 < r < a

B̃3(E)e
√

− 2m
~2

(E−V0)r + B̃4(E)e−
√

− 2m
~2

(E−V0)r a < r < b

e

√
− 2m

~2
Er

b < r <∞ ,

(4.2.32a)

σ2(r;E) = Θ̃(r;E) . (4.2.32b)

The functions B̃1− B̃4 are such that σ1(r;E) and its derivative are continuous at r = a and
at r = b. Their expressions are listed in Eq. (4.4.29) of Appendix 4.4.3.

Obviously,

χ̃(r;E) = J̃3(E)σ1(r;E) + J̃4(E)σ2(r;E) , (4.2.33)

which along with Eq. (4.2.20) leads to

G(r, s;E) = − 2m/~2

√
−2m/~2E

1

2

[
σ1(r;E) +

J̃4(E)

J̃3(E)
σ2(r;E)

]
σ2(s;E) ,

r < s , ℜ(E) < 0 ,ℑ(E) 6= 0 . (4.2.34)

Since

σ2(s;E) = σ2(s;E) , (4.2.35)

we can write Eq. (4.2.34) as

G(r, s;E) = − 2m/~2

√
−2m/~2 E

1

2

[
σ1(r;E)σ2(s;E) +

J̃4(E)

J̃3(E)
σ2(r;E)σ2(s;E)

]
,

r < s , ℜ(E) < 0 ,ℑ(E) 6= 0 . (4.2.36)
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On the other hand, by Theorem 4 in Appendix 4.4.3 we have

G(r, s;E) =
2∑

i,j=1

θ−ij(E)σi(r;E)σj(s;E) r < s . (4.2.37)

By comparing Eqs. (4.2.36) and (4.2.37) we see that

θ−ij(E) =




0 − 2m/~2√
−2m/~2 E

1
2

0 − 2m/~2√
−2m/~2 E

1
2
J̃4(E)

J̃3(E)


 , ℜ(E) < 0 , ℑ(E) 6= 0 . (4.2.38)

The functions θ−ij(E) are analytic in a neighborhood of Λ = (−∞, 0). Therefore, the interval
(−∞, 0) is in the resolvent set Re(H) of the operator H .

Subset Λ = (0,∞)

Now we study the case Λ = (0,∞). In order to be able to apply Theorem 4 of Ap-
pendix 4.4.3, we choose the following basis for the space of solutions of hσ = Eσ that is
continuous on (0,∞)× Λ and analytically dependent on E:

σ1(r;E) = χ(r;E) , (4.2.39a)

σ2(r;E) =





cos(
√

2m
~2
Er) 0 < r < a

C1(E)ei
√

2m
~2

(E−V0)r + C2(E)e−i
√

2m
~2

(E−V0)r a < r < b

C3(E)ei
√

2m
~2
Er

+ C4(E)e−i
√

2m
~2
Er

b < r <∞ .

(4.2.39b)

The functions C1 − C4, whose expressions are given in Eq. (4.4.30) of Appendix 4.4.3, are
such that σ2 and its derivative are continuous at r = a and at r = b.

Eqs. (4.2.29), (4.2.31) and (4.2.39) lead to

Θ+(r;E) = −
C4(E)
W (E)

σ1(r;E) +
J4(E)

W (E)
σ2(r;E) (4.2.40)

and to

Θ−(r;E) =
C3(E)
W (E)

σ1(r;E)−
J3(E)

W (E)
σ2(r;E) , (4.2.41)

where
W (E) = J4(E)C3(E)− J3(E)C4(E) . (4.2.42)

By substituting Eq. (4.2.40) into Eq. (4.2.27) we get to

G(r, s;E) =
2m/~2

√
2m/~2E

1

2iJ4(E)

[
−C4(E)
W (E)

σ1(r;E) +
J4(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) > 0 , r > s . (4.2.43)
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By substituting Eq. (4.2.41) into Eq. (4.2.30) we get to

G(r, s;E) = − 2m/~2

√
2m/~2E

1

2iJ3(E)

[ C3(E)
W (E)

σ1(r;E)−
J3(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) < 0 , r > s , (4.2.44)

Since
σ1(s;E) = σ1(s;E) , (4.2.45)

Eq. (4.2.43) leads to

G(r, s;E) =
2m/~2

√
2m/~2E

1

2iJ4(E)

[
−C4(E)
W (E)

σ1(r;E)σ1(s;E) +
J4(E)

W (E)
σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) > 0 , r > s , (4.2.46)

and Eq. (4.2.44) leads to

G(r, s;E) = − 2m/~2

√
2m/~2E

1

2iJ3(E)

[ C3(E)
W (E)

σ1(r;E)σ1(s;E)−
J3(E)

W (E)
σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) < 0 , r > s , (4.2.47)

The expression of the resolvent in terms of the basis σ1, σ2 can be written as (see Theorem 4
in Appendix 4.4.3)

G(r, s;E) =
2∑

i,j=1

θ+ij(E)σi(r;E)σj(s;E) r > s . (4.2.48)

By comparing (4.2.48) to (4.2.46) we get to

θ+ij(E) =




2m/~2√
2m/~2 E

1
2i

−C4(E)
J4(E)W (E)

0

2m/~2√
2m/~2 E

1
2i

1
W (E)

0


 , ℜ(E) > 0 , ℑ(E) > 0 , (4.2.49)

By comparing (4.2.48) to (4.2.47) we get to

θ+ij(E) =



− 2m/~2√

2m/~2 E

1
2i

C3(E)
J3(E)W (E)

0

2m/~2√
2m/~2 E

1
2i

1
W (E)

0


 , ℜ(E) > 0 , ℑ(E) < 0 , (4.2.50)

From Eqs. (4.2.49) and (4.2.50) we can see that the measures ρ12, ρ21 and ρ22 in Theorem 4
of Appendix 4.4.3 are zero and that the measure ρ11 is given by

ρ11((E1, E2)) = lim
δ→0

lim
ǫ→0+

1

2πi

∫ E2−δ

E1+δ

[
θ+11(E − iǫ)− θ+11(E + iǫ)

]
dE

=

∫ E2

E1

1

4π

2m/~2

√
2m/~2E

1

J3(E)J4(E)
dE , (4.2.51)
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which leads to

ρ(E) ≡ ρ11(E) =
1

4π

2m/~2

√
2m/~2E

1

|J4(E)|2
, E ∈ (0,∞) . (4.2.52)

The function θ+11(E) has a branch cut along (0,∞), and therefore (0,∞) is included in
Sp(H). Since Sp(H) is a closed set, Sp(H) = [0,∞). Thus the resolvent set of H is
Re(H) = C− [0,∞).

Diagonalization and Eigenfunction Expansion

We are now in a position to diagonalize the Hamiltonian. By Theorem 2 of Appendix 4.4.3,
there is a unitary map Ũ defined by

Ũ : L2([0,∞), dr) 7−→ L2((0,∞), ρ(E)dE)

f(r) 7−→ f̃(E) = (Ũf)(E) =

∫ ∞

0

drf(r)χ(r;E) , (4.2.53)

that brings D(H) onto the space

D(Ẽ) = {f̃(E) ∈ L2((0,∞), ρ(E)dE) |
∫ ∞

0

dE E2|f̃(E)|2ρ(E) <∞} . (4.2.54)

Eqs. (4.2.53) and (4.2.54) provide a ρ-diagonalization of H . If we seek a δ-diagonalization,
i.e., if we seek eigenfunctions that are δ-normalized, then the measure ρ(E) must be absorbed
by the eigenfunctions and by the wave functions.1 This is why we define

σ(r;E) :=
√
ρ(E)χ(r;E) , (4.2.55)

which is the eigensolution of the differential operator h that is δ-normalized, and

f̂(E) :=
√
ρ(E)f̃(E) , f̃(E) ∈ L2((0,∞), ρ(E)dE) , (4.2.56)

and construct the unitary operator

Û : L2((0,∞)), ρ(E)dE) 7−→ L2((0,∞), dE)

f̃ 7−→ f̂(E) = Û f̃(E) :=
√
ρ(E)f̃(E) . (4.2.57)

The operator that δ-diagonalizes our Hamiltonian is U := Û Ũ ,

U : L2([0,∞)), dr) 7−→ L2((0,∞), dE)

f 7−→ Uf := f̂ . (4.2.58)

1The meaning of the δ-normalization of the eigenfunctions will be explained in Section 4.2.9.
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The action of U can be written as an integral operator,

f̂(E) = (Uf)(E) =

∫ ∞

0

drf(r)σ(r;E) , f(r) ∈ L2([0,∞), dr) . (4.2.59)

The image of D(H) under the action of U is

D(Ê) := UD(H) = {f̂(E) ∈ L2((0,∞), dE) |
∫ ∞

0

E2|f̂(E)|2dE <∞} . (4.2.60)

Therefore, we have constructed a unitary operator

U : D(H) ⊂ L2([0,∞), dr) 7−→ D(Ê) ⊂ L2((0,∞), dE)

f 7−→ f̂ = Uf (4.2.61)

that transforms from the position representation into the energy representation. The op-
erator U diagonalizes our Hamiltonian in the sense that Ê ≡ UHU−1 is the multiplication
operator,

Ê : D(Ê) ⊂ L2((0,∞), dE) 7−→ L2((0,∞), dE)

f̂ 7−→ (Êf̂)(E) := Ef̂(E) . (4.2.62)

The inverse operator of U is given by (see Theorem 3 of Appendix 4.4.3)

f(r) = (U−1f̂)(r) =

∫ ∞

0

dE f̂(E)σ(r, E) , f̂(E) ∈ L2((0,∞), dE) . (4.2.63)

The operator U−1 transforms from the energy representation into the position representa-
tion.

The expressions (4.2.59) and (4.2.63) provide the eigenfunction expansion of any square
integrable function in terms of the eigensolutions σ(r;E) of h.

The unitary operator U can be looked at as a sort of generalized Fourier transform: the
Fourier transform connects the position and the momentum representations. U connects the
position and the energy representations. The role played by the plane waves e−ipx (which are
generalized eigenfunctions of the operator −id/dx) is here played by the σ(r;E) (which are
generalized eigenfunctions of the differential operator h). Therefore σ(r;E) ≡ 〈r|E〉, which
is the δ-normalized eigensolutions of the Schrödinger equation, can be viewed as “transition
elements” between the r- and the E-representations.

The label f of the functions in the position representation is different from the label f̂
of the functions in the energy representation because they have different functional depen-
dences. The same applies to the Hamiltonian H , the domains, etc. This is not the standard
practice in the physics literature, where different representations are usually identified and
labeled by the same symbol (see, for instance, [72, 54, 73, 15]).

We remark that the operator U that diagonalizes H is not unique. In fact, different
eigenkets, i.e., different boundary conditions imposed upon (4.2.7), lead to different opera-
tors U .
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4.2.5 The Need of the RHS

The Sturm-Liouville theory only provides a domain D(H) on which the Hamiltonian H is
self-adjoint and a unitary operator U that diagonalizes H . This unitary operator induces a
direct integral decomposition of the Hilbert space (see [4, 5]),

H 7−→ UH ≡ Ĥ = ⊕
∫

Sp(H)

H(E)dE

f 7−→ Uf ≡ {f̂(E)}, f̂(E) ∈ H(E) , (4.2.64)

where H is realized by L2([0,∞), dr), and Ĥ is realized by L2([0,∞), dE). The Hilbert
space H(E) associated to each energy eigenvalue of Sp(H) is realized by the Hilbert space

of complex numbers C. On Ĥ, the operator H acts as the multiplication operator,

Hf 7−→ UHf ≡ {Ef̂(E)} , f ∈ D(H) . (4.2.65)

The scalar product on Ĥ can be written as

(
f̂ , ĝ
)
Ĥ
=

∫

Sp(H)

(
f̂(E), ĝ(E)

)
E
dE , (4.2.66)

where the scalar product ( · , · )E on H(E) is the usual scalar product on C,

(
f̂(E), ĝ(E)

)
E
= f̂(E) ĝ(E) . (4.2.67)

As we shall explain below, the direct integral decomposition does not shelter some of the
basic requirements needed in Quantum Mechanics. These requirements can be sheltered by
the RHS.

One of the most important principles of Quantum Mechanics is that the quantity (ϕ,Hϕ)
should fit the experimental expectation value of the observable H in the state ϕ. However,
(ϕ,Hϕ) is not defined for every element in H, but only for those square normalizable wave
functions that are also in D(H). Therefore, not every square normalizable function can
represent a “physical wave function,” but only those that are (at least) in D(H). Another
fundamental assumption of quantum physics is that the quantity

dispϕH = (ϕ,H2ϕ)− (ϕ,Hϕ)2 (4.2.68)

represents the dispersion of the observable H in the state ϕ, and that

∆ϕH ≡
√

dispϕH (4.2.69)

represents the uncertainty of the observable H in the state ϕ. Since (4.2.68) and (4.2.69)
are only defined when ϕ is an element of D(H2) ⊂ D(H), not every element of D(H) can
be assigned to a “physical wave function,” but only those functions that are (at least) in
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D(H2). Therefore, we would like to find a subdomain Φ included in D(H) on which the
expectation values

(ϕ,Hnϕ) , n = 0, 1, 2, . . . , ϕ ∈ Φ (4.2.70)

are well-defined.
Another important requirement of Quantum Mechanics is that algebraic operations such

as the sum and multiplication of two operators are well-defined. In the HS formalism,
these algebraic operations are not always well-defined because the domains on which these
operators are self-adjoint do not remain stable under their actions in general. In fact,
much of the trouble of the HS formalism comes from domain questions. In our case, the
domain D(H) in (4.2.13) does not remain stable under H . We therefore would like to find
a subdomain Φ included in D(H) that remains stable under the action of H and all of its
powers,

Hn : Φ 7−→ Φ , n = 0, 1, 2, . . . (4.2.71)

One can see that if Eq. (4.2.71) holds, then the expectation values (4.2.70) are well-defined
for each ϕ in Φ, i.e., if the domain Φ remains stable under the action of H , then the
expectation values of H in any state ϕ ∈ Φ are well-defined.

In Quantum Mechanics, it is always assumed that for each E ∈ Sp(H) there is a Dirac
ket |E〉 such that

H×|E〉 = E|E〉 (4.2.72)

and such that the Dirac basis vector expansion (4.1.3) holds. Equation (4.2.72) has no
solution in the Hilbert space when E belongs to the continuous part of the spectrum of the
Hamiltonian. In fact, Eq. (4.2.72) has to be related to the equation

〈~x|H×|E〉 = E〈~x|E〉 , (4.2.73)

which in the radial representation reads

hσ(r;E) = Eσ(r;E) , (4.2.74)

where h is the differential operator (4.2.5) and σ(r;E) is the delta-normalized eigenfunction
(4.2.55). Since σ(r;E) ≡ 〈r|E〉 lies outside L2([0,∞), dr), i.e.,

∫ ∞

0

dr |σ(r;E)|2 =∞ , (4.2.75)

the corresponding eigenket |E〉, which is defined by

|E〉 : Φ 7−→ C

ϕ 7−→ 〈ϕ|E〉 :=
∫ ∞

0

ϕ(r)σ(r;E)dr , (4.2.76)

should also lie outside the Hilbert space. Actually, |E〉 is an element of Φ×.
In summary, what our mathematical framework should provide us with is:



154 4 A Rigged Hilbert Space of the Square Barrier Potential

1. a dense invariant domain on which all the powers of H and all the expectation values
(4.2.70) are well-defined,

2. smooth enough wave functions so that Eq. (4.2.72) holds,

3. Dirac basis vector expansion must follow.

In the direct integral decomposition formalism, there is not enough room for either of these
three requirements. This is why we introduce the RHS.

4.2.6 Construction of the Rigged Hilbert Space

The first step is to make all the powers of the Hamiltonian well-defined. In order to do so,
we construct the maximal invariant subspace D of the operator H ,

D :=
∞⋂

n=0

D(Hn) . (4.2.77)

The space D is the largest subspace of D(H) that remains stable under the action of the
Hamiltonian H and all of its powers. It is easy to check that

D = {ϕ ∈ L2([0,∞), dr) | hnϕ(r) ∈ L2([0,∞), dr), hnϕ(0) = 0, ϕ(n)(a) = ϕ(n)(b) = 0,

n = 0, 1, 2, . . . ; ϕ(r) ∈ C∞([0,∞))} . (4.2.78)

The conditions ϕ(n)(a) = ϕ(n)(b) = 0 in (4.2.78) come from taking the discontinuities of the
potential V (r) at r = a and at r = b into consideration (see [10]).

The second step is to find a subspace Φ on which the eigenkets |E〉 of H are well-defined
as antilinear functionals. For each E ∈ Sp(H), we associate a ket |E〉 to the generalized
eigenfunction σ(r;E) through

|E〉 : Φ 7−→ C

ϕ 7−→ 〈ϕ|E〉 :=
∫ ∞

0

ϕ(r)σ(r;E)dr = (Uϕ)(E) . (4.2.79)

As actual computations show, the ket |E〉 in (4.2.79) is a generalized eigenfunctional of H
if Φ is included in the maximal invariant subspace of H ,

Φ ⊂ D . (4.2.80)

Due to the non-square integrability of the eigenfunction σ(r;E), we need to impose further
restrictions on the elements of D in order to make the eigenfunctional |E〉 in Eq. (4.2.79)
continuous, ∫ ∞

0

dr |(r + 1)n(h+ 1)mϕ(r)|2 <∞, n,m = 0, 1, 2, . . . (4.2.81)
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The imposition of conditions (4.2.81) upon the space D leads to the space of test functions
of the square barrier potential,

Φ = {ϕ ∈ D |
∫ ∞

0

dr |(r + 1)n(h+ 1)mϕ(r)|2 <∞, n,m = 0, 1, 2, . . .} . (4.2.82)

On Φ, we define the family of norms

‖ϕ‖n,m :=

√∫ ∞

0

dr |(r + 1)n(h + 1)mϕ(r)|2 , n,m = 0, 1, 2, . . . (4.2.83)

The quantities (4.2.83) fulfill the conditions to be a norm (cf. Proposition 1 of Appendix 4.4.4)
and can be used to define a countably normed topology τΦ on Φ (see [5]),

ϕα
τΦ−−→

α→∞
ϕ iff ‖ϕα − ϕ‖n,m−−→

α→∞
0 , n,m = 0, 1, 2, . . . (4.2.84)

One can see that the space Φ is stable under the action of H and that H is τΦ-continuous
(cf. Proposition 2 of Appendix 4.4.4).

Once we have constructed the space Φ, we can construct its topological dual Φ× as the
space of τΦ-continuous antilinear functionals on Φ (see [5]) and therewith the RHS of the
square barrier potential (for l = 0)

Φ ⊂ L2([0,∞), dr) ⊂ Φ× . (4.2.85)

The ket |E〉 in Eq. (4.2.79) is a well-defined antilinear functional on Φ, i.e., |E〉 belongs
to Φ× (cf. Proposition 3 of Appendix 4.4.4). The ket |E〉 is a generalized eigenvector of the
Hamiltonian H (cf. Proposition 3 of Appendix 4.4.4),

H×|E〉 = E|E〉 , (4.2.86)

i.e.,
〈ϕ|H×|E〉 = 〈Hϕ|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ . (4.2.87)

On the space Φ, all the expectation values of the Hamiltonian and all the algebraic
operations involving H are well-defined, and the generalized eigenvalue equation (4.2.87)
holds. As we shall see in the next section, the functions ϕ of Φ can be expanded by a Dirac
basis vector expansion.

4.2.7 Dirac Basis Vector Expansion

We are now in a position to derive the Dirac basis vector expansion. This derivation consists
of the restriction of the Weyl-Kodaira expansions (4.2.59) and (4.2.63) to the space Φ. If
we denote 〈r|ϕ〉 ≡ ϕ(r) and 〈E|r〉 ≡ σ(r;E), and if we define the action of the left ket 〈E|
on ϕ ∈ Φ as 〈E|ϕ〉 := ϕ̂(E), then Eq. (4.2.59) becomes

〈E|ϕ〉 =
∫ ∞

0

dr 〈E|r〉 〈r|ϕ〉 , ϕ ∈ Φ . (4.2.88)
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If we denote 〈r|E〉 ≡ σ(r;E), then Eq. (4.2.63) becomes

〈r|ϕ〉 =
∫ ∞

0

dE 〈r|E〉 〈E|ϕ〉 , ϕ ∈ Φ . (4.2.89)

This equation is the Dirac basis vector expansion of the square barrier potential. In fact,
when we formally write (4.1.3) in the position representation, we get to (4.2.89).

In Eq. (4.2.89), the wave function 〈r|ϕ〉 is spanned in a “Fourier-type” expansion by the
eigenfunctions 〈r|E〉. In this expansion, each eigenfunction 〈r|E〉 is weighted by 〈E|ϕ〉 =
ϕ̂(E), which is the value of the wave function in the energy representation at the point
E. Thus any function ϕ(r) = 〈r|ϕ〉 of Φ can be written as a linear superposition of the
monoenergetic eigenfunctions σ(r;E) = 〈r|E〉.

Although the Weyl-Kodaira expansions (4.2.59) and (4.2.63) are valid for every element
of the Hilbert space, the Dirac basis vector expansions (4.2.88) and (4.2.89) are only valid
for functions ϕ ∈ Φ because only those functions fulfill both

ϕ̂(E) = 〈ϕ|E〉 (4.2.90)

and

〈ϕ|H×|E〉 = 〈Hϕ|E〉 = E〈ϕ|E〉 . (4.2.91)

Another way to rephrase the Dirac basis vector expansion is the Nuclear Spectral
(Gelfand-Maurin) Theorem. Instead of using the general statement of [5], we prove this theo-
rem using the machinery of the Sturm-Liouville theory (see Proposition 4 of Appendix 4.4.5).
The Nuclear Spectral Theorem allows us to write the scalar product of any two functions
ϕ, ψ of Φ in terms of the action of the kets |E〉 on ϕ, ψ:

(ϕ, ψ) =

∫ ∞

0

dE 〈ϕ|E〉〈E|ψ〉 , ∀ϕ, ψ ∈ Φ . (4.2.92)

It also allows us to write the matrix elements of the Hamiltonian and all of its powers
between two elements ϕ, ψ of Φ in terms of the action of the kets |E〉 on ϕ, ψ:

(ϕ,Hnψ) =

∫ ∞

0

dE En〈ϕ|E〉〈E|ψ〉 , ∀ϕ, ψ ∈ Φ , n = 1, 2, . . . (4.2.93)

4.2.8 Energy Representation of the RHS

In this section, we construct the energy representation of the RHS. Since the unitary operator
U transforms from the position representation into the energy representation, the action of
U on the RHS provides the energy representation of the RHS.

We have already shown that in the energy representation the Hamiltonian H acts as the
multiplication operator Ê. The energy representation of the space Φ is defined as

Φ̂ := UΦ . (4.2.94)
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It is very easy to see that Φ̂ is a linear subspace of L2([0,∞), dE). In oder to endow Φ̂ with

a topology τ
Φ̂
, we carry the topology on Φ into Φ̂,

τ
Φ̂
:= UτΦ . (4.2.95)

With this topology, the space Φ̂ is a linear topological space. If we denote the dual space
of Φ̂ by Φ̂×, then we have

U×Φ× = (UΦ)× = Φ̂× . (4.2.96)

If we denote |Ê〉 ≡ U×|E〉, then we can prove that |Ê〉 is the antilinear Schwartz delta

functional, i.e., |Ê〉 is the antilinear functional that associates to each function ϕ̂ the complex
conjugate of its value at the point E (see Proposition 5 of Appendix 4.4.6),

|Ê〉 : Φ̂ 7−→ C

ϕ̂ 7−→ 〈ϕ̂|Ê〉 := ϕ̂(E) . (4.2.97)

Therefore, the Schwartz delta functional appears in the (spectral) energy representation
of the RHS associated to the Hamiltonian. If we write the action of the Schwartz delta
functional as an integral operator, then the Dirac δ-function appears in the integrand of
that integral operator.

It is very helpful to show the different realizations of the RHS through the following
diagram:

H ; ϕ(r) Φ ⊂ L2([0,∞), dr) ⊂ Φ× |E〉 position repr.

↓ U ↓ U ↓ U×

Ê; ϕ̂(E) Φ̂ ⊂ L2([0,∞), dE) ⊂ Φ̂× |Ê〉 energy repr.

(4.2.98)

On the top line of the diagram (4.2.98), we have the RHS, the Hamiltonian, the wave
functions and the Dirac kets in the position representation. On the bottom line, we have
their energy representation counterparts.

4.2.9 Meaning of the δ-normalization of the Eigenfunctions

In this section, we show that the δ-normalization of the eigenfunctions is related to the
measure dµ(E) that is used to compute the scalar product of the wave functions in the
energy representation,

(ϕ, ψ) =

∫ ∞

0

ϕ(E)ψ(E)dµ(E) . (4.2.99)

We will see that if the measure in (4.2.99) is the Lebesgue measure dE, then the eigen-
functions are δ-normalized, and that if the measure is ρ(E)dE, then the eigenfunctions are
ρ-normalized.
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For the sake of simplicity, in this section we label the wave functions in the position and
in the energy representation with the same symbol. With this notation, Eq. (4.2.89) leads
to

ϕ(r) =

∫ ∞

0

dE ϕ(E)σ(r;E) , (4.2.100a)

ψ(r) =

∫ ∞

0

dE ψ(E)σ(r;E) . (4.2.100b)

Since ϕ(r), ψ(r) ∈ L2([0,∞), dr), their scalar product is well-defined,

(ϕ, ψ) =

∫ ∞

0

dr ϕ(r)ψ(r) . (4.2.101)

Plugging (4.2.100) into (4.2.101), we obtain

(ϕ, ψ) =

∫ ∞

0

dE

∫ ∞

0

dE ′ ϕ(E)ψ(E ′)

∫ ∞

0

dr σ(r;E)σ(r;E ′) . (4.2.102)

If we use the Lebesgue measure dE, then the scalar product (4.2.99) can be written as

(ϕ, ψ) =

∫ ∞

0

dE ϕ(E)ψ(E) . (4.2.103)

Comparison of (4.2.102) and (4.2.103) leads to
∫ ∞

0

dr σ(r;E)σ(r;E ′) = δ(E − E ′) , (4.2.104)

i.e., the eigenfunctions σ(r;E) are δ-normalized.
We now consider the case in which the eigenfunctions are ρ-normalized. If we use the

measure dµ(E) = ρ(E)dE, then the scalar product of ϕ and ψ is given by

(ϕ, ψ) =

∫ ∞

0

ϕρ(E)ψρ(E)ρ(E) dE , (4.2.105)

where ϕρ(E) := ϕ(E)/
√
ρ(E) and ψρ(E) := ψ(E)/

√
ρ(E). If we define σρ(r;E) :=

σ(r;E)/
√
ρ(E), then Eq. (4.2.100) leads to

ϕ(r) =

∫ ∞

0

ϕρ(E)σρ(r;E)ρ(E) dE , (4.2.106a)

ψ(r) =

∫ ∞

0

ψρ(E)σρ(r;E)ρ(E) dE . (4.2.106b)

Plugging Eq. (4.2.106) into (4.2.101), we obtain

(ϕ, ψ) =

∫ ∞

0

dE

∫ ∞

0

dE ′ ϕρ(E)ψρ(E
′)ρ(E)ρ(E ′)

∫ ∞

0

dr σρ(r;E)σρ(r;E
′) . (4.2.107)

Comparison of (4.2.107) and (4.2.105) leads to
∫ ∞

0

dr σρ(r;E)σρ(r;E
′) =

1

ρ(E)
δ(E − E ′) , (4.2.108)

i.e., the eigenfunctions σρ(r;E) are ρ-normalized.
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4.3 Conclusion to Chapter 4

In this chapter, we have constructed the Rigged Hilbert Space of the square barrier Hamil-
tonian

Φ ⊂ L2([0,∞), dr) ⊂ Φ× (4.3.1)

and its energy representation

Φ̂ ⊂ L2([0,∞), dE) ⊂ Φ̂× . (4.3.2)

The spectrum of the Hamiltonian H is the positive real semiaxis. For each value E of the
spectrum of H , we have constructed a Dirac ket |E〉 that is a generalized eigenfunctional of
H whose corresponding generalized eigenvalue is E. In the energy representation, |E〉 acts as
the antilinear Schwartz delta functional. On the space Φ, all algebraic operations involving
the HamiltonianH are well-defined. In particular, the expectation values of the Hamiltonian
in any element of Φ are well-defined. Any element of Φ can be expanded in terms of the
eigenkets |E〉 by a Dirac basis vector expansion. The elements of Φ are represented by well-
behaved functions in contrast to the elements of the Hilbert space which are represented by
sets of equivalent functions that can vary arbitrarily on any set of zero Lebesgue measure.
Therefore, it seems natural to conclude that a physically acceptable wave function is not
any element of the Hilbert space, but rather an element of the subspace Φ.

In our quest for the RHS of the square barrier potential, we have found a systematic
method to construct the RHS of a large class of spherically symmetric potentials:

1. Expression of the formal differential operator.

2. Hilbert spaceH of square integrable functions on which the formal differential operator
acts.

3. A domain D(H) of the Hilbert space on which the formal differential operator is
self-adjoint.

4. Green functions (resolvent) of this self-adjoint operator.

5. Diagonalization of the self-adjoint operator, eigenfunction expansion of the elements of
H in terms of the eigensolutions of the formal differential operator, and direct integral
decomposition of H induced by the self-adjoint operator.

6. Subspace Φ of D(H) on which all the expectation values of H are well-defined and on
which the Dirac kets act as antilinear functionals.

7. Rigged Hilbert space Φ ⊂ H ⊂ Φ×.
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4.4 Appendices to Chapter 4

4.4.1 Appendix 1: Self-Adjoint Extension

In this appendix, we list the possible self-adjoint extensions associated to the differential
operator h. We first need first some definitions (cf. [30]).

Definition 1 By AC2([0,∞)) we denote the space of all functions f which have a
continuous derivative in [0,∞), and for which f ′ is not only continuous but also absolutely
continuous over each compact subinterval of [0,∞). Thus f (2) exists almost everywhere,
and is integrable over any compact subinterval of [0,∞). At 0 f ′ is continuous from the
right.

The space AC2([0,∞)) is the largest space of functions on which the differential operator
h can be defined. In the case of the square barrier potential (4.2.3), if f(r) belongs to
AC2([0,∞)), then f(r) and f ′(r) are continuous at r = a and at r = b.

Definition 2 We define the spaces

H2
h([0,∞)) := {f ∈ AC2([0,∞)) | f, hf ∈ L2([0,∞), dr)} (4.4.1)

H2([0,∞)) := {f ∈ AC2([0,∞) | f, f (2) ∈ L2([0,∞), dr)} (4.4.2)

H2
0([0,∞)) := {f ∈ H2([0,∞)) | f vanishes outside some

compact subset of (0,∞)} . (4.4.3)

Using these spaces, we can define the necessary operators to calculate the self-adjoint
extensions associated to h.

Definition 3 If h is the formal differential operator (4.2.5), we define the operators
H0 and H1 on L2([0,∞), dr) by the formulas

D(H0) = H2
0([0,∞)), H0f := hf, f ∈ D(H0) . (4.4.4)

D(H1) = H2
h([0,∞)), H1f := hf, f ∈ D(H1) . (4.4.5)

The operators H0 and H1 are sometimes called the minimal and the maximal operators
associated to the differential operator h, respectively. The domain D(H1) is the largest
domain of the Hilbert space L2([0,∞), dr) on which the action of the differential operator
h can be defined and remains inside L2([0,∞), dr). Further, H†

0 = H1.
The self-adjoint extensions of H0 are given by the restrictions of the operator H1 to

domains determined by the conditions (see [30], page 1306)

f(0) + α f ′(0) = 0 , −∞ < α ≤ ∞ . (4.4.6)
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These boundary conditions lead to the domains

Dα(H) = {f ∈ D(H1) | f(0) + α f ′(0) = 0} , −∞ < α ≤ ∞ . (4.4.7)

On these domains, the formal differential operator h is self-adjoint. The boundary condition
that fits spherically symmetric potentials is f(0) = 0, i.e., α = 0. This condition selects our
domain (4.2.13),

D(H) = Dα=0(H) = {f ∈ D(H1) | f(0) = 0} . (4.4.8)

4.4.2 Appendix 2: Resolvent and Green Function

The following theorem provides the procedure to compute the Green function of the Hamil-
tonian H (cf. Theorem XIII.3.16 of Ref. [30]):

Theorem 1 Let H be the self-adjoint operator (4.2.14) derived from the real formal
differential operator (4.2.5) by the imposition of the boundary condition (4.2.11d). Let
ℑE 6= 0. Then there is exactly one solution χ(r;E) of (h − E)σ = 0 square-integrable
at 0 and satisfying the boundary condition (4.2.11d), and exactly one solution Θ(r;E) of
(h−E)σ = 0 square-integrable at infinity. The resolvent (E −H)−1 is an integral operator
whose kernel G(r, s;E) is given by

G(r, s;E) =





2m
~2

χ(r;E)Θ(s;E)
W (χ,Θ)

r < s

2m
~2

χ(s;E)Θ(r;E)
W (χ,Θ)

r > s ,
(4.4.9)

where W (χ,Θ) is the Wronskian of χ and Θ

W (χ,Θ) = χΘ′ − χ′Θ . (4.4.10)

If we define

k̃ :=

√
−2m

~2
E , (4.4.11a)

Q̃ :=

√
−2m

~2
(E − V0) , (4.4.11b)

then the functions J̃ (E) of Eq. (4.2.23) are given by

J̃1(E) =
1

2
e−Q̃a

[(
1 +

k̃

Q̃

)
ek̃a +

(
−1 + k̃

Q̃

)
e−k̃a

]
, (4.4.12a)

J̃2(E) =
1

2
eQ̃a

[(
1− k̃

Q̃

)
ek̃a +

(
−1− k̃

Q̃

)
e−k̃a

]
, (4.4.12b)
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J̃3(E) =
1

2
e−k̃b

[(
1 +

Q̃

k̃

)
eQ̃bJ̃1(E) +

(
1− Q̃

k̃

)
e−Q̃bJ̃2(E)

]
, (4.4.12c)

J̃4(E) =
1

2
ek̃b

[(
1− Q̃

k̃

)
eQ̃bJ̃1(E) +

(
1 +

Q̃

k̃

)
e−Q̃bJ̃2(E)

]
, (4.4.12d)

and the functions Ã(E) of Eq. (4.2.26) by

Ã3(E) =
1

2
e−Q̃b

(
1− k̃

Q̃

)
e−k̃b, (4.4.13a)

Ã4(E) =
1

2
eQ̃b

(
1 +

k̃

Q̃

)
e−k̃b, (4.4.13b)

Ã1(E) =
1

2
e−k̃a

[(
1 +

Q̃

k̃

)
eQ̃aÃ3(E) +

(
1− Q̃

k̃

)
e−Q̃aÃ4(E)

]
, (4.4.13c)

Ã2(E) =
1

2
ek̃a

[(
1− Q̃

k̃

)
eQ̃aÃ3(E) +

(
1 +

Q̃

k̃

)
e−
√

−λ̃aÃ4(E)

]
. (4.4.13d)

The expression for the Wronskian of χ̃ and Θ̃− is

W (χ̃, Θ̃−) = −2k̃J̃3(E) . (4.4.14)

If we define

k :=

√
2m

~2
E , (4.4.15a)

Q :=

√
2m

~2
(E − V0) , (4.4.15b)

then the functions J (E) of Eq. (4.2.28) are given by

J1(E) =
1

2
e−iQa

(
sin(ka) +

k

iQ
cos(ka)

)
, (4.4.16a)

J2(E) =
1

2
eiQa

(
sin(ka)− k

iQ
cos(ka)

)
, (4.4.16b)

J3(E) =
1

2
e−ikb

[(
1 +

Q

k

)
eiQbJ1(E) +

(
1− Q

k

)
e−iQbJ2(E)

]
, (4.4.16c)

J4(E) =
1

2
eikb

[(
1− Q

k

)
eiQbJ1(E) +

(
1 +

Q

k

)
e−iQbJ2(E)

]
, (4.4.16d)

and the functions A+(E) of Eq. (4.2.29) by

A+
3 (E) =

1

2
e−iQb

(
1 +

k

Q

)
eikb, (4.4.17a)
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A+
4 (E) =

1

2
eiQb

(
1− k

Q

)
eikb, (4.4.17b)

A+
1 (E) =

1

2
e−ika

[(
1 +

Q

k

)
eiQaA+

3 (E) +

(
1− Q

k

)
e−iQaA+

4 (E)

]
, (4.4.17c)

A+
2 (E) =

1

2
eika

[(
1− Q

k

)
eiQaA+

3 (E) +

(
1 +

Q

k

)
e−iQaA+

4 (E)

]
. (4.4.17d)

The Wronskian of χ and Θ+ is

W (χ,Θ+) = 2ikJ4(E) . (4.4.18)

The functions A−(E) of Eq. (4.2.31) are given by

A−
3 (E) =

1

2
e−iQb

(
1− k

Q

)
e−ikb, (4.4.19a)

A−
4 (E) =

1

2
eiQb

(
1 +

k

Q

)
e−ikb, (4.4.19b)

A−
1 (E) =

1

2
e−ika

[(
1 +

Q

k

)
eiQaA−

3 (E) +

(
1− Q

k

)
e−iQaA−

4 (E)

]
, (4.4.19c)

A−
2 (E) =

1

2
eika

[(
1− Q

k

)
eiQaA−

3 (E) +

(
1 +

Q

k

)
e−iQaA−

4 (E)

]
. (4.4.19d)

The Wronskian of χ and Θ− is

W (χ,Θ−) = −2ikJ3(E) . (4.4.20)

4.4.3 Appendix 3: Diagonalization and Eigenfunction Expansion

The theorem that provides the operator U that diagonalizes H is (cf. Theorem XIII.5.13 of
Ref. [30])

Theorem 2 (Weyl-Kodaira) Let h be the formally self-adjoint differential operator
(4.2.5) defined on the interval [0,∞). Let H be the self-adjoint operator (4.2.14). Let Λ be
an open interval of the real axis, and suppose that there is given a set σ1, σ2 of functions,
defined and continuous on (0,∞) × Λ, such that for each fixed E in Λ, σ1(·;E), σ2(·;E)
forms a basis for the space of solutions of hσ = Eσ. Then there exists a positive 2 × 2
matrix measure {ρij} defined on Λ, such that

1. the limit

[(Uf)i(E) = lim
c→0

lim
d→∞

[∫ d

c

f(r)σi(r;E)dr

]
(4.4.21)

exists in the topology of L2(Λ, {ρij}) for each f in L2([0,∞), dr) and defines an iso-
metric isomorphism U of E(Λ)L2([0,∞), dr) onto L2(Λ, {ρij});
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2. for each Borel function G defined on the real line and vanishing outside Λ,

UD(G(H)) = {[fi] ∈ L2(Λ, {ρij}) | [Gfi] ∈ L2(Λ, {ρij})} (4.4.22)

and

(UG(H)f)i(E) = G(E)(Uf)i(E), i = 1, 2, E ∈ Λ, f ∈ D(G(H)) . (4.4.23)

The theorem that provides the inverse of the operator U is (cf. Theorem XIII.5.14 of
Ref. [30])

Theorem 3 (Weyl-Kodaira) Let H , Λ, {ρij}, etc., be as in Theorem 2. Let E0 and E1

be the end points of Λ. Then

1. the inverse of the isometric isomorphism U of E(Λ)L2([0,∞), dr) onto L2(Λ, {ρij}) is
given by the formula

(U−1F )(r) = lim
µ0→E0

lim
µ1→E1

∫ µ1

µ0

(
2∑

i,j=1

Fi(E)σj(r;E)ρij(dE)

)
(4.4.24)

where F = [F1, F2] ∈ L2(Λ, {ρij}), the limit existing in the topology of L2([0,∞), dr);

2. if G is a bounded Borel function vanishing outside a Borel set e whose closure is
compact and contained in Λ, then G(H) has the representation

(G(H)f)(r) =

∫ ∞

0

f(s)K(H, r, s)ds , (4.4.25)

where

K(H, r, s) =

2∑

i,j=1

∫

e

G(E)σi(s;E)σj(r;E)ρij(dE) . (4.4.26)

The spectral measures are provided by the following theorem (cf. Theorem XIII.5.18 of
Ref. [30]):

Theorem 4 (Titchmarsh-Kodaira) Let Λ be an open interval of the real axis and O
be an open set in the complex plane containing Λ. Let σ1, σ2 be a set of functions which
form a basis for the solutions of the equation hσ = Eσ, E ∈ O, and which are continuous on
(0,∞)×O and analytically dependent on E for E in O. Suppose that the kernel G(r, s;E)
for the resolvent (E −H)−1 has a representation

G(r, s;E) =





∑2
i,j=1 θ

−
ij(E)σi(r;E)σj(s;E) r < s

∑2
i,j=1 θ

+
ij(E)σi(r;E)σj(s;E) r > s ,

(4.4.27)
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for all E in Re(H)∩O, and that {ρij} is a positive matrix measure on Λ associated with H
as in Theorem 2. Then the functions θ±ij are analytic in Re(H)∩O, and given any bounded
open interval (E1, E2) ⊂ Λ, we have for 1 ≤ i, j ≤ 2,

ρij((E1, E2)) = limδ→0 limǫ→0+
1

2πi

∫ E2−δ
E1+δ

[θ−ij(E − iǫ)− θ−ij(E + iǫ)]dE

= limδ→0 limǫ→0+
1

2πi

∫ E2−δ
E1+δ

[θ+ij(E − iǫ)− θ+ij(E + iǫ)]dE .

(4.4.28)

The functions B̃(E) of Eq. (4.2.32a) are given by

B̃3(E) =
1

2
e−Q̃b

(
1 +

k̃

Q̃

)
ek̃b, (4.4.29a)

B̃4(E) =
1

2
eQ̃b

(
1− k̃

Q̃

)
ek̃b, (4.4.29b)

B̃1(E) =
1

2
e−k̃a

[(
1 +

Q̃

k̃

)
eQ̃aB̃3(E) +

(
1− Q̃

k̃

)
e−Q̃aB̃4(E)

]
, (4.4.29c)

B̃2(E) =
1

2
ek̃a

[(
1− Q̃

k̃

)
eQ̃aB̃3(E) +

(
1 +

Q̃

k̃

)
e−Q̃aB̃4(E)

]
. (4.4.29d)

The functions C(E) of Eq. (4.2.39b) are given by

C1(E) =
1

2
e−iQa

(
cos(ka)− k

iQ
sin(ka)

)
, (4.4.30a)

C2(E) =
1

2
eiQa

(
cos(ka) +

k

iQ
sin(ka)

)
, (4.4.30b)

C3(E) =
1

2
e−ikb

[(
1 +

Q

k

)
eiQbC1(E) +

(
1− Q

k

)
e−iQbC2(E)

]
, (4.4.30c)

C4(E) =
1

2
eikb

[(
1− Q

k

)
eiQbC1(E) +

(
1 +

Q

k

)
e−iQbC2(E)

]
. (4.4.30d)

4.4.4 Appendix 4: Construction of the RHS

Proposition 1 The quantities

‖ϕ‖n,m :=

√∫ ∞

0

dr |(r + 1)n(h+ 1)mϕ(r)|2, n,m = 0, 1, 2, . . . , ϕ ∈ Φ , (4.4.31)

are norms.
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Proof It is very easy to show that the quantities (4.4.31) fulfill the conditions to be a
norm,

‖ϕ+ ψ‖n,m ≤ ‖ϕ‖n,m + ‖ψ‖n,m , (4.4.32a)

‖αϕ‖n,m = |α| ‖ϕ‖n,m , (4.4.32b)

‖ϕ‖n,m ≥ 0 , (4.4.32c)

If ‖ϕ‖n,m = 0, then ϕ = 0 . (4.4.32d)

The only condition that is somewhat difficult to prove is (4.4.32d): if ‖ϕ‖n,m = 0, then

(1 + r)n(h+ 1)mϕ(r) = 0 , (4.4.33)

which yields
(h + 1)mϕ(r) = 0 . (4.4.34)

If m = 0, then Eq. (4.4.34) implies ϕ(r) = 0. If m = 1, then Eq. (4.4.34) implies that −1 is
an eigenvalue of H whose corresponding eigenvector is ϕ. Since −1 is not an eigenvalue of
H , ϕ must be the zero vector. If m > 1, the proof is similar.

Proposition 2 The space Φ is stable under the action of H , and H is τΦ-continuous.

Proof In order to see that H is τΦ-continuous, we just have to realize that

‖Hϕ‖n,m = ‖(H + I)ϕ− ϕ‖n,m
≤ ‖(H + I)ϕ‖n,m + ‖ϕ‖n,m
= ‖ϕ‖n,m+1 + ‖ϕ‖n,m . (4.4.35)

We now prove that Φ is stable under the action of H . Let ϕ ∈ Φ. To say that ϕ ∈ Φ is
equivalent to say that ϕ ∈ D and that the norms ‖ϕ‖n,m are finite for every n,m = 0, 1, 2, . . .
Since Hϕ is also in D, and since the norms ‖Hϕ‖n,m are also finite (see Eq. (4.4.35)), the
vector Hϕ is also in Φ.

Proposition 3 The function

|E〉 : Φ 7−→ C

ϕ 7−→ 〈ϕ|E〉 :=
∫ ∞

0

ϕ(r)σ(r;E)dr = (Uϕ)(E) . (4.4.36)

is an antilinear functional on Φ that is a generalized eigenvector of (the restriction to Φ of)
H .

Proof From the definition (4.4.36), it is pretty easy to see that |E〉 is an antilinear
functional. In order to show that |E〉 is continuous, we define

M(E) := sup
r∈[0,∞)

|σ(r;E)| . (4.4.37)
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Since

|〈ϕ|E〉| = |Uϕ(E)|

=

∣∣∣∣
∫ ∞

0

dr ϕ(r)σ(r;E)

∣∣∣∣

≤
∫ ∞

0

dr |ϕ(r)||σ(r;E)|

≤ M(E)

∫ ∞

0

dr |ϕ(r)|

= M(E)

∫ ∞

0

dr
1

1 + r
(1 + r)|ϕ(r)|

≤ M(E)

(∫ ∞

0

dr
1

(1 + r)2

)1/2(∫ ∞

0

dr |(1 + r)ϕ(r)|2
)1/2

= M(E)

(∫ ∞

0

dr
1

(1 + r)2

)1/2

‖ϕ‖1,0
= M(E)‖ϕ‖1,0 , (4.4.38)

the functional |E〉 is continuous when Φ is endowed with the τΦ topology.
In order to prove that |E〉 is a generalized eigenvector ofH , we make use of the conditions

(4.2.78) and (4.2.81) satisfied the elements of Φ,

〈ϕ|H×|E〉 = 〈Hϕ|E〉

=

∫ ∞

0

dr

(
− ~2

2m

d2

dr2
+ V (r)

)
ϕ(r)σ(r;E)

= − ~2

2m

[
dϕ(r)

dr
σ(r;E)

]∞

0

+
~2

2m

[
ϕ(r)

dσ(r;E)

dr

]∞

0

+

∫ ∞

0

dr ϕ(r)

(
− ~2

2m

d2

dr2
+ V (r)

)
σ(r;E)

= E〈ϕ|E〉 . (4.4.39)

Similarly, one can also prove that

〈ϕ|(H×)n|E〉 = En〈ϕ|E〉 . (4.4.40)

4.4.5 Appendix 5: Dirac Basis Vector Expansion

Proposition 4 (Nuclear Spectral Theorem) Let

Φ ⊂ L2([0,∞), dr) ⊂ Φ× (4.4.41)

be the RHS of the square barrier Hamiltonian H such that Φ remains invariant under H
and H is a τΦ-continuous operator on Φ. Then, for each E in the spectrum of H there is a
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generalized eigenvector |E〉 such that

H×|E〉 = E|E〉 (4.4.42)

and such that

(ϕ, ψ) =

∫

Sp(H)

dE 〈ϕ|E〉〈E|ψ〉 , ∀ϕ, ψ ∈ Φ , (4.4.43)

and

(ϕ,Hnψ) =

∫

Sp(H)

dE En〈ϕ|E〉〈E|ψ〉 , ∀ϕ, ψ ∈ Φ , n = 1, 2, . . . (4.4.44)

Proof Let ϕ and ψ be in Φ. Since U is unitary,

(ϕ, ψ) = (Uϕ, Uψ) = (ϕ̂, ψ̂) . (4.4.45)

The wave functions ϕ̂ and ψ̂ are in particular elements of L2([0,∞), dE). Therefore their
scalar product is well-defined,

(ϕ̂, ψ̂) =

∫

Sp(H)

dE ϕ̂(E)ψ̂(E) . (4.4.46)

Since ϕ and ψ belong to Φ, the action of each eigenket |E〉 on them is well-defined,

〈ϕ|E〉 = ϕ̂(E) , (4.4.47a)

〈E|ψ〉 = ψ̂(E) . (4.4.47b)

Plugging Eq. (4.4.47) into Eq. (4.4.46) and Eq. (4.4.46) into Eq. (4.4.45), we get to Eq. (4.4.43).
The proof of (4.4.44) is similar:

(ϕ,Hnψ) = (Uϕ, UHnU−1Uψ)

= (φ̂, Ênψ̂)

=

∫

Sp(H)

dE ϕ̂(E)(Ênψ̂)(E)

=

∫

Sp(H)

dE Enϕ̂(E)ψ̂(E)

=

∫

Sp(H)

dE En〈ϕ|E〉〈E|ψ〉 . (4.4.48)

4.4.6 Appendix 6: Energy Representation of the RHS

Proposition 5 The energy representation |Ê〉 of the eigenket |E〉 is the antilinear Schwartz
delta functional.
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Proof Since

〈ϕ̂|U×|E〉 = 〈U−1ϕ̂|E〉
= 〈ϕ|E〉

=

∫ ∞

0

ϕ(r)σ(r;E)dr

= ϕ̂(E) , (4.4.49)

the functional U×|E〉 = |Ê〉 is the antilinear Schwartz delta functional.





Chapter 5

Scattering off the Square Barrier
Potential

In this chapter, we turn to the description of the Lippmann-Schwinger equation within the
RHS formalism. The Lippmann-Schwinger eigenfunctions will be computed first. We shall
define the Lippmann-Schwinger eigenkets in terms of these eigenfunctions and see that they
act on different spaces of wave functions. The Lippmann-Schwinger kets will be used as
basis vectors to expand the wave functions. The Møller operators and the S-matrix will be
explicitly constructed.

It is so hard to be good!

Thales of Miletus

171
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5.1 Introduction

In the previous chapter, we constructed a RHS of the square barrier potential. The RHS was
meant to incorporate certain boundary conditions imposed upon the Schrödinger equation:

Schrödinger equation
+

boundary conditions
−→ Φ ⊂ H ⊂ Φ×.

The Hilbert space H was needed to incorporate the requirement that the wave functions be
square integrable. The space Φ× was needed to incorporate the Dirac kets associated to the
eigenfunctions of the time independent Schrödinger equation subject to certain boundary
conditions. The space Φ was needed to incorporate the wave functions on which the Dirac
kets act as continuous antilinear functionals. The space Φ was identified with the space of
physically preparable wave functions, because in Φ all of the algebraic operations and all of
the expectation values are well defined.

In this chapter, we consider the problem of scattering off the square barrier potential.
Loosely speaking, we send a beam of prepared initial in-states ϕin towards the square barrier
potential. After the collision takes place, the in-state ϕin becomes ϕout. We then measure
the probability to find a final out-state ψout. The amplitude of this probability is given by
the following scalar product:

(ψout, ϕout) = (ψout, Sϕin) , (5.1.1)

where S is the S-matrix. The canonical understanding is that the initial in-states ϕin and
the final out-states ψout are asymptotic forms of the so-called in-state vector ϕ+ and out-
state vector ψ− in the remote past and in the distant future, respectively. In terms of these,
the probability amplitude (5.1.1) can be written as

(ψ−, ϕ+) . (5.1.2)

The asymptotic states ϕin and ψout are related to the “exact” states ϕ+ and ψ− by the
so-called Møller operators:

Ω+ϕ
in = ϕ+ , (5.1.3a)

Ω−ψ
out = ψ− . (5.1.3b)

Along with the (total) Hamiltonian H , it is customary to consider another “free” Hamil-
tonian H0, which is assumed to differ from H by the (square barrier) potential V ,

H = H0 + V . (5.1.4)

The potential V represents the interaction between the components of the initial prepared
states, for instance, the interaction between the in-going beam and the target. The canonical
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understanding is that the initial in-state ϕin and the final out-state ψout evolve under the
influence of the free Hamiltonian H0, whereas the in-state ϕ+ and the out-state ψ− evolve
under the influence of the (total) Hamiltonian H .

The dynamics of a scattering system is therefore governed by the Schrödinger equation
subject to certain boundary conditions. These boundary conditions specify what is “in”
and what is “out.”

The Lippmann-Schwinger equation for the in- and out-kets |E±〉 has the scattering
boundary conditions built into it. As we shall see, the Lippmann-Schwinger equation tells
us what is “in” and what is “out” by specifying certain analytical properties of its solutions.
The analytical properties satisfied by the in-ket |E+〉 (or, equivalently, by the wave function
〈ϕ+|E+〉) are different to those satisfied by the out-ket |E−〉 (or, equivalently, by the wave
function 〈ψ−|E−〉). In incorporating these two different types of boundary conditions into
a RHS framework, we will end up constructing two different RHSs:

Φ± ⊂ H ⊂ Φ×
± . (5.1.5)

On our way, we will also construct the Møller operators and the S-matrix, and we will
express the matrix element (5.1.2) in terms of the in- and out-Lippmann-Schwinger kets:

(ψ−, ϕ+) =

∫ ∞

0

dE 〈ψ−|E−〉S(E)〈+E|ϕ+〉 . (5.1.6)

This expression will be used to derive the complex basis vector expansion in Chapter 6.

5.2 Lippmann-Schwinger Equation

5.2.1 Lippmann-Schwinger Kets

One of the fundamental equations of scattering theory is the Lippmann-Schwinger equation,1

|E±〉 = |E〉+ 1

E −H0 ± iǫ
V |E±〉 . (5.2.1)

This equation is also written as

|E±〉 = |E〉+ 1

E −H ± iǫV |E〉 . (5.2.2)

In Eqs. (5.2.1) and (5.2.2), the kets |E±〉 represent generalized eigenvector of the total
Hamiltonian H ,

H×|E±〉 = E|E±〉 , (5.2.3)

whereas |E〉 represents a generalized eigenvector of the free Hamiltonian H0,

H×
0 |E〉 = E|E〉 . (5.2.4)

1In this chapter, the symbol |E〉 will denote the generalized eigenket of the free Hamiltonian that appears
in the Lippmann-Schwinger equation (5.2.1), and not an eigenket of the total Hamiltonian as in Chapter 4.
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5.2.2 Radial Representation of the Lippmann-Schwinger Equa-

tion

Since our square barrier potential is spherically symmetric, we shall work in the radial
representation. In this representation and for l = 0, H0 acts as the formal differential
operator h0,

H0f(r) = h0f(r) = −
~2

2m

d2

dr2
f(r) , (5.2.5)

V acts as multiplication by the square barrier potential V (r),

V (r) =





0 0 < r < a
V0 a < r < b
0 b < r <∞ ,

(5.2.6)

and H acts as the formal differential operator h,

Hf(r) = hf(r) =

(
− ~2

2m

d2

dr2
+ V (r)

)
f(r) . (5.2.7)

In the radial representation, Eqs. (5.2.1) and (5.2.2) become

〈r|E±〉 = 〈r|E〉+ 〈r| 1

E −H0 ± iǫ
V |E±〉 , (5.2.8a)

〈r|E±〉 = 〈r|E〉+ 〈r| 1

E −H ± iǫV |E〉 . (5.2.8b)

In Eq. (5.2.8), the quantities 〈r|E〉 are eigenfunctions of the formal differential operator h0,

h0〈r|E〉 = −
~2

2m

d2

dr2
〈r|E〉 = E〈r|E〉 , (5.2.9)

whereas the quantities 〈r|E±〉 are eigenfunctions of the formal differential operator h satis-
fying proper boundary conditions (that we will specify later),

h〈r|E±〉 =
(
− ~2

2m

d2

dr2
+ V (r)

)
〈r|E±〉 = E〈r|E±〉 . (5.2.10)

In the absence of potential, the Lippmann-Schwinger eigenfunctions tend to the free Hamil-
tonian eigenfunctions,

lim
V0→0
〈r|E±〉 = 〈r|E〉 . (5.2.11)

The generalized eigenvectors |E〉 of H0 and the eigenfunctions 〈r|E〉 of h0 are related by

〈ϕ|E〉 =
∫ ∞

0

dr 〈ϕ|r〉〈r|E〉 . (5.2.12)
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The generalized eigenvectors |E±〉 of H and the eigenfunctions 〈r|E±〉 of h are related by

〈ϕ+|E+〉 = lim
ǫ→0

∫ ∞

0

dr 〈ϕ+|r〉〈r|(E + iǫ)+〉 , ϕ+ ∈ Φ− , (5.2.13a)

〈ψ−|E−〉 = lim
ǫ→0

∫ ∞

0

dr 〈ψ−|r〉〈r|(E − iǫ)−〉 , ψ− ∈ Φ+ . (5.2.13b)

The wave functions ϕ+ are usually called in-states, whereas the the wave functions ψ− are
called out-states. However, we shall call the ψ− observables (or out-observables), because
they are determined by the registration apparatus. In order to grasp the meaning of this ter-
minology, let us consider the matrix element (ψ−, ϕ+). This scalar product is the amplitude
of the probability to observe the out-state ψ− in the in-state ϕ+. Since ψ− is determined by
the property we want to measure, it stands to reason that we call it observable and denote
it by a specific symbol.

The action of the Lippmann-Schwinger kets is defined as the limits in (5.2.13). We are
now going to elaborate on that definition.

The difference between the in-states and the observables is reflected not only in the
notation, but also in the fact that they belong to different subspaces of the Hilbert space.
The reason for this is the following:2 the boundary conditions built into the Lippmann-
Schwinger equation for the in-ket |E+〉 (or, equivalently, for the eigenfunction 〈r|E+〉) are
different to the boundary conditions for the ket |E−〉 (or, equivalently, for the eigenfunction
〈r|E−〉). Since the boundary conditions determine the space of test functions on which the
kets act, the in-ket |E+〉 acts on a space Φ−, and the out-ket |E−〉 acts on a space Φ+,
which is different to Φ−.

The difference in the boundary conditions for the in- an out-kets is built into the ±iǫ of
Eq. (5.2.1). The meaning of the ±iǫ is that we are approaching the cut (i.e., the spectrum
of H) either from above (+iǫ) or from below (−iǫ). Therefore, the action of the Lippmann-
Schwinger kets |E±〉 should be viewed as the limit of the action of certain kets |(E ± iǫ)±〉
that have meaning when ǫ 6= 0,

|(E ± iǫ)±〉−−→
ǫ→0
|E±〉 . (5.2.14)

If we want this limit process to be well-defined, the following integrals should be well-
defined:

〈ϕ+|(E + iǫ)+〉 =
∫ ∞

0

dr 〈ϕ+|r〉〈r|(E + iǫ)+〉 , ϕ+ ∈ Φ− , (5.2.15a)

〈ψ−|(E − iǫ)−〉 =
∫ ∞

0

dr 〈ψ−|r〉〈r|(E − iǫ)−〉 , ψ− ∈ Φ+ . (5.2.15b)

Thus the action of the Lippmann-Schwinger kets, that has to be viewed as the limit of the
action of the kets (5.2.15) when ǫ tends to zero, would be defined by

〈ϕ+|E+〉 = lim
ǫ→0
〈ϕ+|(E + iǫ)+〉 , ϕ+ ∈ Φ− , (5.2.16a)

〈ψ−|E−〉 = lim
ǫ→0
〈ψ−|(E − iǫ)−〉 , ψ− ∈ Φ+ . (5.2.16b)

2For a mathematical approach to this question in terms of RHSs of Hardy functions see Ref. [31].
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In addition, we would like our spaces Φ± to be stable under the action of the Hamiltonian.
This is why we should also impose the following conditions:

(E + iǫ)n〈ϕ+|(E + iǫ)+〉 =
∫ ∞

0

dr 〈Hnϕ+|r〉〈r|(E + iǫ)+〉 , ϕ+ ∈ Φ− , (5.2.17a)

(E − iǫ)n〈ψ−|(E − iǫ)−〉 =
∫ ∞

0

dr 〈Hnψ−|r〉〈r|(E − iǫ)−〉 , ψ− ∈ Φ+ , (5.2.17b)

for every n = 0, 1, 2, . . . In the position representation, the conditions (5.2.17) should lead
to restrictions in the asymptotic behavior of the wave functions ϕ+(r) and ψ−(r). In the
energy representation, the conditions (5.2.17) should lead to analytical properties of the

wave functions ϕ̂+(E) and ψ̂−(E).
The precise connection between the conditions satisfied by ϕ+(r) (ψ−(r)) and those

satisfied by ϕ̂+(E) (ψ̂−(E)) is still an open problem. Our guess is that ϕ̂+(E) will be the

limit value of a Hardy class function from below, and that ψ̂−(E) will be the limit value of a
Hardy class function from above (cf. Appendix 5.5.2 for the definition and general properties
of Hardy class functions).

5.2.3 Solution of the Radial Lippmann-Schwinger Equation

Instead of solving the integral equations (5.2.8), we solve the equivalent differential equations

h〈r|E±〉 =
(
− ~2

2m

d2

dr2
+ V (r)

)
〈r|E±〉 = E〈r|E±〉 (5.2.18)

subject to the boundary conditions that are built into the integral equations (5.2.8). These
boundary conditions are

〈0|E±〉 = 0 , (5.2.19a)

〈r|E±〉 is continuous at r = a and at r = b , (5.2.19b)

d

dr
〈r|E±〉 is continuous at r = a and at r = b , (5.2.19c)

lim
V0→0
〈r|E±〉 = 〈r|E〉 , (5.2.19d)

〈r|E+〉 ∼ e−ikr − S(E)eikr as r →∞ , (5.2.19e)

〈r|E−〉 ∼ eikr − S∗(E)e−ikr as r →∞ , (5.2.19f)

where

k =

√
2m

~2
E (5.2.20)

and S(E) is the S-matrix in the energy representation.
It is well-known (cf. [72, 73]) that the in- and out-eigenfunctions are given by

χ±(r;E) =
χ(r;E)

J±(E)
, (5.2.21)
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where χ(r;E) is the eigenfunction (4.2.28),

χ(r;E) =





sin(
√

2m
~2
Er) 0 < r < a

J1(E)e
i
√

2m
~2

(E−V0)r + J2(E)e
−i

√
2m
~2

(E−V0)r a < r < b

J3(E)e
i
√

2m
~2
Er

+ J4(E)e
−i

√
2m
~2
Er

b < r <∞ ,

(5.2.22)

and J±(E) are the Jost functions,

J+(E) = −2iJ4(E) , (5.2.23a)

J−(E) = 2iJ3(E) . (5.2.23b)

In terms of the Jost functions, the S-matrix is given by

S(E) =
J−(E)

J+(E)
. (5.2.24)

From Eq. (5.2.21) it follows that the in- and out-eigenfunctions are proportional to each
other,

χ+(r;E) = S(E)χ−(r;E) . (5.2.25)

It is worthwhile noting that the boundary condition that singles out the in- and out-
Lippmann-Schwinger eigenfunctions is their asymptotic behavior at infinity as functions
of r (see Eqs. (5.2.19e) and (5.2.19f)). That asymptotic behavior is transfered into the
energy representation as a certain analytical property of the eigenfunction χ±(r;E) as a
function of E. Since the boundary conditions satisfied by the elements of the space of
test functions are related to the boundary conditions satisfied by the eigenfunctions of the
Schrödinger equation, it seems reasonable to expect that the boundary conditions that
single out the ϕ+(r) and the ψ−(r) are related to their asymptotic behavior, and that
this asymptotic behavior is transfered into the energy representation as a condition on the
analytical properties of the wave functions ϕ̂+(E) and ψ̂−(E).

5.2.4 Direct Integral Decomposition Associated to the In-States

Once we have obtained the in-Lippmann-Schwinger eigenfunction, we can construct the
direct integral decomposition induced by it. In order to do so, we follow the procedure of
Section 4.2.4.

The domain D(H) on which the formal differential operator h is self-adjoint was obtained
in Section 4.2.2,

D(H) = {f(r) | f(r), hf(r) ∈ L2([0,∞), dr), f(r) ∈ AC2[0,∞), f(0) = 0} . (5.2.26)

As we saw in Section 4.2.2, this domain induces a self-adjoint operator H ,

(Hf)(r) := hf(r) =

(
− ~2

2m

d2

dr2
+ V (r)

)
f(r) , f(r) ∈ D(H) . (5.2.27)



5.2 Lippmann-Schwinger Equation 179

The spectrum of H is [0,∞) (cf. Section 4.2.4).
It is worthwhile noting that the space Φ− associated to the in-Lippmann-Schwinger

eigenfunction χ+(r;E) will be a subspace of D(H). In fact, it will be a subspace of the
maximal invariant subspace of H . However, the space Φ− will be different to the space Φ
of Chapter 4, because the boundary conditions fulfilled by the elements of Φ− are different
to the boundary conditions fulfilled by the elements of Φ.

The Green function of H was computed in Section 4.2.3 for different regions of the
complex plane. Since we want to expand the wave functions in terms of the eigenfunction
χ+(r;E), we write the Green function in terms of χ+(r;E). From Eqs.(4.2.27) and (5.2.21),
we can see that

G(r, s;E) =





− 2m/~2√
2m/~2 E

χ+(r;E) Θ+(s;E) r < s

− 2m/~2√
2m/~2 E

χ+(s;E) Θ+(r;E) r > s
ℜ(E) > 0, ℑ(E) > 0 . (5.2.28)

From Eqs. (4.2.30) and (5.2.21), we can see that

G(r, s;E) =





− 2m/~2√
2m/~2 E

χ−(r;E) Θ−(s;E) r < s

− 2m/~2√
2m/~2 E

χ−(s;E) Θ−(r;E) r > s
ℜ(E) > 0, ℑ(E) < 0 . (5.2.29)

We are now in a position to compute the generalized Fourier transform U+ induced by
the Lippmann-Schwinger eigenfunction χ+(r;E). In order to be able to apply Theorem 4
of Section 4.4.3, we choose the following basis for the space of solutions of hσ = Eσ that is
continuous on (0,∞)× Λ and analytically dependent on E:

σ1(r;E) = χ+(r;E) , (5.2.30a)

σ2(r;E) =





cos(
√

2m
~2
Er) 0 < r < a

C1(E)ei
√

2m
~2

(E−V0)r + C2(E)e−i
√

2m
~2

(E−V0)r a < r < b

C3(E)ei
√

2m
~2
Er

+ C4(E)e−i
√

2m
~2
Er

b < r <∞ .

(5.2.30b)

The functions C1 − C4 are given by Eq. (4.4.30) of Appendix 4.4.3.
Eqs. (4.2.29), (4.2.31) and (5.2.30) lead to

Θ+(r;E) =
2iJ4(E)C4(E)

W (E)
σ1(r;E) +

J4(E)

W (E)
σ2(r;E) (5.2.31)

and to

Θ−(r;E) = −
2iJ4(E)C3(E)

W (E)
σ1(r;E)−

J3(E)

W (E)
σ2(r;E) , (5.2.32)

where
W (E) = J4(E)C3(E)− J3(E)C4(E) . (5.2.33)
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By substituting Eq. (5.2.31) into Eq. (5.2.28) we get to

G(r, s;E) = − 2m/~2

√
2m/~2E

[
2iJ4(E)C4(E)

W (E)
σ1(r;E) +

J4(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) > 0 , r > s . (5.2.34)

By substituting Eq. (5.2.32) into Eq. (5.2.29) we get to

G(r, s;E) =
2m/~2

√
2m/~2E

J4(E)

J3(E)

[
−2iJ4(E)C3(E)

W (E)
σ1(r;E)−

J3(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) < 0 , r > s , (5.2.35)

where we have used the fact that

χ−(r;E) = −J4(E)

J3(E)
χ+(r;E) . (5.2.36)

Since

σ1(s;E) = −
J4(E)

J3(E)
σ1(s;E) , (5.2.37)

Eq. (5.2.34) leads to

G(r, s;E) =
2m/~2

√
2m/~2E

1

W (E)

[
2iJ3(E)C4(E)σ1(r;E)σ1(s;E) + J3(E)σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) > 0 , r > s , (5.2.38)

and Eq. (5.2.35) leads to

G(r, s;E) =
2m/~2

√
2m/~2E

1

W (E)

[
2iJ4(E)C3(E)σ1(r;E)σ1(s;E) + J3(E)σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) < 0 , r > s . (5.2.39)

The expression of the resolvent in terms of the basis σ1, σ2 can be written as (see Theorem 4
in Appendix 4.4.3)

G(r, s;E) =

2∑

i,j=1

θ+ij(E)σi(r;E)σj(s;E) , r > s . (5.2.40)

By comparing (5.2.40) to (5.2.38) we get to

θ+ij(E) =




2m/~2√
2m/~2 E

2iJ3(E)C4(E)
W (E)

0

2m/~2√
2m/~2 E

J3(E)
W (E)

0


 , ℜ(E) > 0 , ℑ(E) > 0 . (5.2.41)
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By comparing (5.2.40) to (5.2.39) we get to

θ+ij(E) =




2m/~2√
2m/~2 E

2iJ4(E)C3(E)
W (E)

0

2m/~2√
2m/~2 E

J3(E)
W (E)

0


 , ℜ(E) > 0 , ℑ(E) < 0 . (5.2.42)

From Eqs. (5.2.41) and (5.2.42) we can see that the measures ρ12, ρ21 and ρ22 in Theorem 4
of Appendix 4.4.3 are zero and that the measure ρ11 is given by

ρ11((E1, E2)) = lim
δ→0

lim
ǫ→0+

1

2πi

∫ E2−δ

E1+δ

[
θ+11(E − iǫ)− θ+11(E + iǫ)

]
dE

=

∫ E2

E1

1

π

2m/~2

√
2m/~2E

dE , (5.2.43)

which leads to

ρ+(E) ≡ ρ11(E) =
1

π

2m/~2

√
2m/~2E

, E ∈ (0,∞) . (5.2.44)

By Theorem 2 of Appendix 4.4.3, there is a unitary map Ũ+ defined by

Ũ+ : L2([0,∞), dr) 7−→ L2((0,∞), ρ+(E)dE)

f(r) 7−→ f̃(E) = (Ũ+f)(E) =

∫ ∞

0

drf(r)χ+(r;E) , (5.2.45)

that brings D(H) onto the space

D(Ẽ) = {f̃(E) ∈ L2((0,∞), ρ+(E)dE) |
∫ ∞

0

dE E2|f̃(E)|2ρ+(E) <∞} . (5.2.46)

Eqs. (5.2.45) and (5.2.46) provide a ρ+-diagonalization of H . If we seek a δ-diagonalization,
then the measure ρ+(E) must be absorbed by the eigenfunctions

σ+(r;E) :=
√
ρ+(E)χ+(r;E) , (5.2.47)

and by the wave functions

f̂(E) :=
√
ρ+(E)f̃(E) , f̃(E) ∈ L2((0,∞), ρ+(E)dE) . (5.2.48)

The function σ+(r;E) is the eigensolution of the Lippmann-Schwinger equation (5.2.8) that
is δ-normalized. Using Eq. (5.2.48) we can construct the unitary operator

Û+ : L2((0,∞)), ρ+(E)dE) 7−→ L2((0,∞), dE)

f̃ 7−→ f̂(E) = (Û+f̃)(E) :=
√
ρ+(E)f̃(E) . (5.2.49)

The operator that δ-diagonalizes our Hamiltonian is U+ := Û+Ũ+,

U+ : L2([0,∞)), dr) 7−→ L2((0,∞), dE)

f 7−→ U+f := f̂ . (5.2.50)
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The action of U+ can be written as an integral operator,

f̂(E) = (U+f)(E) =

∫ ∞

0

drf(r)σ+(r;E) , f(r) ∈ L2([0,∞), dr) . (5.2.51)

The image of D(H) under the action of U+ is

D(Ê) := U+D(H) = {f̂(E) ∈ L2((0,∞), dE) |
∫ ∞

0

E2|f̂(E)|2dE <∞} . (5.2.52)

Therefore, we have constructed a unitary operator

U+ : D(H) ⊂ L2([0,∞), dr) 7−→ D(Ê) ⊂ L2((0,∞), dE)

f 7−→ f̂ = U+f (5.2.53)

that transforms from the position representation into the energy representation. The oper-
ator U+ diagonalizes H , i.e., Ê ≡ U+HU

−1
+ is the multiplication operator,

Ê : D(Ê) ⊂ L2((0,∞), dE) 7−→ L2((0,∞), dE)

f̂ 7−→ Êf̂(E) := Ef̂(E) . (5.2.54)

The inverse operator of U+ is given by (see Theorem 3 of Appendix 4.4.3)

f(r) = U−1
+ f̂(r) =

∫ ∞

0

dE f̂(E)σ+(r, E) , f̂(E) ∈ L2((0,∞), dE) . (5.2.55)

The operator U−1
+ transforms from the energy representation into the position representa-

tion.

The expressions (5.2.51) and (5.2.55) provide the eigenfunction expansion of any wave
function in terms of the δ-normalized eigensolutions σ+(r;E) of the Lippmann-Schwinger
equation.

The unitary operator U+ can be also looked at as a sort of generalized Fourier transform
that connects the position and the energy representations. The eigenfunctions σ+(r;E) can
be viewed as “transition elements” between the r- and the E-representations.

Thus we have constructed the direct integral decomposition of the Hilbert space associ-
ated to the eigenfunction χ+(r;E) of the Lippmann-Schwinger equation,

H 7−→ U+H ≡ Ĥ = ⊕
∫

Sp(H)

H(E)dE

f 7−→ U+f ≡ {f̂(E)}, f ∈ D(H) , f̂(E) ∈ H(E) . (5.2.56)

In Eq. (5.2.56), the Hilbert spaces H, Ĥ and H(E) are the same as in Eq. (4.2.64).
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5.2.5 Direct Integral Decomposition Associated to the Observ-

ables

In this section, we compute the unitary operator U− induced by the Lippmann-Schwinger
eigenfunction χ−(r;E). Since the computations are very similar to the computations per-
formed in Section 5.2.4 for the in-states, we will restrict the explanations to the minimum
and just write down the results.

The functions

σ1(r;E) = χ−(r;E) , (5.2.57a)

σ2(r;E) =





cos(
√

2m
~2
Er) 0 < r < a

C1(E)ei
√

2m
~2

(E−V0)r + C2(E)e−i
√

2m
~2

(E−V0)r a < r < b

C3(E)ei
√

2m
~2
Er

+ C4(E)e−i
√

2m
~2
Er

b < r <∞ .

(5.2.57b)

form a basis for the space of solutions of hσ = Eσ that is continuous on (0,∞)×Λ and ana-
lytically dependent on E. Therefore, we are allowed to apply Theorem 4 of Appendix 4.4.3.

Eqs. (4.2.29), (4.2.31) and (5.2.57) lead to

Θ+(r;E) = −
2iJ3(E)C4(E)

W (E)
σ1(r;E) +

J4(E)

W (E)
σ2(r;E) (5.2.58)

and to

Θ−(r;E) =
2iJ3(E)C3(E)

W (E)
σ1(r;E)−

J3(E)

W (E)
σ2(r;E) , (5.2.59)

where
W (E) = J4(E)C3(E)− J3(E)C4(E) . (5.2.60)

By substituting Eq. (5.2.58) into Eq. (5.2.28) we get to

G(r, s;E) =
2m/~2

√
2m/~2E

J3(E)

J4(E)

[
−2iJ3(E)C4(E)

W (E)
σ1(r;E) +

J4(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) > 0 , r > s . (5.2.61)

By substituting Eq. (5.2.59) into Eq. (5.2.29) we get to

G(r, s;E) = − 2m/~2

√
2m/~2E

[
2iJ3(E)C3(E)

W (E)
σ1(r;E)−

J3(E)

W (E)
σ2(r;E)

]
σ1(s;E) ,

ℜ(E) > 0,ℑ(E) < 0 , r > s . (5.2.62)

Since

σ1(s;E) = −
J3(E)

J4(E)
σ1(s;E) , (5.2.63)
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Eq. (5.2.61) leads to

G(r, s;E) =
2m/~2

√
2m/~2E

1

W (E)

[
2iJ3(E)C4(E)σ1(r;E)σ1(s;E)− J4(E)σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) > 0 , r > s , (5.2.64)

and Eq. (5.2.62) leads to

G(r, s;E) =
2m/~2

√
2m/~2E

1

W (E)

[
2iJ4(E)C3(E)σ1(r;E)σ1(s;E)− J4(E)σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) < 0 , r > s . (5.2.65)

The expression of the resolvent in terms of the basis σ1, σ2 can be written as (see Theorem 4
in Appendix 4.4.3)

G(r, s;E) =
2∑

i,j=1

θ+ij(E)σi(r;E)σj(s;E) , r > s . (5.2.66)

By comparing (5.2.66) to (5.2.64) we get to

θ+ij(E) =




2m/~2√
2m/~2 E

2iJ3(E)C4(E)
W (E)

0

− 2m/~2√
2m/~2 E

J4(E)
W (E)

0


 , ℜ(E) > 0 , ℑ(E) > 0 . (5.2.67)

By comparing (5.2.66) to (5.2.65) we get to

θ+ij(E) =




2m/~2√
2m/~2 E

2iJ4(E)C3(E)
W (E)

0

− 2m/~2√
2m/~2 E

J4(E)
W (E)

0


 , ℜ(E) > 0 , ℑ(E) < 0 . (5.2.68)

From Eqs. (5.2.67) and (5.2.68) we can see that the measures ρ12, ρ21 and ρ22 in Theorem 4
of Appendix 4.4.3 are zero and that the measure ρ11 is given by

ρ11((E1, E2)) = lim
δ→0

lim
ǫ→0+

1

2πi

∫ E2−δ

E1+δ

[
θ+11(E − iǫ)− θ+11(E + iǫ)

]
dE

=

∫ E2

E1

1

π

2m/~2

√
2m/~2E

dE , (5.2.69)

which leads to

ρ−(E) ≡ ρ11(E) =
1

π

2m/~2

√
2m/~2E

, E ∈ (0,∞) . (5.2.70)

In order to δ-normalize, we define

σ−(r;E) :=
√
ρ−(E)χ−(r;E) , (5.2.71)
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which is the eigensolution of the Lippmann-Schwinger equation (5.2.8) that is δ-normalized,
and

f̂(E) :=
√
ρ−(E)f̃(E) , f̃(E) ∈ L2((0,∞), ρ(E)dE) . (5.2.72)

The unitary operator that δ-diagonalizes the Hamiltonian is,

f̂(E) = (U−f)(E) =

∫ ∞

0

drf(r)σ−(r;E) , f(r) ∈ L2([0,∞), dr) . (5.2.73)

The inverse operator of U− is given by (see Theorem 3 of Appendix 4.4.3)

f(r) = (U−1
− f̂)(r) =

∫ ∞

0

dE f̂(E)σ−(r, E) , f̂(E) ∈ L2((0,∞), dE) . (5.2.74)

Therefore, we have constructed a unitary operator

U− : D(H) ⊂ L2([0,∞), dr) 7−→ D(Ê) ⊂ L2((0,∞), dE)

f 7−→ f̂ = U−f (5.2.75)

that transforms from the position representation into the energy representation. The oper-
ator U− diagonalizes H . The operator U−1

− transforms from the energy representation into
the position representation.

The expressions (5.2.73) and (5.2.74) provide the eigenfunction expansion of any wave
function in terms of the δ-normalized eigensolutions σ−(r;E) and the direct integral decom-
position of H associated to the observables.

5.3 Construction of the Lippmann-Schwinger Kets and

Dirac Basis Vector Expansion

In this section, we sketch the construction of the spaces Φ± on which the Lippmann-
Schwinger kets act as antilinear functionals.

In order to associate a ket |E+〉 to the eigenfunction 〈r|E+〉, we define

|E+〉 : Φ− 7−→ C

ϕ+ 7−→ 〈ϕ+|E+〉 := lim
ǫ→0

∫ ∞

0

dr 〈ϕ+|r〉〈r|(E + iǫ)+〉 . (5.3.1)

As mentioned above, the action of the Lippmann-Schwinger ket |E+〉 should be viewed as
the limit of the action of some ket |(E + iǫ)+〉 when ǫ tends to zero. This is why we define
the action of |E+〉 on ϕ+ as the limit of the integral in Eq. (5.3.1), and not just as

∫ ∞

0

dr 〈ϕ+|r〉〈r|E+〉 . (5.3.2)

The functions ϕ+ ∈ Φ− on which the action of the in-ket of Eq. (5.3.1) is well defined satisfy
(at least) the following conditions:
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i.) They belong to the maximal invariant subspace of H .
ii.) They are such that the limit in Eq. (5.3.1) makes sense.
iii.) They satisfy (5.2.17a) for every n = 0, 1, 2, . . .

By means of the unitary operator U+, which was constructed in Section 5.2.4, we can
obtain the energy representation of the space Φ−,

U+Φ− = Φ̂−|R+ . (5.3.3)

We have denoted the energy representation of the space Φ− by Φ̂−|R+ (rather than by Φ̂−),
because its elements are boundary values on the positive real line of functions that have
meaning for complex energies. As we said above, those functions ϕ̂+(E) seem to be realized
by analytic functions from below. For the sake of definiteness, we shall assume that

Φ̂−|R+ = S ∩ H2
−|R+ , (5.3.4)

where S is the Schwartz space and H2
− is the space of Hardy functions from below (cf. Ap-

pendix 5.5.2).
Under the assumptions made on the elements of the space Φ−, one can prove that

|E+〉 is a well defined antilinear functional and that |E+〉 is a generalized eigenvector of the
HamiltonianH (the proof is almost identical to the proof of Proposition 3 of Appendix 4.4.4),

H×|E+〉 = E|E+〉 , (5.3.5)

i.e.,
〈ϕ+|H×|E+〉 = 〈Hϕ+|E+〉 = E〈ϕ+|E+〉 , ∀ϕ+ ∈ Φ− . (5.3.6)

The in-ket |E+〉 can be used to expand the in-states ϕ+ ∈ Φ− in a Dirac basis vector
expansion. This expansion is the restriction of the eigenfunction expansions (5.2.51) and
(5.2.55) to the space Φ−,

〈+E|ϕ+〉 =
∫ ∞

0

dr 〈+E|r〉〈r|ϕ+〉 , ϕ+ ∈ Φ− , (5.3.7a)

〈r|ϕ+〉 =
∫ ∞

0

dE 〈r|E+〉〈+E|ϕ+〉 , ϕ+ ∈ Φ− . (5.3.7b)

Similarly, the out-ket |E−〉 associated to the eigenfunction 〈r|E−〉 is defined by

|E−〉 : Φ+ 7−→ C

ψ− 7−→ 〈ψ−|E−〉 := lim
ǫ→0

∫ ∞

0

dr 〈ψ−|r〉〈r|(E − iǫ)−〉 . (5.3.8)

The functions ψ− ∈ Φ+ satisfy (at least) the following conditions:

i.) They belong to the maximal invariant subspace of H .



5.3 Construction of the Lippmann-Schwinger Kets and Dirac Basis Vector Expansion 187

ii.) They are such that the limit in Eq. (5.3.8) makes sense.
iii.) They satisfy (5.2.17b) for every n = 0, 1, 2, . . .

By means of the unitary operator U−, which was constructed in Section 5.2.5, we can
obtain the energy representation of the space Φ+,

U−Φ+ = Φ̂+|R+ . (5.3.9)

For the sake of definiteness, we shall assume that

Φ̂+|R+ = S ∩ H2
+|R+ , (5.3.10)

where H2
+ is the space of Hardy functions from above (cf. Appendix 5.5.2).

The out-ket is also a generalized eigenvector of H ,

〈ψ−|H×|E−〉 = 〈Hψ−|E−〉 = E〈ψ−|E−〉 , ∀ψ− ∈ Φ+ . (5.3.11)

The Dirac basis vector expansion induced by the out-ket reads

〈−E|ψ−〉 =
∫ ∞

0

dr 〈−E|r〉〈r|ψ−〉 , ψ− ∈ Φ+ , (5.3.12a)

〈r|ψ−〉 =
∫ ∞

0

dE 〈r|E−〉〈−E|ψ−〉 , ψ− ∈ Φ+ . (5.3.12b)

The Møller operators Ω± can be expressed in terms of the operators U± (cf. Sections 5.2.4
and 5.2.5) and U0 (cf. Appendix 5.5.1) as (cf. [75])

Ω± = U †
±U0 . (5.3.13)

Obviously, Ω± are unitary operators in the Hilbert space L2([0,∞), dr). The Møller opera-
tors can be used to construct the space Φin of asymptotic in-states ϕin and the space Φout

of asymptotic out-observables ψout,

Φ
in
out

= Ω†
±Φ∓ . (5.3.14)

A vector ϕin belongs to Φin if
〈+E|ϕ+〉 = 〈E|ϕin〉 , (5.3.15)

where ϕ+ = Ω+ϕ
in. A vector ψout belongs to Φout if

〈−E|ψ−〉 = 〈E|ψout〉 , (5.3.16)

where ψ− = Ω−ψ
out. From the last two equations it follows that

Ω×
±|E〉 = |E±〉 . (5.3.17)
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The following diagram summarizes the results concerning the states:

H0; ϕin(r) Φin ⊂ L2([0,∞), dr) ⊂ Φ×
in |E〉 position repr.

↓ Ω+ ↓ Ω+ ↓ Ω×
+

H ; ϕ+(r) Φ− ⊂ L2([0,∞), dr) ⊂ Φ×
− |E+〉 position repr.

↓ U+ ↓ U+ ↓ U×
+

Ê; ϕ̂+(E) Φ̂−|R+ ⊂ L2([0,∞), dE) ⊂ (Φ̂−|R+)× |Ê+〉 energy repr.
(5.3.18)

The results concerning the observables are summarized by the following diagram:

H0; ψout(r) Φout ⊂ L2([0,∞), dr) ⊂ Φ×
out |E〉 position repr.

↓ Ω− ↓ Ω− ↓ Ω×
−

H ; ψ−(r) Φ+ ⊂ L2([0,∞), dr) ⊂ Φ×
+ |E−〉 position repr.

↓ U− ↓ U− ↓ U×
−

Ê; ψ̂−(E) Φ̂+|R+ ⊂ L2([0,∞), dE) ⊂ (Φ̂+|R+)× |Ê−〉 energy repr.
(5.3.19)

5.4 S-matrix and Møller Operators

Our next goal is to construct the S-matrix and to compute the expression of the S-matrix
element in terms of the Lippmann-Schwinger kets (see Eq. (5.4.11) below).

As we said in Section 5.1, the S-matrix element

(ψout, ϕout) = (ψout, Sϕin) = (ψ−, ϕ+) (5.4.1)

is to represent the probability to detect the property described by ψout (or, equivalently,
by ψ−) in the prepared ingoing beam characterized by ϕin (or, equivalently, by ϕ+). The
expression of the S-matrix operator in terms of the Møller operators read

S = Ω†
−Ω+ . (5.4.2)

The operator S is a unitary operator in the Hilbert space L2([0,∞), dr). In the energy
representation, the operator (5.4.2) acts as the operator multiplication by the function

S(E) = J−(E)/J+(E). To be more precise, if we define the operator Ŝ as

Ŝ : L2([0,∞), dE) 7−→ L2([0,∞), dE)

f̂ 7−→ (Ŝf̂)(E) = S(E) f̂(E) , (5.4.3)

then it can proved that
Ŝ = U0SU

−1
0 . (5.4.4)
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In order to prove Eq. (5.4.4), we first prove that

(U−g)(E) = S(E)(U+g)(E) , ∀g ∈ L2([0,∞), dr) . (5.4.5)

Since
σ+(r;E) = S(E)σ−(r;E) , (5.4.6)

and since

S(E) =
1

S(E)
, E > 0 , (5.4.7)

we conclude that
σ−(r;E) = S(E)σ+(r;E) . (5.4.8)

By substituting Eq. (5.4.8) into the integral expression (5.2.73) of the operator U− we
get to

(U−g)(E) =

∫ ∞

0
dr g(r)S(E)σ+(r;E) . (5.4.9)

Comparison of (5.4.9) to the integral expression (5.2.51) of U+ leads to (5.4.5).

Now,

(U0SU
−1
0 )f̂ = (U0Ω

†
−Ω+U

−1
0 )f̂

= (U0U
−1
0 U−U

†
+U0U

−1
0 )f̂

= (U−U
†
+)f̂

= Ŝf̂ , (5.4.10)

where we have applied Eq. (5.4.5) to g = U †
+f̂ in the next to the last step.

As we said in Section 5.1, the S-matrix element can be written in terms of the Lippmann-
Schwinger eigenkets as

(ψ−, ϕ+) =

∫ ∞

0

dE 〈ψ−|E−〉S(E)〈+E|ϕ+〉 . (5.4.11)

The proof of Eq. (5.4.11) is as follows: Let ψ− ∈ Φ+ and ϕ+ ∈ Φ−. Since ψ− and
ϕ+ belong, in particular, to the Hilbert space L2([0,∞), dr), we can let the unitary
operator U− act on both of them,

(ψ−, ϕ+) = (U−ψ
−, U−ϕ

+) . (5.4.12)

The vectors U−ψ− and U−ϕ+ belong to L2([0,∞), dE). Therefore,

(U−ψ
−, U−ϕ

+) =

∫ ∞

0
dE (U−ψ−)(E)(U−ϕ

+)(E) . (5.4.13)

From Eq. (5.4.5) it follows that

(U−ϕ
+)(E) = S(E)(U+ϕ

+)(E) . (5.4.14)
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Thus,

(U−ψ
−, U−ϕ

+) =

∫ ∞

0
dE (U−ψ−)(E)S(E)(U+ϕ

+)(E) . (5.4.15)

Since ψ− ∈ Φ+, we are allowed to write

(U−ψ−)(E) = 〈ψ−|E−〉 . (5.4.16)

Since ϕ+ ∈ Φ−, we are allowed to write

(U+ϕ
+)(E) = 〈+E|ϕ+〉 . (5.4.17)

Substitution of (5.4.16) and (5.4.17) into (5.4.15) leads to (5.4.11).

A similar argument to that used to prove Eq. (5.4.11) can be used to prove that

(ψout, Sϕin) =

∫ ∞

0

dE 〈ψout|E〉S(E)〈E|ϕin〉 . (5.4.18)

Many formal identities follow from Eqs. (5.4.11) and (5.4.18). For instance,

〈E|S|E ′〉 = 〈−E|E ′+〉 = S(E)δ(E −E ′) , (5.4.19)

∫ ∞

0

dr 〈E|r〉〈r|E ′〉 =
∫ ∞

0

dr 〈±E|r〉〈r|E ′±〉 = δ(E −E ′) , (5.4.20)

and ∫ ∞

0

dr 〈−E|r〉〈r|E ′+〉 = S(E)δ(E − E ′) . (5.4.21)

The “proof” of these identities follows the pattern of Section 4.2.9.

5.5 Appendices to Chapter 5

5.5.1 Appendix 7: Free Hamiltonian

In this appendix, we compute the RHS associated to the free Hamiltonian. We will follow
the method used in Chapter 4 for the total Hamiltonian.

Self-Adjoint Extension

The first step is to define a linear operator on a Hilbert space corresponding to the formal
differential operator

h0 ≡ −
~2

2m

d2

dr2
. (5.5.1)

The Hilbert space that is in the RHS of the free Hamiltonian is realized by the space
L2([0,∞), dr) of square integrable functions f(r) defined on the interval [0,∞). The same
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procedure that was used to find the domain of the total Hamiltonian can be applied to the
free Hamiltonian,

D(H0) = {f(r) | f(r), h0f(r) ∈ L2([0,∞), dr), f(r) ∈ AC2[0,∞), f(0) = 0} . (5.5.2)

On D(H0) the formal differential operator h0 is self-adjoint. In choosing (5.5.2) as the
domain of our formal differential operator h0, we define a linear operator H0 by

H0f(r) := h0f(r) = −
~2

2m

d2

dr2
f(r) , f(r) ∈ D(H0) . (5.5.3)

Resolvent and Green Functions

The expression of the free Green function G0(r, s;E) is be given in terms of eigenfunctions
of the differential operator h0 subject to certain boundary conditions (cf. Theorem 1 in
Section 4.4.2).

Region ℜ(E) < 0, ℑ(E) 6= 0

For ℜ(E) < 0, ℑ(E) 6= 0, the free Green function (see Theorem 1 in Section 4.4.2) is
given by

G0(r, s;E) =





− 2m/~2√
−2m/~2 E

χ̃0(r;E) Θ̃0(s;E)
2

r < s

− 2m/~2√
−2m/~2 E

χ̃0(s;E) Θ̃0(r;E)
2

r > s
ℜ(E) < 0 , ℑ(E) 6= 0 . (5.5.4)

The eigenfunction χ̃0(r;E) satisfies the equation

h0χ̃
0(r;E) = Eχ̃0(r;E) (5.5.5)

and the boundary conditions (4.2.21),

χ̃0(r;E) = e

√
− 2m

~2
Er − e−

√
− 2m

~2
Er
, 0 < r <∞ . (5.5.6)

The eigenfunction Θ̃0(r;E) satisfies the equation (5.5.5) and the boundary conditions (4.2.24),

Θ̃0(r;E) = e
−
√

− 2m
~2
Er
, 0 < r <∞ . (5.5.7)

Region ℜ(E) > 0, ℑ(E) > 0

When ℜ(E) > 0, ℑ(E) > 0, the expression of the free Green function is

G0(r, s;E) =





− 2m/~2√
2m/~2 E

χ0(r;E) Θ0
+(s;E) r < s

− 2m/~2√
2m/~2 E

χ0(s;E) Θ0
+(r;E) r > s

ℜ(E) > 0, ℑ(E) > 0 . (5.5.8)
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The eigenfunction χ0(r;E) satisfies the Schrödinger equation (5.5.5) and the boundary con-
ditions (4.2.21),

χ0(r;E) = sin(

√
2m

~2
Er) , 0 < r <∞ . (5.5.9)

The eigenfunction Θ0
+(r;E) satisfies the equation (5.5.5) subject to the boundary conditions

(4.2.24),

Θ0
+(r;E) = e

i
√

2m
~2
Er
, 0 < r <∞ . (5.5.10)

Region ℜ(E) > 0, ℑ(E) < 0

In the region ℜ(E) > 0, ℑ(E) < 0, the free Green function reads

G0(r, s;E) =





− 2m/~2√
2m/~2 E

χ0(r;E) Θ0
−(s;E) r < s

− 2m/~2√
2m/~2 E

χ0(s;E) Θ0
−(r;E) r > s

ℜ(E) > 0, ℑ(E) < 0 . (5.5.11)

The eigenfunction χ0(r;E) is given by (5.5.9). The eigenfunction Θ0
−(r;E) satisfies the

equation (5.5.5) and the boundary conditions (4.2.24),

Θ0
−(r;E) = e

−i
√

2m
~2
Er
, 0 < r <∞ . (5.5.12)

Spectrum of H0

We compute the spectrum Sp(H0) of the operator H0 by applying the method used in
Section 4.2.4 to compute the spectrum of H .

Subset Λ = (−∞, 0)

We first take Λ from Theorem 4 of Section 4.4.3 to be (−∞, 0). We choose a basis for
the space of solutions of the equation h0σ = Eσ as

σ̃1(r;E) = e

√
− 2m

~2
Er
, (5.5.13a)

σ̃2(r;E) = Θ̃0(r;E) . (5.5.13b)

Obviously,

χ̃0(r;E) = σ̃1(r;E)− σ̃2(r;E) , (5.5.14)

which along with Eq. (5.5.4) leads to

G0(r, s;E) = − 2m/~2

√
−2m/~2 E

1

2
[σ̃1(r;E)− σ̃2(r;E)] σ̃2(s;E) , r < s , ℜ(E) < 0 ,ℑ(E) 6= 0 .

(5.5.15)
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Since

σ̃2(s;E) = σ̃2(s;E) , (5.5.16)

we can write Eq. (5.5.15) as

G0(r, s;E) = − 2m/~2

√
−2m/~2E

1

2

[
σ̃1(r;E)σ̃2(s;E)− σ̃2(r;E)σ̃2(s;E)

]
,

r < s , ℜ(E) < 0 ,ℑ(E) 6= 0 . (5.5.17)

On the other hand, by Theorem 4 in Section 4.4.3 we have

G0(r, s;E) =

2∑

i,j=1

θ−ij(E)σ̃i(r;E)σ̃j(s;E) r < s . (5.5.18)

By comparing Eqs. (5.5.17) and (5.5.18) we see that

θ−ij(E) =




0 − 2m/~2√
−2m/~2 E

1
2

0 2m/~2√
−2m/~2 E

1
2


 , ℜ(E) < 0 , ℑ(E) 6= 0 . (5.5.19)

The functions θ−ij(E) are analytic in a neighborhood of Λ = (−∞, 0). Therefore, the interval
(−∞, 0) is in the resolvent set Re(H0) of the operator H0.

Subset Λ = (0,∞)

In this case, we choose the following basis for the space of solutions of h0σ = Eσ:

σ1(r;E) = χ0(r;E) , (5.5.20a)

σ2(r;E) = cos(

√
2m

~2
Er) . (5.5.20b)

Eqs. (5.5.10), (5.5.12) and (5.5.20) lead to

Θ0
+(r;E) = iσ1(r;E) + σ2(r;E) (5.5.21)

and to

Θ0
−(r;E) = −iσ1(r;E) + σ2(r;E) . (5.5.22)

By substituting Eq. (5.5.21) into Eq. (5.5.8) we get to

G0(r, s;E) = − 2m/~2

√
2m/~2E

σ1(s;E) [iσ1(r;E) + σ2(r;E)] , r > s , ℜ(E) > 0,ℑ(E) > 0 .

(5.5.23)
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By substituting Eq. (5.5.22) into Eq. (5.5.11) we get to

G0(r, s;E) = − 2m/~2

√
2m/~2E

σ1(s;E) [−iσ1(r;E) + σ2(r;E)] , r > s , ℜ(E) > 0,ℑ(E) < 0 .

(5.5.24)
Since

σ1(s;E) = σ1(s;E) , (5.5.25)

Eq. (5.5.23) leads to

G0(r, s;E) = − 2m/~2

√
2m/~2E

[
iσ1(r;E)σ1(s;E) + σ2(r;E)σ1(s;E)

]
,

ℜ(E) > 0,ℑ(E) > 0 , r > s , (5.5.26)

and Eq. (5.5.24) leads to

G0(r, s;E) = − 2m/~2

√
2m/~2E

[
−iσ1(r;E)σ1(s;E) + σ2(r;E)σ1(s;E)

]

ℜ(E) > 0,ℑ(E) < 0 , r > s . (5.5.27)

The expression of the resolvent in terms of the basis σ1, σ2 can be written as (see Theorem 4
in Section 4.4.3)

G0(r, s;E) =
2∑

i,j=1

θ+ij(E)σi(r;E)σj(s;E) , r > s . (5.5.28)

By comparing (5.5.28) to (5.5.26) we get to

θ+ij(E) =

(
− 2m/~2√

2m/~2 E
i − 2m/~2√

2m/~2 E

0 0

)
, ℜ(E) > 0 , ℑ(E) > 0 . (5.5.29)

By comparing (5.5.28) to (5.5.27) we get to

θ+ij(E) =

(
2m/~2√
2m/~2 E

i − 2m/~2√
2m/~2 E

0 0

)
, ℜ(E) > 0 , ℑ(E) < 0 . (5.5.30)

From Eqs. (5.5.29) and (5.5.30) we can see that the measures ρ12, ρ21 and ρ22 in Theorem 4
of Section 4.4.3 are zero and that the measure ρ11 is given by

ρ11((E1, E2)) = lim
δ→0

lim
ǫ→0+

1

2πi

∫ E2−δ

E1+δ

[
θ+11(E − iǫ)− θ+11(E + iǫ)

]
dE

=

∫ E2

E1

1

π

2m/~2

√
2m/~2E

dE , (5.5.31)

which leads to

ρ0(E) ≡ ρ11(E) =
1

π

2m/~2

√
2m/~2E

, E ∈ (0,∞) . (5.5.32)

The function θ+11(E) has a branch cut along (0,∞), and therefore (0,∞) is included in
Sp(H0). Since Sp(H0) is a closed set, Sp(H0) = [0,∞).
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Diagonalization and Eigenfunction Expansion

In the present section, we diagonalize our Hamiltonian H0 and construct the expansion of
the wave functions in terms of the eigenfunctions of the differential operator h0.

By Theorem 2 of Section 4.4.3, there is a unitary map Ũ0 defined by

Ũ0 : L
2([0,∞), dr) 7−→ L2((0,∞), ρ0(E)dE)

f(r) 7−→ f̃(E) = Ũ0f(E) =

∫ ∞

0

drf(r)χ0(r;E) , (5.5.33)

that brings D(H0) onto the space

D(Ẽ) = {f̃(E) ∈ L2((0,∞), ρ0(E)dE) |
∫ ∞

0

dE E2|f̃(E)|2ρ0(E) <∞} . (5.5.34)

In order to δ-normalize, we define

σ0(r;E) :=
√
ρ0(E)χ0(r;E) , (5.5.35)

which is the eigensolution of the differential operator h0 that is δ-normalized, and

f̂(E) :=
√
ρ0(E)f̃(E) , f̃(E) ∈ L2((0,∞), ρ0(E)dE) , (5.5.36)

and construct the unitary operator

Û0 : L
2((0,∞)), ρ0(E)dE) 7−→ L2((0,∞), dE)

f̃ 7−→ f̂(E) = Û0f̃(E) :=
√
ρ0(E)f̃(E) . (5.5.37)

The operator that δ-diagonalizes our Hamiltonian is U0 := Û0Ũ0,

U0 : L
2([0,∞)), dr) 7−→ L2((0,∞), dE)

f 7−→ U0f := f̂ . (5.5.38)

The action of U0 can be written as an integral operator,

f̂(E) = U0f(E) =

∫ ∞

0

drf(r)σ0(r;E) , f(r) ∈ L2([0,∞), dr) . (5.5.39)

The image of D(H0) under the action of U0 is

D(Ê) := UD(H0) = {f̂(E) ∈ L2((0,∞), dE) |
∫ ∞

0

E2|f̂(E)|2dE <∞} . (5.5.40)

Therefore, we have constructed a unitary operator

U0 : D(H) ⊂ L2([0,∞), dr) 7−→ D(Ê) ⊂ L2((0,∞), dE)

f 7−→ f̂ = U0f (5.5.41)
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that transforms from the position representation into the energy representation. The opera-
tor U0 diagonalizes the free Hamiltonian in the sense that Ê ≡ U0H0U

−1
0 is the multiplication

operator. The inverse operator of U0 is given by (see Theorem 3 of Section 4.4.3)

f(r) = U−1
0 f̂(r) =

∫ ∞

0

dE f̂(E)σ0(r, E) , f̂(E) ∈ L2((0,∞), dE) . (5.5.42)

The operator U−1
0 transforms from the energy representation into the position representa-

tion.
The expressions (5.5.39) and (5.5.42) provide the eigenfunction expansion of any square

integrable function in terms of the eigensolutions σ0(r;E) of h0. One can easily see that

lim
V0→0

U± = U0 . (5.5.43)

Construction of the RHS of the Free Hamiltonian

The Sturm-Liouville theory only provides a domain D(H0) on which the Hamiltonian H0 is
self-adjoint and a unitary operator U0 that diagonalizes H0. This unitary operator induces
a direct integral decomposition of the Hilbert space (see [4, 5]),

H 7−→ U0H ≡ Ĥ = ⊕
∫

Sp(H0)

H(E)dE

f 7−→ U0f ≡ {f̂(E)}, f̂(E) ∈ H(E) . (5.5.44)

As we saw in Chapter 4, the direct integral decomposition does not provide us with a
dense invariant domain Φ0 on which all the powers of H0 and all the expectation values of
H0 are well-defined, and on which the Dirac kets act as antilinear functionals. In order to
construct Φ0, we first construct the maximal invariant subspace D0 of H0,

D0 :=
∞⋂

n=0

D(Hn
0 ) . (5.5.45)

It is easy to check that

D0 = {ϕ ∈ L2([0,∞), dr) | hn0ϕ(r) ∈ L2([0,∞), dr), hn0ϕ(0) = 0, n = 0, 1, 2, . . . ,

ϕ(r) ∈ C∞([0,∞))} . (5.5.46)

The second step is to find a subspace Φ0 on which the eigenkets |E〉 ofH0 are well-defined
as antilinear functionals. That subspace is given by

Φ0 = {ϕ ∈ D0 |
∫ ∞

0

dr |(r + 1)n(h0 + 1)mϕ(r)|2 <∞, n,m = 0, 1, 2, . . .} . (5.5.47)

On Φ0, we define the family of norms

‖ϕ‖0n,m :=

√∫ ∞

0

dr |(r + 1)n(h0 + 1)mϕ(r)|2 , n,m = 0, 1, 2, . . . (5.5.48)
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The quantities (5.5.48) fulfill the conditions to be a norm (the proof is almost identical to
the proof of Proposition 1 of Section 4.4.4) and can be used to define a countably normed
topology τΦ0

on Φ0 (see [5]),

ϕα
τΦ0−−→
α→∞

ϕ iff ‖ϕα − ϕ‖0n,m−−→
α→∞

0 , n,m = 0, 1, 2, . . . (5.5.49)

One can see that the space Φ0 is stable under the action of H0 and that H0 is τΦ0
-continuous

(the proof is almost identical to the proof of Proposition 2 of Section 4.4.4).
Once we have constructed the space Φ0, we can construct its topological dual Φ×

0 as the
space of τΦ0

-continuous antilinear functionals on Φ0 (see [5]) and therewith the RHS of the
free Hamiltonian

Φ0 ⊂ L2([0,∞), dr) ⊂ Φ×
0 . (5.5.50)

For each E ∈ Sp(H0), we associate a ket |E〉 to the generalized eigenfunction σ0(r;E)
through

|E〉 : Φ0 7−→ C

ϕ 7−→ 〈ϕ|E〉 :=
∫ ∞

0

ϕ(r)σ0(r;E)dr = (U0ϕ)(E) . (5.5.51)

The ket |E〉 in Eq. (5.5.51) is a well-defined antilinear functional on Φ0, i.e., |E〉 belongs to
Φ×

0 (the proof is almost identical to the proof of Proposition 3 of Section 4.4.4). The ket
|E〉 is a generalized eigenvector of the free Hamiltonian H0 (the proof is almost identical to
the proof of Proposition 3 of Section 4.4.4),

H×
0 |E〉 = E|E〉 , (5.5.52)

i.e.,
〈ϕ|H×

0 |E〉 = 〈H0ϕ|E〉 = E〈ϕ|E〉 , ∀ϕ ∈ Φ0 . (5.5.53)

Dirac Basis Vector Expansion for H0

We are now in a position to derive the Dirac basis vector expansion for the free Hamilto-
nian. This derivation consists of the restriction of the Weyl-Kodaira expansions (5.5.39)
and (5.5.42) to the space Φ0. If we denote 〈r|ϕ〉 ≡ ϕ(r) and 〈E|r〉 ≡ σ0(r;E), and if we
define the action of the left ket 〈E| on ϕ ∈ Φ0 as 〈E|ϕ〉 := ϕ̂(E), then Eq. (5.5.39) becomes

〈E|ϕ〉 =
∫ ∞

0

dr 〈E|r〉〈r|ϕ〉 , ϕ ∈ Φ0 . (5.5.54)

If we denote 〈r|E〉 ≡ σ0(r;E), then Eq. (5.5.42) becomes

〈r|ϕ〉 =
∫ ∞

0

dE 〈r|E〉〈E|ϕ〉 , ϕ ∈ Φ0 . (5.5.55)

This equation is the Dirac basis vector expansion of the wave function ϕ in terms of the free
eigenkets |E〉. We can also prove the Nuclear Spectral Theorem for the free Hamiltonian
(the proof is almost identical to the proof of Proposition 4 of Section 4.4.5),

(ϕ,Hn
0ψ) =

∫ ∞

0

dE En〈ϕ|E〉〈E|ψ〉 , ∀ϕ, ψ ∈ Φ0 , n = 1, 2, . . . (5.5.56)
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Energy Representation of the RHS of H0

We have already shown that in the energy representation the Hamiltonian H0 acts as the
multiplication operator Ê. The energy representation of the space Φ0 is defined as

Φ̂0 := U0Φ0 . (5.5.57)

Obviously Φ̂0 is a linear subspace of L2([0,∞), dE). In oder to endow Φ̂0 with a topology

τ
Φ̂0
, we carry the topology on Φ0 into Φ̂0,

τ
Φ̂0

:= U0τΦ0
. (5.5.58)

With this topology, the space Φ̂0 is a linear topological space. If we denote the dual space
of Φ̂0 by Φ̂×

0 , then we have

U×
0 Φ

×
0 = (U0Φ0)

× = Φ̂×
0 . (5.5.59)

If we denote |Ê〉 ≡ U×
0 |E〉, then we can prove that |Ê〉 is the antilinear Schwartz delta

functional, (the proof is almost identical to the proof of Proposition 5 of Section 4.4.6),

|Ê〉 : Φ̂ 7−→ C

ϕ̂ 7−→ 〈ϕ̂|Ê〉 := ϕ̂(E) . (5.5.60)

It is very helpful to show the different realizations of the RHS through the following
diagram:

H0; ϕ(r) Φ0 ⊂ L2([0,∞), dr) ⊂ Φ×
0 |E〉 position repr.

↓ U0 ↓ U0 ↓ U×
0

Ê; ϕ̂(E) Φ̂0 ⊂ L2([0,∞), dE) ⊂ Φ̂×
0 |Ê〉 energy repr.

(5.5.61)

We should stress that the space Φ0 is neither Φin nor Φout—the boundary conditions
satisfied by the elements of the spaces Φin,out are different to the boundary conditions
satisfied by the elements of Φ0.

5.5.2 Appendix 8: Spaces of Hardy Functions

In this Appendix, we list the definition and main properties of functions of Hardy class and
review the Bohm-Gadella construction of RHS of Hardy functions.

General Properties of Hardy Functions

A Hardy function f(z) on the upper half of the complex plane C+ is a function satisfying
the following conditions [76, 77, 78, 79]:

i.) It is an analytic function on the open upper half plane, i.e., on the set of complex
numbers with positive imaginary part.
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ii.) For any value of y > 0, the integral
∫ ∞

−∞
|f(x+ iy)|2 dx (5.5.62)

converges.
iii.) For all y > 0, these integrals are bounded by the same constant K,

sup
y>0

∫ +∞

−∞
|f(x+ iy)|2 dx < K . (5.5.63)

The set of Hardy functions on the upper half plane, often referred to as Hardy functions
from above, is a vector space that we denote by H2

+.
Similarly, Hardy functions on the lower half plane C− are analytic on the open lower

half plane, and for these functions the conditions (ii) and (iii) hold with y < 0. We denote
the vector space of Hardy functions from below by H2

−.
Boundary values for Hardy functions are defined at almost all (with respect to the

Lebesgue measure) points of the real axis. For any Hardy function, these boundary values
yield a square integrable function f(x), which is uniquely defined on the real line, save for
a set of zero Lebesgue measure,

lim
y→0

f(x± iy) = f(x) , f ∈ H2
± . (5.5.64)

The square norm of f(x) is also bounded by K. Thus, a function in H2
± uniquely determines

(almost everywhere) a square integrable function on R.
An important theorem, due to Titchmarsh [80], states that Hardy functions can be

recovered by their boundary values on the real line. If f(x) is the function representing the
boundary values of a Hardy function f(z) on C±, then

f(z) = ± 1

2πi

∫ ∞

−∞

f(x)

x− z dx , (5.5.65)

where the signs (+) and (−) correspond to Hardy functions on the upper and lower half
plane, respectively.

Another important theorem on Hardy functions is that by Paley and Wiener [81, 76,
77, 78, 79], which determines whether a square integrable function is also a Hardy function.
The theorem asserts that the Fourier transform F is bijection between H2

−, the space of
Hardy functions from below, and L2(R+) the space of square integrable functions defined
on the positive real axis. The conclusion holds also for H2

+ and L2(R−). That is,

FL2(R−) = H2
+ , (5.5.66a)

FL2(R+) = H2
− . (5.5.66b)

There is another version of the same result that can be summarized as follows:

FH2
+ = L2(R+) , (5.5.67a)

FH2
− = L2(R−) . (5.5.67b)
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Since the Fourier transform is an isometry on L2(R), we conclude that H2
+ and H2

− are
closed subspaces of L2(R), and hence Hilbert spaces. Since L2(R) = L2(R+) ⊕ L2(R−),
where ⊕ stands for orthogonal direct sum, we have

L2(R) = H2
+ ⊕H2

− . (5.5.68)

A theorem due to van Winter [53] establishes that a Hardy function can be recovered
by its boundary values on the semi-axis R+. Whether the recovered function is an element
of H2

+ or H2
− is to be determined by means of the Mellin transform. Thus, if we call H2

++

the space of boundary values on R+ of the functions in H2
+ and H2

−+ the space of boundary
values on R+ of the functions in H2

−, we have the following bijection:

θH2
+ = H2

++ , (5.5.69a)

θH2
− = H2

−+ , (5.5.69b)

where the image of any f±(x) ∈ H2
± by θ is a function which is equal to f±(x) for x ∈ R+

and is not defined for negative values of x.
The following are among the other interesting properties of Hardy functions [80]:
i.) Let us define the Hilbert transform for an L2(R) function f as

Hf(x) =
1

π
P
∫ ∞

−∞

f(t)

t− x dt , (5.5.70)

where P denotes the Cauchy principal value. The Hilbert transform is linear and its image
also lies in L2(R). A square integrable complex function f(x), with real part u(x) and
imaginary part v(x), belongs to H2

± if and only if

Hu = ±v and Hv = ∓u . (5.5.71)

In particular, a Hardy function cannot be either real or purely imaginary on the whole real
line.

ii.) From i.), we immediately see that f(x) ∈ H2
± if and only if its complex conjugate

f ∗(x) ∈ H2
∓.

iii.) Hardy functions vanish at infinity. More precisely, they behave for large values of
|z| as 1/√z (cf. [79]).

iv.) Some Hardy functions on C± admit analytic continuation beyond the real axis to
C∓. We may consider the functions f(x) ∈ L2(R±) such that there is a positive number α
with the property that eα|x|f(x) ∈ L2(R±). Then, the Fourier transforms of these functions
are Hardy functions on C∓, and they admit an analytic continuation beyond the real axis to
a strip of width α. This means that if eα|x|f(x) ∈ L2(R−), its Fourier transform is analytic
on {z ∈ C ; −α < Im z <∞} and if eα|x|f(x) ∈ L2(R+), its Fourier transform is analytic
on {z ∈ C ; −∞ < Im z < α} (cf. [82]).

v.) A function which is simultaneously Hardy on both the upper and lower half planes
would be obviously entire, and, as a consequence of above condition iii), is also bounded.
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Hence, Liouville theorem asserts that such a function is constant. A constant function
cannot be square integrable unless it is zero almost everywhere. However, there exist entire
functions that are also Hardy either on the upper or the lower half plane.

vi.) It is now clear that the spaces H2
+ and H2

− have a trivial intersection. However, the
spaces of functions which are restrictions of Hardy functions to the positive semiaxis R+

have a nontrivial intersection. Moreover, the intersection H2
++∩H2

−+ is dense in L2(R+) [83].

Rigged Hilbert Spaces of Hardy Functions

We now summarize the Bohm-Gadella construction to describe resonances. This construc-
tion is based on RHS of Hardy functions.

All functions fulfilling the following conditions yield two rigged Hilbert spaces [20]:
i.) They belong to the Schwartz space S.
ii.) Their supports are in R±.
We call these spaces S±, respectively. Take their Fourier transforms. Since the Fourier

transform of a Schwartz function is again a Schwartz function, the Fourier transforms of the
functions in S± have the following properties:

a.) They belong to the Schwartz space.
b.) They belong to H2

∓.
c.) The space of all these Fourier transforms FS± coincide with the intersection of S

and H2
∓, i.e., FS± = S ∩H2

∓.
d.) Since S± is dense in L2(R±), S ∩ H2

∓ is dense in H2
∓ with respect to the Hilbert

space topology inherited from L2(R).
e.) Note however that the direct sum of spaces S ∩H2

+⊕S ∩H2
− does not coincide with

S, since the Fourier transform of any of its functions vanish at zero.
f.) Since S ∩ H2

± are subspaces of S, they inherit the topology of S. They have good
enough properties so that

S ∩H2
± ⊂ H2

± ⊂ (S ∩ H2
±)

× (5.5.72)

are well defined rigged Hilbert spaces.
We mentioned earlier in this Appendix that Hardy functions are determined by their

values on the positive semiaxis plus a specification which says if they are Hardy on the upper
or the lower half planes. Thus, we have defined the spaces θH2

+ = H2
++ and θH2

− = H2
−+.

Now consider:

S ∩H2
+

∣∣
R+ = θ+(S ∩ H2

+) , (5.5.73a)

S ∩H2
−
∣∣
R+ = θ−(S ∩ H2

−) . (5.5.73b)

The spaces S ∩H2
±
∣∣
R+ are dense in L2(R+). Since θ is a bijection, we can transport the

topology from S ∩ H2
± to S ∩H2

±
∣∣
R+ by means of θ. The transported topologies have the

same properties as the original ones and they are finer than the Hilbert topology on L2(R+).
In particular, S ∩ H2

±
∣∣
R+ are metrizable topological vector spaces and

S ∩ H2
±
∣∣
R+ ⊂ L2(R+) ⊂ (S ∩ H2

±
∣∣
R+)

× (5.5.74)
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are RHS. The spaces S ∩ H2
+

∣∣
R+ and S ∩ H2

−
∣∣
R+ have a nontrivial intersection [84].

We can define the dual of the mapping θ using the following formula:

〈θf±(x)|θ×F±〉 = 〈f±(x)|F±〉 , ∀f±(x) ∈ S ∩ H2
± , ∀F± ∈ (S ∩H2

±)
× . (5.5.75)

The mapping θ× is a bijection. Moreover, the following property is fulfilled algebraically
and topologically:

θ×(S ∩H2
±)

× ≡ (S ∩ H2
±
∣∣
R+)

× = (θ(S ∩ H2
±))

× , (5.5.76)

i.e., the topology on (S ∩H2
±
∣∣
R+)

× is transported from (S ∩ H2
±)

× by θ×.
It is important, however, that the mapping θ× does not extend θ. The cause lies in the

non unitarity of the latter.



Chapter 6

The Gamow Vectors of the Square
Barrier Potential Resonances

In this chapter, we study the resonances of the square barrier potential. We first compute
the resonance energies as poles of the S-matrix. The integral equation of A. Mondragón et
al. for the Gamow vectors will be translated into the RHS language. Next, we compute the
Gamow eigenfunctions in the position representation as the solutions of the time independent
Schrödinger equation subject to the purely outgoing boundary condition. The [0,∞)-energy
representation of the Gamow eigenfunction will be related to the complex delta function,
and the (−∞,∞)-energy representation of the Gamow eigenfunction will be related to the
Breit-Wigner amplitude. The semigroup time evolution of the Gamow vectors will also be
computed. The Gamow vectors will be used as basis vectors. We shall see that the Gamow
vectors do not form a complete basis—an additional set of kets needs to be added in order
to obtain a complete basis. The time asymmetry of the purely outgoing boundary condition
will be disclosed. To finish this chapter, we shall discuss the exponential decay law of the
Gamow vectors.
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It don’t bring you

Well I know it ain’t been roses lately
Baby it’s just been thorns
And no matter what we do
Nothing seems to change
Love has always been my shelter
For you it’s been a storm
But for awhile I thought
We’d almost beat the rain

Now there’s a hole here in my pocket
Where all my dreams have gone
Falling out like so many nickels

and dimes
And last of all you
You’d always been my good luck charm
I should’ve known that luck
Is a waste of time

Cause it don’t bring you love if you don’t love
And it don’t bring you time if you ain’t got time
And it don’t bring you strength baby if you ain’t strong
And it don’t bring you kindness if you ain’t kind

Now there’s a whole lot in life to be unsure of
But there’s one thing I can safely say I know
That of all the things that finally desert us
Pride is always the last thing to go

But it won’t bring you love if you don’t love
And it won’t bring you time if you ain’t got time
And it won’t bring you strength baby if you ain’t strong
And it won’t bring you kindness if you ain’t kind

And now I wish you only the roses without the thorns
And I hope your dreams are always within reach
And I wish you shelter baby from all your storms
They scared you but they never seemed to teach

That I can’t bring you love if you don’t love
And I can’t bring you time if you ain’t got time
And I can’t bring you strength baby if you ain’t strong
And I can’t bring you kindness if you ain’t kind
And I can’t bring you kindness if you ain’t kind

Mary Chapin Carpenter, State of the Heart
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6.1 Introduction

Most elementary particles are only quasistable states decaying through various interactions
and thus have finite lifetimes of various orders of magnitude [36]. Several theoretical schemes
have been proposed to describe quasistable particles. The S-matrix and the Gamow vectors
are two of the most widely used schemes.

Experimentally, resonances often appear as peaks in the cross section that resemble the
well-known Breit-Wigner distribution [50]. The Breit-Wigner distribution has two charac-
teristic parameters: the energy ER at which the peak reaches its maximum, and its width ΓR
at half-maximum. The inverse of ΓR is the lifetime of the decaying state [33]. The peak of
the Breit-Wigner is related to a first-order pole of the S-matrix in the energy representation
S(E) at the complex number zR = ER − iΓR/2. The shape of the theoretical expression
of the cross section in terms of S(E) fits the shape of the experimental cross section in the
neighborhood of ER. This is why the first-order pole of the S-matrix is often taken as the
theoretical definition of a resonance.

Although a resonance has a finite lifetime, it is otherwise assigned all the properties that
are also attributed to stable particles, such as angular momentum, charge, spin, parity and
other particle labels. For example, a radioactive nucleus has a finite lifetime, but otherwise
it possesses all the properties of stable nuclei. In fact, radioactive nuclei are included in the
periodic table of the elements together with the stable nuclei. Therefore, it seems natural
to seek a theoretical description that provides “particle status” to the quasistable states.
The Gamow vectors provide this particle status. The description of resonances by Gamow
vectors allows us to interpret resonances as autonomous experimentally decaying physical
systems. This description, impossible in the Hilbert space, can be accomplished within the
Rigged Hilbert Space.

The original energy eigenfunction with complex eigenvalue ER − iΓR/2 was introduced
by Gamow [38]. The quantities ER and ΓR are interpreted as the resonance energy and the
resonance width of the decaying state, respectively. However, Gamow’s heuristic approach
cannot be made rigorous in the Hilbert space framework, because self-adjoint operators on
a Hilbert space can only have real eigenvalues. An extended framework is therefore needed.
As we shall see, the Rigged Hilbert Space is the most natural framework to describe Gamow
vectors.

In this chapter, Gamow eigenkets will be obtained as solutions of a homogeneous integral
equation of the Lippmann-Schwinger type. In the radial position representation, this integral
equation is equivalent to the time-independent Schrödinger equation subject to a purely
outgoing boundary condition. The resonance spectrum is therefore singled out by the purely
outgoing boundary condition. As we shall see, this is the same resonance spectrum as that
defined by the poles of the S-matrix. The Gamow eigenfunctions will be associated to certain
eigenfunctionals, that we call Gamow kets. These Gamow kets are generalized eigenvectors
of the square barrier potential Hamiltonian with complex eigenvalue ER − iΓR/2.

The energy representation of the Gamow vectors will be obtained. We shall see that
in the [0,∞)-energy representation (i.e., in the representation associated to the physical
spectrum), the Gamow vector is represented by the complex delta function, whereas in the
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(−∞,∞)-energy representation (i.e., in the representation associated to the support of the
Breit-Wigner amplitude), the Gamow vector is represented by the Breit-Wigner amplitude.
We shall also obtain the time evolution of the Gamow vectors, which is given by a semigroup.

Therefore, the Gamow vectors have all of the properties that are demanded from a
resonance state:

1. They are eigenvectors of the Hamiltonian with complex eigenvalues.

2. They correspond to the Breit-Wigner amplitude in the energy representation.

3. Their time evolution is given by a semigroup, and obeys the exponential decay law.

The organization of this chapter is as follows. In Section 6.2, we compute the resonance
energies as poles of the S-matrix. In Section 6.3, we introduce the integral equation that
is satisfied by the Gamow vectors. Next, we compute the Gamow eigenfunctions in the
position representation as the solutions of the time independent Schrödinger equation with
complex eigenvalues subject to a purely outgoing boundary condition. These eigensolutions
will be associated to certain eigenfunctionals (Gamow kets). The [0,∞)-energy represen-
tation of the Gamow eigenfunction will be related to the complex delta function, and the
(−∞,∞)-energy representation of the Gamow eigenfunction will be related to the Breit-
Wigner amplitude. In Section 6.4, the Gamow vectors will be used as basis vectors. We
shall see that the Gamow vectors do not form a complete basis—an additional set of kets
needs to be added in order to obtain a complete basis. The time evolution of the Gamow
vectors is computed in Section 6.5. Section 6.6 deals with the time asymmetry behind the
purely outgoing boundary condition. Section 6.7 studies the exponential decay law of the
Gamow vectors.

6.2 S-matrix Resonances

The S-matrix in the energy representation is given by (see Section 5.4)

S(E) =
J−(E)

J+(E)
, E > 0 . (6.2.1)

As it stands, this expression is valid only for positive energies. As we said in Section 6.1,
the S-matrix resonances are associated to the poles of the analytic continuation of S(E)
into the whole complex plane. Since S(E) is not a single-valued function, it is convenient
to write the S-matrix as a function of the momentum k before we perform the analytic
continuation,

S(k) =
J−(k)

J+(k)
, k > 0 . (6.2.2)

Here the momentum k is given by

k =

√
2m

~2
E . (6.2.3)
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Eq. (6.2.3) provides a Riemann surface in a natural way. The analytic continuation of the
numerator and the denominator of S(k) yield two analytic functions J±(k). Therefore, the
continuation of S(k) is analytic except at its poles. These are precisely the zeros of the
denominator of S(k) (see [85]),

J+(k) = 0 , (6.2.4)

where now k is complex. From Eqs. (4.4.16d) and (5.2.23a) it follows that the equality
(6.2.4) is equivalent to the following:

(1− Q

k
)eiQ(b−a)

(
sin(ka) +

k

iQ
cos(ka)

)
+ (1 +

Q

k
)e−iQ(b−a)

(
sin(ka)− k

iQ
cos(ka)

)
= 0 .

(6.2.5)
The solutions of (6.2.5) are the (S-matrix) resonances of the square barrier potential. Equa-
tion (6.2.5) has a denumerable infinite number of complex resonance energy solutions. These
solutions come in pairs ER±iΓR/2 (see Figure 6.2 of Appendix 6.9). The pole ER−iΓR/2 is
associated with the decaying part of the resonance, and it is located on the lower half-plane
of the second sheet of the two-sheeted Riemann surface corresponding to the square root
mapping (see Figure 6.2a of Appendix 6.9). The pole ER + iΓR/2 is associated with the
growing or formation part of the resonance, and it is located on the upper half-plane of the
second sheet of the Riemann surface (see Figure 6.2b of Appendix 6.9). In the momentum
plane, this pair of energy poles corresponds to a pair of poles ±Re(k)− iIm(k) in the lower
half of the k-plane that are mirror images of one another with respect to the imaginary axis
(see Figure 6.1 of Appendix 6.9).

The width of the resonances increases as the energy increases, and therefore their lifetime
τR = ~/ΓR decreases. The resonances whose energies are below the top of the barrier E = V0
are close to the real axis. As E keeps increasing the resonances move away from the real
axis towards infinity. The square barrier potential poles never correspond to a bound or a
virtual state, i.e., they do not lie in the imaginary axis of the momentum plane. The square
barrier potential poles are always simple (cf. [86] for an example of a barrier with double
poles).

In order to distinguish each of the denumerable infinite number of resonance poles, the
decaying resonance energies of the square barrier potential will be denoted by

zn = En − i
Γn
2
, n = 1, 2, . . . , (6.2.6)

whereas the growing resonance energies will be denoted by

z∗n = En + i
Γn
2
, n = 1, 2, . . . (6.2.7)

The corresponding momentum poles will be denoted respectively by

kn = Re(kn)− i Im(kn) =
√
zn , n = 1, 2, . . . , (6.2.8)

and by
−k∗n = −Re(kn)− i Im(kn) =

√
z∗n , n = 1, 2, . . . (6.2.9)
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6.3 The Gamow Vectors

Gamow vectors are usually defined as eigensolutions of the Schrödinger equation subject to
a purely outgoing boundary condition (see Section 6.3.2 below). Although we could start
the study of Gamow vectors with that definition, we will follow instead the procedure used
for the Lippmann-Schwinger kets. We will define a Gamow vector as the solution of an
integral equation. This integral equation has that purely outgoing boundary condition built
into it. Needless to say, the solutions of that integral equation will be found by solving the
time independent Schrödinger equation subject to the purely outgoing boundary condition.

6.3.1 Lippmann-Schwinger Equation of the Gamow Vectors

The Gamow vectors are solutions of an integral equation of the Lippmann-Schwinger type.
If zR = ER− iΓR/2 denotes the complex energy associated to a resonance of energy ER and
width ΓR, then the decaying Gamow vector |z−R〉 fulfills

|z−R〉 =
1

zR −H0 + i0
V |z−R〉 . (6.3.1)

This equation was introduced (with a different notation) by A. Mondragón et al. in Ref. [40].
The +i0 in Eq. (6.3.1) means that we are working with the retarded free Green function,
which has a purely outgoing boundary condition built into it. The retarded free Green
function is analytically continued across the cut into the lower half plane (of the second
sheet of the Riemann surface), where the complex number zR is located. Therefore, as
A. Mondragón has pointed out, Eq. (6.3.1) should be written as

|z−R〉 = lim
E→zR

1

E −H0 + i0
V |E〉 . (6.3.2)

The notation in this equation expresses better the fact that we first have to compute the
retarded free Green function (E −H0 + i0)−1 and then continue it across the cut into the
lower half plane.1 The minus sign in |z−R〉 means that the decaying Gamow vector will be
defined as an antilinear functional over the ψ− ∈ Φ+.

As we said above, the integral equation (6.3.1) has a purely outgoing boundary condition
built into it. To be more precise, Eq. (6.3.1) in the position representation is equivalent to
the time independent Schrödinger equation subject to the condition that far away from the
potential region the solution behave as a purely outgoing wave.

As we saw in Section 6.2, to each decaying pole zR = ER − iΓR/2 of the S-matrix there
corresponds a growing pole z∗R = ER + iΓR/2. We now associate a growing Gamow vector

1This also shows that a consistent notation will always have flipping of signs like ϕ+ ∈ Φ−, ψ
− ∈ Φ+,

etc. This flipping of signs comes from the fact that we perform analytic continuations from the upper (lower)
rim of the cut, which is labeled by +i0 (−i0), into the lower (upper) half plane, which is labeled by C−

(C+).
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|z∗R+〉 to the pole of the S-matrix at z∗R. The integral equation satisfied by |z∗R+〉 should
read

|z∗R+〉 = 1

z∗R −H0 − i0
V |z∗R+〉 = lim

E→z∗R

1

E −H0 − i0
V |E〉 . (6.3.3)

In contrast to Eq. (6.3.1), Eq. (6.3.3) has a purely incoming boundary condition built into
it. That is, Eq. (6.3.3) in the position representation is equivalent to the time independent
Schrödinger equation subject to the condition that far away from the potential region the
solution behave as a purely incoming wave.

6.3.2 The Gamow Vectors in Position Representation

In this section, we obtain the solutions of the integral equations (6.3.1) and (6.3.3). In
oder to do so, we will work in the radial position representation. In this representation we
will solve the Schrödinger equation under purely outgoing boundary conditions. We will
see that there is a one-to-one correspondence between the complex poles of the analytically
continued S-matrix and the complex generalized eigenvalues obtained under purely outgoing
boundary conditions.

In the radial representation, Eqs. (6.3.1) and (6.3.3) read

〈r|z−R〉 = 〈r|
1

zR −H0 + i0
V |z−R〉 = lim

E→zR
〈r| 1

E −H0 + i0
V |E〉 , (6.3.4a)

〈r|z∗R+〉 = 〈r| 1

z∗R −H0 − i0
V |z∗R+〉 = lim

E→z∗R

〈r| 1

E −H0 − i0
V |E〉 . (6.3.4b)

Instead of solving these integral equations, we solve the equivalent Schrödinger differential
equation (

− ~2

2m

d2

dr2
+ V (r)

)
〈r|zR〉 = zR〈r|zR〉 , (6.3.5)

subject to the boundary conditions built into them,

〈0|zR〉 = 0 (6.3.6a)

〈r|zR〉 is continuous at r = a and at r = b (6.3.6b)

d

dr
〈r|zR〉 is continuous at r = a and at r = b (6.3.6c)

〈r|zR〉 ∼ eikRr as r →∞ , (6.3.6d)

where

kR =

√
2m

~2
zR . (6.3.7)

In Eqs. (6.3.5) and (6.3.6), we have used the same symbol 〈r|zR〉 to denote both 〈r|z−R〉
and 〈r|z∗R+〉. This will create no confusion, because whenever zR = ER − iΓR/2, then
〈r|zR〉 will mean 〈r|z−R〉, and whenever zR = ER + iΓR/2, then 〈r|zR〉 will mean 〈r|z∗R+〉.
Condition (6.3.6d) is the purely outgoing boundary condition. At first glance, it may look
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like we have imposed also a purely outgoing boundary condition upon the growing Gamow
eigenfunctions 〈r|z∗R+〉. However, since kR is complex, the function eikRr is not always an
outgoing wave. In fact, it is an outgoing wave only when Re(kR) is positive, i.e., when we
are working with the decaying Gamow vector 〈r|z−R〉, and it is an incoming wave only when
Re(kR) is negative, i.e., when we are working with the growing Gamow vector 〈r|z∗R+〉. This
means that working with the momentum kR rather than with zR will allow us to obtain the
decaying and the growing Gamow vectors at the same time.

The purely outgoing boundary condition (6.3.6d) is often written as

lim
r→∞

du(r; zR)

dr
− ikRu(r; zR) = 0 , (6.3.8)

where
u(r; zR) = 〈r|zR〉 . (6.3.9)

One can easily check that (6.3.8) is equivalent to (6.3.6d).
If we impose the conditions (6.3.6a)-(6.3.6c) upon the general solution of Eq. (6.3.5), we

obtain that, up to a normalization factor, the solution has the form

χ(r; zR) ≡ χ(r; kR) =





sin(kRr) 0 < r < a
J1(kR)e

iQRr + J2(kR)e
−iQRr a < r < b

J3(kR)e
ikRr + J4(kR)e

−ikRr b < r <∞ ,
(6.3.10)

where

QR =

√
k2R −

2m

~2
V0 =

√
2m

~2
(zR − V0) . (6.3.11)

The eigensolution (6.3.10), which does not satisfy the purely outgoing boundary condition
yet, is equal to the analytic continuation of the regular solution χ(r;E) of Eq. (5.2.22). In
Eq. (6.3.10), there is no restriction on the values that zR can take, i.e., before imposing
the purely outgoing boundary condition zR can be any complex number. If we now impose
(6.3.6d) upon the eigensolution (6.3.10), then the coefficient J4(kR) = i/2J+(kR) must be
zero. Since this condition is the same as the condition (6.2.4) for the complex poles of the
S-matrix, the set of generalized complex eigenvalues zR must include the set of S-matrix
resonance poles. We now show that these two sets of solutions are the same.

The boundary conditions (6.3.6) can be written in terms of the coefficients of (6.3.10)
as

J1e
iQRa + J2e

−iQRa = sin(kRa) (6.3.12a)

iQR(J1e
iQRa −J2e

−iQRa) = kR cos(kRa) (6.3.12b)

J3e
ikRb = J1e

iQRb + J2e
−iQRb (6.3.12c)

ikRJ3e
ikRb = iQR(J1e

iQRb − J2e
−iQRb) . (6.3.12d)

Writing this set of linear equations as a matrix equation we obtain



sin(kRa) 0 −eiQRa −e−iQRa

kR cos(kRa) 0 −iQRe
iQRa iQRe

−iQRa

0 eikRb −eiQRb −e−iQRb

0 ikRe
ikRb −iQRe

iQRb iQRe
−iQRb







1
J3

J1

J2


 =




0
0
0
0


 . (6.3.13)
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This is a homogeneous system of four equations with four unknowns. The system has a
non-trivial solution iff the determinant of the coefficients is equal to zero,

∣∣∣∣∣∣∣∣

sin(kRa) 0 −eiQRa −e−iQRa

kR cos(kRa) 0 −iQRe
iQRa iQRe

−iQRa

0 eikRb −eiQRb −e−iQRb

0 ikRe
ikRb −iQRe

iQRb iQRe
−iQRb

∣∣∣∣∣∣∣∣
= 0 . (6.3.14)

Straightforward computations show that the condition (6.3.14) is the same as the condition
(6.2.5). Thus the set of generalized eigenvalues of the time independent Schrödinger equation
subject to purely outgoing boundary conditions is the same as the set of S-matrix poles.

As we mentioned earlier, the solutions of (6.2.5) come in pairs of a growing and a decaying
pole. We have denoted those poles by zn and z∗n and their corresponding momenta by kn
and −k∗n. The eigenfunction associated to zn = En − iΓn/2 is the decaying Gamow vector
in the position representation, whose radial part, up to a normalization factor, is

un(r; zn) ≡ un(r; kn) =





1
J3(kn)

sin(knr) 0 < r < a

J1(kn)
J3(kn)

eiQnr + J2(kn)
J3(kn)

e−iQnr a < r < b

eiknr b < r <∞ .

(6.3.15)

The eigenfunction associated to z∗n = En+iΓn/2 is the growing Gamow vector in the position
representation, whose radial part, up to a normalization factor, is

un(r; z
∗
n) ≡ un(r;−k∗n) =





1
J3(−k∗n)

sin(−k∗nr) 0 < r < a

J1(−k∗n)
J3(−k∗n)

e−iQ
∗
nr + J2(−k∗n)

J3(−k∗n)
eiQ

∗
nr a < r < b

e−ik
∗
nr b < r <∞ .

(6.3.16)

Form equations (6.3.10), (6.3.15) and (6.3.16) it follows that the Gamow eigenfunctions are
proportional to the analytic continuation of the regular solution,

un(r; kn) =
2i

J−(kn)
χ(r; kn) , (6.3.17a)

un(r;−k∗n) =
2i

J−(−k∗n)
χ(r;−k∗n) . (6.3.17b)

The Gamow vector (6.3.15) is defined up to a normalization factor. By normalization
we mean the function Nn of zn by which we can multiply the Gamow eigenfunction un(r; zn)
to obtain another eigenfunction Nnun(r; zn) with the same eigenvalue zn and satisfying the
same boundary conditions (6.3.6). If no confusion arises, we denote the normalized Gamow
vector also by un(r; zn),

un(r; zn) ≡ un(r; kn) =





Nn

J3(kn)
sin(knr) 0 < r < a

NnJ1(kn)
J3(kn)

eiQnr + NnJ2(kn)
J3(kn)

e−iQnr a < r < b

Nne
iknr b < r <∞ .

(6.3.18)
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After this normalization Eq. (6.3.17a) becomes

un(r; zn) ≡ un(r; kn) =
2iNn

J−(kn)
χ(r; kn) (6.3.19)

There is an extensive literature on the normalization of Gamow vectors (cf. [40] and refer-
ences therein). We shall not treat this problem here, although we would like to mention
that the normalization proposed by A. Mondragón et al. [40] seems to be the most suitable.

The eigenfunctions un(r; zn) of the differential operator h are obviously not square in-
tegrable, i.e., they do not belong to the Hilbert space L2([0,∞), dr). In order to construct
an eigenket |z−n 〉 of the Hamiltonian H associated to the eigenfunction un(r; zn), we follow
the pattern of Section 5.3. The Gamow ket |z−n 〉 associated to the eigenfunction un(r; zn) is
defined by

|z−n 〉 : Φ+ 7−→ C

ψ− 7−→ 〈ψ−|z−n 〉 :=
∫ ∞

0

dr ψ−(r)u(r; zn) . (6.3.20)

Under the assumptions made upon the elements ψ− ofΦ+, the function |z−n 〉 is a well-defined
antilinear functional. It is easy to show that the function |z−n 〉 is a generalized eigenvector
of H with complex eigenvalue zn,

H×|z−n 〉 = zn|z−n 〉 , (6.3.21)

or more precisely,
〈ψ−|H×|z−n 〉 = zn〈ψ−|z−n 〉 , ∀ψ− ∈ Φ+ . (6.3.22)

In a similar vein, we can define a ket |z∗n+〉 associated to the eigenfunction un(r; z
∗
n),

|z∗n+〉 : Φ− 7−→ C

ϕ+ 7−→ 〈ϕ+|z∗n+〉 :=
∫ ∞

0

dr ϕ+(r)u(r; z∗n) , (6.3.23)

and prove that this is a well defined antilinear eigenfunctional of the Hamiltonian H with
complex eigenvalue z∗n,

〈ϕ+|H×|z∗n+〉 = z∗n〈ϕ+|z∗n+〉 , ∀ϕ+ ∈ Φ− . (6.3.24)

6.3.3 The Gamow Vectors in Energy Representation

Once we have constructed the Gamow vector |z−n 〉 in the position representation, it is
straightforward to compute its energy representation. We shall obtain the Gamow vector
in two different energy representations. One of them is the standard energy representation
associated to the physical spectrum, which is [0,∞) in our example. The other one is asso-
ciated to the (−∞,∞) spectrum. These two representations are related by the function θ of
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Appendix 5.5.2. We shall show that in the [0,∞)-energy representation the Gamow vector
acts as the antilinear complex delta functional2 multiplied by a normalization factor. In the
(−∞,∞)-energy representation, the Gamow vector can be associated to the Breit-Wigner
amplitude multiplied by a normalization factor.

First, we define the antilinear complex delta functional |ẑ−n 〉,

|ẑ−n 〉 : Φ̂+|R+ 7−→ C

ψ̂− 7−→ 〈ψ̂−|ẑ−n 〉 := ψ̃−(zn) , (6.3.25)

where the function ψ̃−(z) is defined by

ψ̃−(z) := ψ̂−(z) . (6.3.26)

The function |ẑ−n 〉 is a well defined antilinear functional over the space Φ̂+|R+, since the

elements ψ̂− of Φ̂+|R+ were taken to be in H2
+.

It can be shown that the [0,∞)-energy representation of |z−n 〉 is the antilinear complex
delta functional |ẑ−n 〉 save for a normalization factor An,

U×
− |z−n 〉 = An|ẑ−n 〉 . (6.3.27)

The proof of Eq. (6.3.27) is as follows: from Eqs. (5.2.21) and (6.3.19) we conclude
that the Gamow eigenfunction u(r; kn) is proportional to the analytic continuation of
the Lippmann-Schwinger eigenfunction χ−(r; k),

un(r; kn) = 2iNnχ
−(r; kn) . (6.3.28)

Then the Gamow eigenfunction is proportional to the analytic continuation of the
eigenfunction σ−(r;E),

un(r; zn) = Anσ
−(r; zn) . (6.3.29)

From Eq. (6.3.29) and from the (assumed) properties of the elements ψ− ∈ Φ+ (see
Section 5.3) it follows that

〈ψ̂−|U×
− |z−n 〉 = 〈ψ−|z−n 〉

=

∫ ∞

0
dr ψ−(r)un(r; zn)

= An

∫ ∞

0
dr ψ−(r)σ−(r; zn)

= An ψ̂−(zn)

= An〈ψ̂−|ẑ−n 〉 , ∀ψ̂− ∈ Φ̂+|R+ , (6.3.30)

where in the last step we have used the definition (6.3.25). This proves Eq. (6.3.27).

2For a great deal of information about the antilinear complex delta functional and its representations,
the reader is referred to [87].
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If we write the action of |ẑ−n 〉 as an integral operator, the kernel of integration is the
complex delta function,

〈ψ̂−|ẑ−n 〉 =
∫ ∞

0

dE Anδ(E − zn)ψ̂−(E) . (6.3.31)

We are now going to study the relation between the complex delta function and the
Breit-Wigner amplitude. We shall show that

θ×| 1

E − zn
−〉 = An|ẑ−n 〉 , (6.3.32)

where θ× is the dual extension of the function θ, and θ is the function that takes any function
of Φ̂+ into its restriction to the positive real line (cf. Appendix 5.5.2). The functional | 1

E−zn
−〉

of Eq. (6.3.32) is associated to the Breit-Wigner amplitude by

| 1

E − zn
−〉 : Φ̂+ 7−→ C

θ−1ψ̂− 7−→ 〈θ−1ψ̂−| 1

E − zn
−〉 :=

∫ ∞

−∞
dE

(
− 1

2πi

An
E − zn

)
θ−1ψ̂−(E) ,

(6.3.33)

where An is the normalization factor of Eq. (6.3.27). We shall call the functional defined
by Eq. (6.3.33) the Breit-Wigner functional. By Titchmarsh theorem [80], the Breit-Wigner
functional is a well defined antilinear functional.

The key property that will be used to prove (6.3.32) is that the functions ψ̂− of Φ̂+|R+ are
boundary values of Hardy functions from above. In order to build the ground of that proof,
we first show the relation between the [0,∞)-energy representation and the (−∞,∞)-energy
representation:

ψ̂− , Φ̂+|R+ ⊂ L2([0,∞), dE) ⊂ (Φ̂+|R+)× [0,∞)−energy repr.

↑ θ ↑ θ×

θ−1ψ̂− , Φ̂+ ⊂ H2
+ ⊂ Φ̂×

+ (−∞,∞)−energy repr.
(6.3.34)

where H2
+ is the space of Hardy functions from above. It is worthwhile noting that although

we have denoted the functions θ−1ψ̂− and ψ̂− by a different symbol, they are indeed the same
function. More precisely, they are different “pieces” of the same function. In particular, the
value of their analytic continuation at a complex number z is the same,

θ−1ψ̂−(z) = ψ̂−(z) . (6.3.35)

Obviously, the functions ψ̃− and θ−1ψ̃− enjoy an analogous property,

θ−1ψ̃−(z) = ψ̃−(z) . (6.3.36)

The reason why we use a different symbol for different “pieces” of the same function is that
the the proof on the connection between the Breit-Wigner amplitude and the complex delta
function becomes more apparent:
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Let θ−1ψ̂− ∈ Φ̂×
+. Then θ

−1ψ̃− = θ−1ψ̂− ∈ H2
−. By Titchmarsh theorem [80],

θ−1ψ̃−(zn) = −
1

2πi

∫ ∞

−∞
dE

1

E − zn
θ−1ψ̃−(E) . (6.3.37)

Multiplying this equation by An we obtain

Anθ
−1ψ̃−(zn) = −

1

2πi

∫ ∞

−∞
dE

An
E − zR

θ−1ψ̃−(E) . (6.3.38)

From Eqs. (6.3.33) and (6.3.38) it follows that

Anθ
−1ψ̃−(zn) = 〈θ−1ψ̂−| 1

E − zn
−〉 . (6.3.39)

We now define the action of θ× on | 1
E−zn

−〉 by

〈ψ̂−|θ×| 1

E − zn
−〉 := 〈θ−1ψ̂−| 1

E − zn
−〉 . (6.3.40)

Eqs. (6.3.39) and (6.3.40) lead to

〈ψ̂−|θ×| 1

E − zn
−〉 = An θ

−1ψ̃−(zn) . (6.3.41)

Taking advantage of Eq. (6.3.36) we can write (6.3.41) as

〈ψ̂−|θ×| 1

E − zn
−〉 = An ψ̃

−(zn) , ∀ψ̂− ∈ Φ̂+|R+ . (6.3.42)

The right hand side of this equation equals the action of the complex delta function
at ψ̂− multiplied by An,

〈ψ̂−|θ×| 1

E − zn
−〉 = An 〈ψ̂−|ẑ−n 〉 , ∀ψ̂− ∈ Φ̂+|R+ , (6.3.43)

which proves (6.3.36).

Therefore, the Gamow eigenfunction un(r; zn), the complex delta function (multiplied
by a normalization factor) Anδ(E − zn) and the Breit-Wigner amplitude (multiplied by a
normalization factor) iAn/2π(E − zn) correspond to the same object in different represen-
tations,

un(r; zn) ←→ Anδ(E − zn) , E ∈ [0,∞) ←→ − 1
2πi

An

E−zn , E ∈ (−∞,∞)

posit. repr. [0,∞)-energy repr. −(∞,∞)-energy repr.
(6.3.44)



216 6 Gamow Vectors of the Square Barrier Potential Resonances

We summarize the results of this section in the following diagram:

H ; ψ−(r) Φ+ ⊂ L2([0,∞), dr) ⊂ Φ×
+ 〈r|z−n 〉 ≡ un(r; zn)

↓ U− ↓ U− ↓ U×
−

Ê; ψ̂−(E) Φ̂+|R+ ⊂ L2([0,∞), dE) ⊂ (Φ̂+|R+)× 〈−E|z−n 〉 ≡ Anδ(E − zn)

↑ θ ↑ θ×

Ê; ψ̂−(E) Φ̂+ ⊂ H2
+ ⊂ Φ̂×

+ 〈−E|z−n 〉 ≡ − 1
2πi

An

E−zn
(6.3.45)

In this diagram, we have denoted both ψ̂−(E) ∈ Φ̂+|R+ and θ−1ψ̂−(E) ∈ Φ̂+ by the same

symbol ψ̂−(E), since no distinction is necessary any more. We stress that in the second line
of (6.3.45) the energy is allowed to run over the physical spectrum [0,∞), whereas in the
bottom line the energy is allowed to run over (−∞,∞).

6.4 Complex Basis Vector Expansion

The Lippmann-Schwinger kets are basis vectors that were used to expand a normalizable
smooth function ϕ+ as in (5.3.7). The Gamow vectors are also basis vectors. The expansion
generated by the Gamow vectors is called the complex basis vector expansion. However, the
Gamow vectors do not form a complete basis system. The complex basis vector expansion
needs an additional set of Dirac kets corresponding to the energies that lie in the negative
real axis of the second sheet of the Riemann surface. This has been realized also by other
authors [40, 43, 42], who have used the Green function to construct the complex basis vector
expansion.

In this section, we expand a normalizable wave function in terms of the Gamow vectors
and a continuous set of Dirac kets. The Gamow vectors contain the resonance contribution,
whereas the contribution of the additional set of Dirac kets is interpreted as a background.
The complex basis vector expansion is not valid for every normalizable wave function, i.e.,
for every element of the Hilbert space, but only for functions ϕ+ ∈ Φ−. The technicalities
of that expansion can be found in [88].

In a scattering experiment, we measure the transition probability from a state (in-state)
ϕ+ into an observable (out-state) ψ−. In Section 5.4, we wrote the amplitude of this prob-
ability as

(
ψ−, ϕ+

)
=

∫ ∞

0

〈ψ−|E−〉S(E)〈E+|ϕ+〉dE . (6.4.1)

The function S(E) is the energy representation of the S-matrix. This function can be
analytically continued into a two-sheeted Riemann surface, and the quantity S(E) in (6.4.1)
represents the boundary value of this analytic function on the upper lip of the cut in the
Riemann surface. We now extract the resonance contribution out of (6.4.1). This resonance
contribution is carried by the Gamow vectors. In order to do so, we deform the contour of
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integration into the lower half-plane of the second sheet of the Riemann surface, where the
decaying resonance poles are located (see Figure 6.3a of Appendix 6.9). Using the results
that appear in [88], we can write (6.4.1) as

(
ψ−, ϕ+

)
=

∫ −∞

0

〈ψ−|E−〉S(E)〈E+|ϕ+〉dE − 2πi
∞∑

n=0

rn〈ψ−|z−n 〉〈+zn|ϕ+〉 , (6.4.2)

where rn denotes the residue of the S-matrix at zn. The integral in Eq. (6.4.2) is done on
the negative real semiaxis of the second sheet of the Riemann surface. The series in (6.4.2)
can be shown to be convergent [88]. Omitting ψ− in (6.4.2), we get the complex basis vector
expansion for the states,

ϕ+ =

∫ −∞

0

|E−〉S(E)〈+E|ϕ+〉dE − 2πi
∞∑

n=0

rn|z−n 〉〈+zn|ϕ+〉 . (6.4.3)

In Eq. (6.4.3), the infinite sum contains the resonances contribution, while the integral
is interpreted as the background contribution. Needless to say, the Gamow vectors in
Eq. (6.4.3) are defined up to a normalization factor.

Similarly, we obtain the complex basis vector expansion for the observable ψ− [88], but
now we deform the contour of integration into the upper half-plane of the second sheet of
the Riemann surface, where the growing resonance poles are located (see Figure 6.3b)

ψ− =

∫ −∞

0

|E+〉S(E)〈E−|ψ−〉dE + 2πi
∞∑

n=0

r∗n|z∗n+〉〈−z∗n|ψ−〉 . (6.4.4)

In this equation, r∗n denotes the residue of S-matrix at z∗n. The integration in (6.4.4) is
performed on the negative real semiaxis of the second sheet of the Riemann surface. The
series in (6.4.4) has been shown to be convergent [88].

6.5 Semigroup Time Evolution of the Gamow Vectors

Now, we want to study the time evolution of the Gamow vectors. In order to do it, we
need to consider the operator U(t) = e−iHt/~, which governs the time evolution of the vector
states in Hilbert space. The operator conjugate to U(t) is defined by

〈φ|U×(t)|F 〉 = 〈U †(t)φ|F 〉 , (6.5.1)

where φ denotes ϕ+ ∈ Φ− or ψ− ∈ Φ+ and F belongs to Φ×
− or Φ×

+, respectively. Eq. (6.5.1)
will also be denoted as

〈φ|e−iH×t/~|F 〉 = 〈eiHt/~φ|F 〉 . (6.5.2)

The conjugate operator U×(t) determines the time evolution of the elements inΦ×
±, whenever

it can be defined.
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We have assumed that Φ̂± = S ∩H2
±. Under this assumption, the following statements

can be proved [20, 91]:

i.) For any t ≥ 0, eiHt/~Φ+ ⊂ Φ+ and eiHt/~ is continuous on Φ+. For any t < 0, there
is a ψ− ∈ Φ+ such that eiHt/~ψ− /∈ Φ+.

ii.) For any t ≤ 0, eiHt/~Φ− ⊂ Φ− and eiHt/~ is continuous on Φ−. For any t > 0, there
is a ϕ+ ∈ Φ− such that eiHt/~ϕ+ /∈ Φ−.

This leads to the following consequences:

i.) For any t ≥ 0, one can define the conjugate of U(t) = e−iHt/~, which extends the
evolution operator U(t) = e−iHt/~ to a continuous operator and defines the time evolution

on Φ×
+. This cannot be done for any t < 0. We denote this extension as U×

+ (t) = e
−iH×t/~
+ .

ii.) For any t ≤ 0, one can define the conjugate of U(t) = e−iHt/~, which extends the
evolution operator U(t) = e−iHt/~ to a continuous operator and defines the time evolution

on Φ×
−. This cannot be done for any t > 0. We denote this extension as U×

− (t) = e
−iH×t/~
− .

It seems natural to consider these extensions as the operators that determine the time
evolution of the objects in the dual spaces. We observe that this time evolution is not
defined for all values of t. This has important consequences for the time evolution of the
Gamow vectors.

Consider the decaying Gamow vector |z−n 〉. From the above comments, it is not difficult
to see [20] that the evolution operator U×

+ (t) acts on |z−n 〉 if and only if t ≥ 0,

U×
+ (t)|z−n 〉 = e−iEnt/~ e−Γnt/(2~)|z−n 〉 , only for t ≥ 0 , (6.5.3)

or more precisely,

〈ψ−|U×
+ (t)|z−n 〉 = e−iEnt/~ e−Γnt/(2~)〈ψ−|z−n 〉 , ∀ψ− ∈ Φ+ , t ≥ 0 only . (6.5.4)

We see that the Gamow vector decays exponentially. Thus it fulfills the properties that are
demanded from the decaying resonance states. Much more significant is the property that
the time evolution of the decaying Gamow vectors occurs for t > 0 only—the time evolution
of Gamow vectors is time asymmetric.

Consider now the Gamow vector |z∗+n 〉. The evolution operator U×
− (t) acts on |z∗+n 〉 if

and only if t ≤ 0,

U×
− (t)|z∗+n 〉 = e−iEnt/~ eΓnt/(2~)|z∗+n 〉 , only for t ≤ 0 , (6.5.5)

or more precisely,

〈ϕ+|U×
− (t)|z∗+n 〉 = e−iEnt/~ eΓnt/(2~)〈ϕ+|z∗+n 〉 , ∀ϕ+ ∈ Φ− , t ≤ 0 only . (6.5.6)

Therefore, the symmetric group evolution of the Hilbert space splits up into two semi-
groups, expressing time asymmetry on a microscopic level.3

3For more on the description of time asymmetry in Quantum Mechanics in terms of the propagators,
the reader is referred to [32].
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6.6 Time Asymmetry of the Purely Outgoing Bound-

ary Condition

The semigroup time evolution of the Gamow vectors expresses the time asymmetry built
into them. We will show here that the purely outgoing boundary condition that singles
out the resonance energies has also a time asymmetry built into it. To be more precise,
we will show that the purely outgoing boundary condition should read as purely outgoing
only for the decaying part of a resonance and as purely incoming for the growing part of
the resonance. Because the purely incoming condition is the time reversed of the purely
outgoing one, the growing Gamow vector can be viewed as the time reversed of the decaying
Gamow vector [60] (see also next chapter).

6.6.1 Outgoing Boundary Condition in Phase

First, we study the meaning of the purely outgoing boundary condition when it is imposed
on the decaying part of the resonance. The complex energy associated to the decaying
part of a resonance is zn = En − iΓn/2 (En,Γn > 0) which lies in the fourth quarter of
the second sheet of the Riemann surface (see Figure 6.2a). Its corresponding momentum
kn = Re(kn)− iIm(kn) (Re(kn), Im(kn) > 0) lies in the fourth quadrant of the momentum
plane (see Figure 6.1). The decaying Gamow vector un(r; zn) of Eq. (6.3.15) was obtained
after imposing the purely outgoing boundary condition (6.3.6d) upon (6.3.10). If we had not
imposed this condition, we would had obtained a solution of the form (6.3.10), and every
complex number would had been a generalized eigenvalue of the Hamiltonian. In the region
r > b, this solution would had been the sum of two linearly independent solutions

udecayingincoming(r; zn; t) = J4e
−iknre−iznt/~

=
(
J4e

−Im(kn)r−Γnt/(2~)
)
e−iRe(kn)r−iEnt/~ , r > b , (6.6.1)

which we call incoming decaying Gamow vector, and

udecayingoutgoing(r; zn; t) = J3e
iknre−iznt/~

=
(
J3e

Im(kn)r−Γnt/(2~)
)
eiRe(kn)r−iEnt/~ , r > b , (6.6.2)

which we call outgoing decaying Gamow vector. These names come from the standard
interpretation (see, for instance, [92]) of plane waves with a complex exponent: the expo-
nential with purely imaginary exponent—the term that carries the phase—is interpreted as
the term that governs the propagation of the wave, and the exponential with real exponent
is interpreted as the term that just changes the amplitude of the wave on the surfaces of
equal phase [92]. We are going to interpret (6.6.1) and (6.6.2) in the same fashion. The
terms between brackets in (6.6.1) and (6.6.2) determine the amplitude of the waves. The
propagation of udecayingoutgoing is governed by eiRe(kn)re−iEnt/~, and therefore udecayingoutgoing is an outgoing

wave (in phase). Analogously, the propagation of udecayingincoming is governed by e−iRe(kn)re−iEnt/~,

and thus udecayingincoming is an incoming wave (in phase). Imposing the purely outgoing boundary
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condition J4 = 0 is tantamount to forbidding udecayingincoming. Thus for the decaying part of the
resonance the purely outgoing boundary condition allows only purely outgoing waves (in
phase).

The meaning of the purely outgoing boundary condition applied to the growing part
of the resonance is the opposite. The growing energy eigenvalue z∗n = En + iΓn/2 lies in
the first quadrant of the second sheet of the Riemann surface (see Figure 6.2b), and its
momentum −k∗n = −Re(kn) − iIm(kn) lies in the third quadrant of the momentum plane
(see Figure 6.1). The growing Gamow vector un(r; z

∗
n) of Eq. (6.3.16) was obtained after

imposing the condition J4 = 0 on (6.3.10). If we had not imposed this condition, in the
region r > b the solution would had been the sum of two linearly independent solutions

ugrowingincoming(r; z
∗
n; t) = J3e

−ik∗nre−iz
∗
nt/~

=
(
J3e

Im(kn)r+Γnt/(2~)
)
e−iRe(kn)r−iEnt/~ , r > b , (6.6.3)

that we call incoming growing Gamow vector, and

ugrowingoutgoing(r; z
∗
n; t) = J4e

ik∗nre−iz
∗
nt/~

=
(
J4e

−Im(kn)r+Γnt/(2~)
)
eiRe(kn)r−iEnt/~ , r > b , (6.6.4)

that we call outgoing growing Gamow vector. The names come also after the standard
interpretation [92] of plane waves with a complex exponent. Therefore, the purely outgoing
boundary condition J4 = 0, when applied to the growing part of a resonance, bans ugrowingoutgoing

and allows only purely incoming waves (in phase).

6.6.2 Outgoing Boundary Condition in Probability Density

In the previous section, we showed how the time asymmetry built into the purely outgoing
boundary condition affected the phase of the Gamow vectors. In this section, we show the
same time asymmetry but now considering the probability density of the Gamow vectors.

For the decaying part of the resonance, the probability densities (before imposing the
purely outgoing boundary condition) are obtained by taking the absolute value square of
(6.6.1)

ρdecayingincoming(r; zn; t) = |udecayingincoming(r; zn; t)|2 = |J4|2e−2Im(kn)r−Γnt/~

= |J4|2e−Γn/~(t+r/vn) , r > b , (6.6.5)

that we call incoming decaying probability density, and of (6.6.2)

ρdecayingoutgoing(r; zn; t) = |udecayingoutgoing(r; zn; t)|2 = |J3|2e2Im(kn)r−Γnt/~

= |J3|2e−Γn/~(t−r/vn) , r > b , (6.6.6)

that we call outgoing decaying probability density (vn = Γn/(2~Im(kn))). By imposing the
purely outgoing boundary condition J4 = 0, we only allow (6.6.6) and forbid (6.6.5), which
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we interpret by saying that we have a purely outgoing probability density condition for the
decaying part of the resonance.

For the growing part of the resonance, the probability densities (before imposing J4 = 0)
are the absolute value square of (6.6.3)

ρgrowingincoming(r; z
∗
n; t) = |ugrowingincoming(r; z

∗
n; t)|2 = |J3|2e2Im(kn)r+Γnt/~

= |J3|2eΓn/~(t+r/vn) , r > b , (6.6.7)

that we call the incoming growing probability density, and of (6.6.4)

ρgrowingoutgoing(r; z
∗
n; t) = |ugrowingoutgoing(r; z

∗
n; t)|2 = |J4|2e−2Im(kn)r+Γnt/~

= |J4|2eΓn/~(t−r/vn) , r > b , (6.6.8)

that we call the outgoing growing probability density. For this growing part, the condition
J4 = 0 leads to the conclusion that in the growing stage of a resonance only waves with
purely incoming probability density are allowed.

In short, the purely outgoing boundary condition (6.3.6d) must be read as purely outgoing
(in phase or in probability density) only for the decaying part of the resonance and as purely
incoming (in phase or in probability density) for the growing part of the resonance.

6.7 Exponential Decay Law of the Gamow Vectors

If we are dealing with a scattering system with resonances, the complex basis vector expan-
sion allows us to isolate the contribution of each resonance. To illustrate this, we are going
to see how the exponential decay law holds if only the contribution of a resonance is taken
into account.

We want to determine the probability P∆r0(t) of detecting the decaying state within
a shell of width ∆r0 outside the potential region (r > b). This is the probability that
is measured by the counting rate of a detector placed, for example, outside a radioactive
nucleus from which an α particle is emitted. We assume that the detector surrounds the
nucleus completely and that is at a distance r0 > b from the center r = 0.

Theoretically, the probability P∆r0(t) to observe an in-state ϕ+ at time t within the
interval ∆r0 around the surface r = r0 is given by

P∆r0(t) =

∫
dΩ

∫

∆r0

r2dr|〈r, θ, φ|ϕ+(t)〉|2 . (6.7.1)

Experimentally, the probability of finding the decaying state particle around r0, that is,
the counting rate of the detector, is not defined for all times t: a resonance must be first
prepared before the system can decay. The time at which the preparation of the resonance
is finished and at which the decay starts can be chosen arbitrarily (we choose it to be 0). For
example, the α particle emitted by an α-unstable nucleus travels at speed v = ΓR/(2~Im(k))
and reaches the point r0 at the time t(r0) = r0/v. For times less than t(r0), the α particle
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is not there yet, and therefore the counting rate measured by a detector placed at r0 is zero
for times t < r0/v. Whatever would have been counted by the detector before the instant
t(r0) at r0 cannot be connected with the decaying state. Thus the theoretical probability
to detect a resonance at r0 should be zero for t < r0/v. This is an instance of the time
asymmetry built into a decaying process.

Experimentally as well, the decay of unstable systems usually follows the exponential
law (cf. Refs. [44, 45, 46, 47]).

The Hilbert space cannot accommodate either the time asymmetry of P∆r0(t) [89] or
the exponential decay law [90]. To account for these two features, we should use the Rigged
Hilbert Space. In the RHS formulation, the Gamow vectors have an asymmetric time
evolution given by a semigroup e−iH

×t/~ (cf. Section 6.5 above), which accounts for the time
asymmetry of a resonant process. The behavior of the semigroup evolution is in contrast to
the time-symmetric Hilbert space time evolution, which is given by a group.

We are going to show that the exponential decay law holds if we consider only the
resonance (Gamow vector) contribution to the probability (6.7.1). In Section 6.4, we used
the Gamow vectors as basis vectors to expand the normalized in-state ϕ+ in terms of the
background and the resonance contribution (see Eq. (6.4.3)). In order to compute the n-th
resonance contribution to the probability (6.7.1), we approximate ϕ+ by the Gamow vector
by neglecting the background term and the contribution of the rest of the resonances in
(6.4.3),

ϕ+(r, θ, φ) ≃ ψDn (r, θ, φ) =
un(r; zn)

r
Y0,0(θ, φ) . (6.7.2)

Thus the n-th resonance contribution to the probability is

P∆r0(t) ≃
∫
dΩ

∫

∆r0

r2dr|〈r, θ, φ|ψDn (t)〉|2 . (6.7.3)

The time evolution of the n-th Gamow vector is given by

ψDn (t) = e−iH
×t/~ψDn = e−i(Ent−iΓn/2)t/~ψDn , (6.7.4)

and therefore

〈r, θ, φ|ψDn (t)〉 = e−i(En−iΓn/2)t/~
un(r; zn)

r
Y0,0(θ, φ) . (6.7.5)

Inserting (6.7.5) into (6.7.3) yields

P∆r0(t) ≃ |e−Γn/(2~)t|2
∫

∆r0

dr|un(r; zn)|2

= e−Γnt/~

∫

∆r0

dr|2iNn|2|ei(Re(kn)−iIm(kn))r|2

= e−Γnt/~|2Nn|2
∫ r0+∆r0

r0

dre2Im(kn)r

= e−Γnt/~|2Nn|2e2Im(kn)r0
e2Im(kn)∆r0 − 1

2Im(kn)
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≃ e−Γnt/~|2Nn|2e2Im(kn)r0 ∆r0 ,

= |2Nn|2∆r0 e−Γn/~ (t−r0/vn) , t > r0/vn , (6.7.6)

where we have used the approximation ∆r0 small in the next to the last step. Therefore,

P∆r0(t) ≃ |2Nn|2∆r0e−Γn/~ (t−r0/vn) , t > r0/vn . (6.7.7)

Equation (6.7.7) represents the n-th resonance contribution to the counting rate measured
by a detector placed at r0. This counting rate reaches its maximum at t = r0/vn, and
decreases exponentially as time goes on. Therefore, the n-th Gamow vector (resonance)
contribution to the probability P∆r0(t) follows the exponential decay law.

6.8 Conclusion to Chapter 6

In this chapter, we have constructed the Gamow vectors of the square barrier potential
resonances, and studied their properties. We have defined a decaying Gamow vector |z−n 〉
as the solution of the integral equation (6.3.1), whereas a growing Gamow vector |z∗+n 〉 has
been defined as the solution of (6.3.3). We have seen that in the radial representation the
Gamow eigenfunction 〈r|z−n 〉 satisfies the Schrödinger equation subject to a purely outgoing
boundary condition, whereas the growing Gamow eigenfunction 〈r|z∗+n 〉 satisfies a purely
incoming boundary condition. We have also seen that the purely outgoing boundary con-
dition produces the same resonance spectrum as the S-matrix spectrum of Figure 6.2. The
[0,∞)-energy representation of the eigenfunction 〈r|z−n 〉 has been shown to be the complex
delta function multiplied by a normalization factor Anδ(E− zn). The (−∞,∞)-energy rep-
resentation of the eigenfunction 〈r|z−n 〉 has been shown to be the Breit-Wigner amplitude
multiplied by a normalization factor −1/(2πi)An/(E − zn).

The time evolution of the Gamow kets has been shown to be governed by a semigroup,
expressing the time asymmetry built into a resonance.

The Gamow vectors have been used as basis vectors in the complex basis vector ex-
pansions (6.4.3) and (6.4.4). However, they do not form a complete basis, and therefore
a continuous set of Dirac kets was added to complete them. The expansions (6.4.3) and
(6.4.4) extract the resonance contribution out of the in- and out-states, respectively.

We have uncovered the time asymmetry that arises from the purely outgoing boundary
condition. We have seen that the purely outgoing boundary condition should read as purely
outgoing only for the decaying part of the resonance, and as purely incoming for the growing
part of the resonance.

The exponential law has been shown to hold if the background term of the complex
basis vector expansion is neglected—only the resonance (Gamow vector) contribution to
the probability is taken into consideration.
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6.9 Appendix 9: Figures

In this Appendix, we show the graphics of the square barrier potential resonance poles, both
in the momentum and energy complex planes. We also show the contours that where used
to obtain the complex basis vector expansion.

  

Im k

Re k

Figure 6.1: The resonance momenta of the square barrier potential.
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Figure 6.2: The resonance energies of the square barrier potential.
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E (first  sheet)

(a)

Sp(H)

E (second sheet)

E (first sheet)

E (second  sheet)

(b)

Sp(H)

Figure 6.3: Deformation of the path of integration into the second sheet of the energy
Riemann surface; (a) for the decaying states and (b) for the growing states.



Chapter 7

The Time Reversal Operator in the
Rigged Hilbert Space

In this chapter, we study the behavior of resonances under the time reversal operation. We
shall study the standard time reversal operator and also a non-standard one, which yields
a doubling of the RHS.

VLADIMIR: We’ve nothing more to do here.

ESTRAGON: Nor anywhere else.

VLADIMIR: Ah Gogo, don’t go like that.
To-morrow everything will be better.

ESTRAGON: How do you make that out?

VLADIMIR: Did you not hear what the child said?

ESTRAGON: No.

VLADIMIR: He said that Godot was sure to come
to-morrow. (Pause). What do you say to that?

ESTAGRON: Then all we have to do is to wait here.

Samuel Beckett, Waiting for Godot

227
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7.1 Introduction

In the previous chapter, we have seen that the time evolution of the Gamow vectors is given
by a semigroup and therefore is time asymmetric. We now want to discuss how this time
asymmetry behaves under the action of the time reversal operator in the nonrelativistic
domain [59]. We shall forget about our beloved square barrier potential and work with a
“general” potential.

We have seen in the previous two chapters that a scattering process should be described
by two RHSs. One RHS corresponds to the states ϕ+,

Φ− ⊂ Hac ⊂ Φ×
− , (7.1.1)

whereas the other RHS corresponds to the observables ψ−,

Φ+ ⊂ Hac ⊂ Φ×
+ . (7.1.2)

In both RHSs, the space Hac represents the Hilbert space of scattering states of the total
Hamiltonian H (“ac” stands for absolutely continuous). On Hac, H has absolutely contin-
uous spectrum only. We shall assume that this spectrum coincides with the positive real
line.

Suppose the S-matrix has a pair of simple poles at zR = ER − iΓR/2 and at z∗R =
ER + iΓR/2, and denote their corresponding Gamow vectors as |z−R〉 and |z∗R+〉. These
Gamow vectors have the following properties:

i.) The Gamow vectors are functionals,

|z−R〉 ∈ Φ×
+ , (7.1.3a)

|z∗R+〉 ∈ Φ×
− . (7.1.3b)

ii.) They are generalized eigenvectors of the total Hamiltonian H ,

H×|z−R〉 = zR|z−R〉 , (7.1.4a)

H×|z∗R+〉 = z∗R|z∗R+〉 . (7.1.4b)

iii.) The time evolution operator e−iHt can be continuously extended to Φ×
+ for positive

values of time and to Φ×
− for negative values of time. The continuity of the extensions refers

to the weak topology [93]. In addition we have:

e−iH
×t|z−R〉 = e−izRt|z−R〉 = e−iERte−ΓRt/2|z−R〉 , for t > 0 , (7.1.5a)

e−iH
×t|z∗R+〉 = e−iz

∗
Rt|z∗R+〉 = e−iERteΓRt/2|z∗R+〉 , for t < 0 . (7.1.5b)

The action of e−iH
×t on |z−R〉 for t < 0 and on |z∗R+〉 for t > 0 is, however, not defined. Thus

the Hilbert space group evolution splits into two semigroups. This splitting is a consequence
of the choice of Φ± and the properties of Hardy functions. The choice of Hardy functions is
related to a causality condition, and therefore the splitting is also related to causality. The
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splitting of the group of evolution into two semigroups shows the irreversible character of a
resonance [52, 54, 55].

In his study of the representations of the Poincaré group extended by time reversal and
parity, Wigner found four different possibilities (cf. Table I of Appendix 7.4 and Refs. [61,
62]). The first possibility is the standard one, but the other three imply a doubling of the
space that supports the representation. J. F. Cariñena and M. Santander constructed the
projective representations of the Galilei group extended by time inversion and parity [63].
They also found four possibilities for the case with mass. As for the Poicaré group, the
standard case does not yield a doubling of the space that supports the representation,
while the other three do yield a doubling. Bohm [64] has studied the latter time reversal
(ǫT = ǫI = −1) in the relativistic case, which yields a doubling. One of our goals is to
construct an analog to this doubling in the non-relativistic case for s-waves (j = 0).

In the next section, we discuss the effect of the time reversal operator on Gamow vec-
tors in the standard case. This standard case is labeled by ǫT = ǫI = 1 (see Table I of
Appendix 7.4). In Section 7.3, we study the the case ǫT = ǫI = −1 (see Table I of Ap-
pendix 7.4) and present the idea of time reversal doubling. In Appendix 7.4, we review some
general aspects of the time reversal operation.

7.2 The Standard Time Reversal Operator (ǫT = ǫI =

1)

In this section, we present the effect of the standard time reversal operation on scattering
systems having (simple pole) resonances. The notation we are using here does not differ
essentially from that in Ref. [59], although there is a couple of differences:

i.) The restriction to the positive real semiaxis of intersections of Hardy spaces with the
Schwartz space are denoted here by

H2
± ∩ S

∣∣
R+

. (7.2.1)

The plus sign stands for Hardy functions on the upper half plane and the minus sign for
Hardy functions on the lower half plane. S is the Schwartz space on the real line.

ii.) The extension of the evolution operator e−iHt to the space Φ×
+ is denoted as U×

+ (t)
for t > 0, and the extension of e−iHt to Φ×

− is denoted as U×
− (t) for t < 0. These are the two

semigroups discussed in the introduction.
For simplicity, we shall work with a spherically symmetric potential and consider particles

without spin or any other possible degrees of freedom. We restrict ourselves to zero values
of the angular momentum, and denote the corresponding Hilbert space by H0. If the system
does not have bound states, the space H0 coincide with Hac.

Let us recall that the unitary operators U± diagonalize the total Hamiltonian H (or its
restriction to its absolutely continuous space Hac, if H has bound states), in the sense that
these operators give a unitary equivalence between H and the multiplication operator on
L2(R+, dE). They are a product of the inverses of the Møller operators times the operator
U0 that diagonalizes the free Hamiltonian, U± = U0Ω

†
±.
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For s waves (j = 0), the standard choice of the time reversal operation is ǫT = ǫI = 1 (see
Table I of Appendix 7.4). Therefore, in the energy representation the time reversal operator
AT acts as the complex conjugation C. Since the mapping C transforms any function of E
into its complex conjugate, we have

C : H2
± ∩ S

∣∣
R+ 7−→ H2

∓ ∩ S
∣∣
R+ . (7.2.2)

Moreover, one can show that this map is continuous.
Our next goal is to define time reversal operators AT± on Φ±. These operators should

be equivalent to C and the equivalence should be given by U±. Their definition is:

AT± := U †
± C U∓ . (7.2.3)

This definition makes the following diagram:

H2
± ∩ S

∣∣
R+

C−−→ H2
∓ ∩ S

∣∣
R+

U †
∓ ↓ ↓ U †

±

Φ± −−→
AT±

Φ∓

(7.2.4)

These operators have the following properties:

1. AT± are continuous antilinear mappings from Φ± onto Φ∓.

2. They can be extended to (continuous) antiunitary mappings from Hac onto itself.

3. Their adjoints are given by

A†
T± =

[
U †
± C U∓

]†
= U †

∓ C U± = AT∓ ; (7.2.5)

that is, they are adjoint to each other.

4. They are inverse to each other,

AT+AT− = U †
+CU−U

†
−CU+ = I , on Φ− , (7.2.6)

AT−AT+ = U †
−CU+U

†
+CU− = I , on Φ+ . (7.2.7)

Consider now a densely defined continuous antilinear operator A onH with the following
property: there are two RHSs Φ ⊂ H ⊂ Φ× and Ψ ⊂ H ⊂ Ψ× such that A† maps
continuously Φ into Ψ. Then, A can be extended by continuity to Φ× using the following
formula:

〈ψ|A×F 〉 := 〈A†ψ|F 〉 = 〈F |A†ψ〉 , ∀F ∈ Φ× , ∀ψ ∈ Ψ . (7.2.8)

Thus A× is a weak continuous antilinear mapping from Φ× into Ψ×. The proof of this goes
exactly as the proof for the linear case [93].
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It is straightforward to apply this definition to the time reversal operator, after making
the identification Φ = Φ±, Ψ = Φ∓, A = AT±, and A

† = AT∓. Thus, we have the following
continuous antilinear extensions:

A×
T± : Φ×

± 7−→ Φ×
∓ . (7.2.9)

These extensions are one-to-one, onto mappings with continuous inverses, and they indeed
extend AT± as originally defined in (7.2.3).

We now obtain the images of Lippmann-Schwinger kets and of the Gamow vectors by
A×
T±. To this end, let us consider two arbitrary vectors ϕ∓ ∈ Φ±.

1 Their wave functions in
the energy representation are given by

ϕ̂±(E) = 〈±E|ϕ±〉 = (U±ϕ
±)(E) ∈ H2

∓ ∩ S
∣∣
R+

. (7.2.10)

Using the definition of AT± we obtain

〈ϕ±|A×
T±|E∓〉 = 〈∓E|A†

T±ϕ
±〉 = Cϕ̂±(E) = ϕ̂±(E) = 〈ϕ±|E±〉 ; (7.2.11)

that is,
A×
T±|E∓〉 = |E±〉 . (7.2.12)

Take now the Gamow vectors |z−R〉 and |z∗R+〉. Then

〈ϕ+|A×
T+|z−R〉 = 〈−zR|A†

T+ϕ
+〉 = Cϕ̂+(zR) = ϕ̂+(zR) = 〈ϕ+|z∗+R 〉 ; (7.2.13)

that is,
A×
T+|z−R〉 = |z∗R+〉 . (7.2.14)

Analogously
A×
T−|z∗R+〉 = |z−R〉 . (7.2.15)

Next, we study the action of the standard time reversal operator on the time evolution
semigroups. We know that eiHtΦ+ ⊂ Φ+ if t > 0. Then,

AT+eiHtAT−ϕ+ = U †
+CU−e

iHtU †
−CU+ϕ

+

= U †
+Ce

itECU+ϕ
+

= U †
+e

−itEU+ϕ
+

= ei(−t)Hϕ+ , ϕ+ ∈ Φ− , t > 0 . (7.2.16)

Analogously, if t < 0, we have that eiHtΦ− ⊂ Φ−. Then

AT−e
iHtAT+ϕ

− = ei(−t)Hϕ− , ϕ− ∈ Φ+ , t < 0 . (7.2.17)

Therefore,

AT+U †
+(t)AT− = U †

−(−t) , t > 0 , (7.2.18a)

AT−U †
−(t)AT+ = U †

+(−t) , t < 0 . (7.2.18b)

1In this chapter, we shall denote the observables ψ− by ϕ− in order not to repeat the formulas twice.
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We see that the operators AT± transform one semigroup into the other. The extension of
these formulas to the dual spaces yields

A×
T+U×

+ (t)A
×
T− = U×

− (−t) , t > 0 , (7.2.19a)

A×
T−U×

− (t)A
×
T+ = U×

+ (−t) , t < 0 . (7.2.19b)

One could expect that the operators AT± are the same operator restricted to different
subdomains. That is true. As a matter of fact, their extensions to Hac coincide:

The proof of this statement is rather simple. Write

A2
T+ = U †

+CU−U
†
+CU− . (7.2.20)

Since U± = U0Ω
†
±, one has

A2
T+ = Ω+U

†
0CU0Ω

†
−Ω+U

†
0CU0Ω

†
− . (7.2.21)

The S operator is given by

S = Ω†
−Ω+ , (7.2.22)

and its adjoint is given by

S† = Ω†
+Ω− . (7.2.23)

Since

U0SU
−1
0 = U0SU

†
0 = S(E) (= S(E + i0) , E > 0) , (7.2.24)

we have that

U0S
†U †

0 = (U0SU
†
0)

† = S(E) . (7.2.25)

Plugging Eqs. (7.2.22)-(7.2.25) into (7.2.21) we obtain

A2
T+ = Ω+U

†
0CU0SU

†
0CU0Ω

†
−

= Ω+U
†
0CS(E)CU0Ω

†
−

= Ω+U
†
0S(E)U0Ω

†
−

= Ω+S
†Ω†

−

= Ω+Ω
†
+Ω−Ω

†
−

= I , (7.2.26)

where I is the identity on Hac. The same is true for AT−. Therefore AT+ is an
invertible bounded operator such that AT+ = A−1

T+ on Hac. Since A−1
T+ and AT−

coincide on the dense subspace Φ−, they are equal on H0, and we have that AT− =
A−1
T+ = AT+.
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7.3 The Time Reversal Doubling (ǫT = ǫI = −1)
In this section, we present the construction of the time reversal doubling. According to
Wigner [61, 62], there are three other possible representations of the Poincaré group extended
by time reversal and parity besides the (standard) one of the previous section. All four
possibilities are listed in Table I of Appendix 7.4.

Let us consider the following pair of RHSs:

H2
± ∩ S

∣∣
R+ ⊗ C2 ⊂ L2(R+)⊗ C2 ⊂

(
H2

± ∩ S
∣∣
R+

)× ⊗ C2 , (7.3.1)

where C2 denotes the two-dimensional linear space of column vectors whose entries are
complex numbers. The elements of each space of the triplet (7.3.1) can be expressed as
two-dimensional vectors whose entries belong to the space in the left hand side of the tensor
product. In the case ǫT = ǫI = −1, the time reversal operator in the energy representation
is defined by (cf. Table I of Appendix 7.4)

C :=
(

0 C
−C 0

)
, (7.3.2)

where C denotes the complex conjugation. This operator is antilinear and continuous from
H2

± ∩ S
∣∣
R+ ⊗ C2 onto H2

∓ ∩ S
∣∣
R+ ⊗ C2. By duality, it can be extended to a continuous

antilinear mapping C× from
(
H2

± ∩ S
∣∣
R+

)× ⊗ C2 onto
(
H2

∓ ∩ S
∣∣
R+

)× ⊗ C2.

Each space H2
± ∩ S

∣∣
R+ ⊗ C2 has two distinguished subspaces,

Σ+
± = H2

± ∩ S
∣∣
R+ ⊗

(
α
0

)
, (7.3.3a)

Σ−
± = H2

± ∩ S
∣∣
R+ ⊗

(
0
β

)
, (7.3.3b)

where α and β are arbitrary complex numbers. We have, therefore, two new RHSs that can
be written in the following form:

Σ±
± ⊂ L2±(R+) ⊂ (Σ±

±)
× , (7.3.4)

where

L2+(R+) = L2(R+)⊗
(
α
0

)
, (7.3.5a)

L2−(R+) = L2(R+)⊗
(

0
β

)
. (7.3.5b)

The dual of the spaces (7.3.3) can be written as

(Σ+
±)

× =
(
H2

± ∩ S
∣∣
R+

)× ⊗
(
α
0

)
, (7.3.6a)

(Σ−
±)

× =
(
H2

± ∩ S
∣∣
R+

)× ⊗
(

0
β

)
. (7.3.6b)
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It is not difficult to show that C is a continuous antilinear bijection from Σ±
± onto Σ∓

∓,

CΣ±
± = Σ∓

∓ . (7.3.7)

Thus C can be continuously extended to the dual spaces,

C×(Σ±
±)

× = (Σ∓
∓)

× . (7.3.8)

As an operator on Hac ⊗ C2, the square of C is proportional to the identity,

C2 = −I = ǫT I , (7.3.9)

where I represents the identity on Hac ⊗ C2 .
In order to clarify the notation, we replace the superscript signs by r, with r = +,−.

That is, we shall write Σr±, and so on. This notation makes it clear that the signs above are
independent of the signs below.

Let us define the operators
U± := U± ⊗ I , (7.3.10)

where I is the identity on C2. We can write these operators as

U± =

(
U± 0
0 U±

)
, (7.3.11)

and their adjoints as

U
†
± = U−1

± =

(
U †
± 0

0 U †
±

)
. (7.3.12)

It is clear that U± maps Hac ⊗ C2 onto L2(R+)⊗ C2. Using those operators, we can define
the following spaces:

Φr
± := U

†
∓ Σr± . (7.3.13)

Clearly, the spaces Φr
± are subspaces of Hac ⊗ C2. It is obvious that

Φr=+
± = Φ± ⊗

(
α
0

)
, (7.3.14a)

Φr=−
± = Φ± ⊗

(
0
β

)
. (7.3.14b)

The operators U± and their respective inverses U†
± can be continuously extended to the dual

spaces.
We are now in a position to introduce the time reversal operators for our ǫT = ǫI = −1

choice. They can be defined as
AT± := ±U†

±CU∓ . (7.3.15)

These two operators have similar properties to those satisfied by AT±. We list here these
properties without proofs, since these proofs do not differ much from those for AT±:
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1. AT± are continuous antilinear mappings from Φr
± onto Φ−r

∓ , respectively. They can
be continuously extended to antilinear mappings between the respective duals.

2. They are adjoint to each other,

A†
T± = AT∓ . (7.3.16)

3. As operators on Hac ⊗ C2, they are antiunitary. In addition, they are inverse to each
other,

AT+AT− = I , (7.3.17a)

AT−AT+ = I . (7.3.17b)

4. On the Hilbert space Hac ⊗ C2, we have that

A2
T± = −I =⇒ AT−AT+AT+ = −AT− =⇒ AT+ = −AT− . (7.3.18)

Formulas (7.3.16)-(7.3.18) are a consequence of the definition chosen in (7.3.15) for AT−
(with minus sign), which has its origin in the fact that C† = −C. If we redefined AT−
without the minus sign in (7.3.15), we would have

A†
T± = −AT∓ , (7.3.19a)

AT+AT− = −I , (7.3.19b)

AT−AT+ = −I , (7.3.19c)

AT+ = AT− . (7.3.19d)

We can choose either (7.3.16)-(7.3.18) or (7.3.19). The choice (7.3.19) has the advantage of
having a unique time reversal operator, and the distinction between AT+ and AT− indicates
the restriction of a unique time reversal operator to different subspaces Φr

±. As we shall see
later, this choice has the disadvantage of leading to the appearance of a minus sign in the
formulas of the action of the time reversal operator on the semigroups.

The importance of the above construction lies on the possibility of extending the time
reversal operator to the dual spaces, which contain the Lippmann-Schwinger kets and the
Gamow vectors.

We define the Lippmann-Schwinger kets in the ǫT = ǫI = −1 case as

|E±; r = +〉 =
(
|E±〉
0

)
∈ (Φr=+

∓ )× , (7.3.20a)

|E±; r = −〉 =
(

0
|E±〉

)
∈ (Φr=−

∓ )× . (7.3.20b)

The kets in Eqs. (7.3.20) are generalized eigenvectors of the operator H ⊗ I (H is the exact
Hamiltonian, and I is the identity on C2) with generalized eigenvalue E > 0. We now
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determine the action of AT± on those eigenkets. We start with the following definition,
which has its origin in (7.2.8):

〈Ξ±|A×
T±|E∓; r〉 = 〈∓E; r|A†

T±Ξ
±〉 , Ξ± ∈ Φr

∓ . (7.3.21)

From (7.3.15) we obtain

AT± = ±
(

0 AT±
−AT± 0

)
. (7.3.22)

Let us write

Ξ± =

(
ϕ±

ψ±

)
, (7.3.23)

where ϕ±, ψ± ∈ Φ∓. We shall study separately the cases r = ±. Take first r = +. Then

〈∓E; r = +|A†
T±Ξ

±〉 = ±(〈∓E|, 0)
(

A†
T±ψ

±

−A†
T±ϕ

±

)

= ±〈∓E|A†
T±ψ

±〉
= ±〈ψ±|A×

T±|E∓〉
= ±〈ψ±|E±〉

= ±(ϕ±, ψ±)

(
0
|E±〉

)

= ±〈Ξ±|E±; r = −〉 . (7.3.24)

This and Eq. (7.3.21) yield

A×
T±|E∓; r = +〉 = ±|E±; r = −〉 . (7.3.25)

The ± signs appear as the coefficient of |E±; r = −〉 in Eq. (7.3.25) only if we make the
choice AT− = −U†

−CU+. The choice AT− = U
†
−CU+ replaces the ± signs in (7.3.25) by plus.

Now take r = −. An analogous calculation to (7.3.24) yields

A×
T±|E∓; r = −〉 = ∓|E±; r = +〉 , (7.3.26)

where the ∓ signs have the same origin as in the case r = +. The choice AT− = U
†
−CU+

replaces them by minus.
The next step is to define the Gamow vectors and to obtain their images under time

reversal. The Gamow vectors |z−R〉 and |z∗+R 〉 can be used to define the following Gamow
vectors for our ǫT = ǫI = −1 case:

|z−R ; r = +〉 :=
(
|z−R〉
0

)
, (7.3.27a)

|z−R ; r = −〉 :=
(

0
|z−R〉

)
, (7.3.27b)

|z∗+R ; r = +〉 :=
(
|z∗+R 〉
0

)
, (7.3.27c)

|z∗+R ; r = −〉 :=
(

0
|z∗+R 〉

)
. (7.3.27d)



238 7 Time Reversal Operator in the Rigged Hilbert Space

The Gamow vectors (7.3.27a) and (7.3.27b) are generalized eigenvectors of the operator
H ⊗ I with generalized eigenvalue zR, while the Gamow vectors (7.3.27c) and (7.3.27d) are
generalized eigenvectors of H ⊗ I with generalized eigenvalue z∗R . One can also show that

A×
T+|z−R ; r = +〉 = −|z∗+R ; r = −〉 , (7.3.28a)

A×
T+|z−R ; r = −〉 = |z∗+R ; r = +〉 , (7.3.28b)

A×
T−|z∗+R ; r = +〉 = |z−R ; r = −〉 , (7.3.28c)

A×
T−|z∗+R ; r = −〉 = −|z−R ; r = +〉 . (7.3.28d)

The overall signs on the right hand side of Eqs. (7.3.28c) and (7.3.28d) correspond to the
choice

AT− = −U†
+CU− . (7.3.29)

For the choice
AT− = U

†
+CU− , (7.3.30)

the overall signs on the right hand side of Eqs. (7.3.28c) and (7.3.28d) are the opposite.
Now, we obtain the action of the time reversal operator on the time evolution semigroups.

The time evolution semigroups are defined on the dual spaces (Φr
±)

× as

W×
± (t) := U×

± (t)⊗ I =
(
U×
± (t) 0
0 U×

± (t)

)
. (7.3.31)

The operator W×
+ (t) is well defined on (Φr

+)
× for t > 0 only, while W×

− (t) is well defined on
(Φr

−)
× for t < 0 only. From Eqs. (7.2.19) it follows that

A×
T+W×

+ (t)A×
T− =W×

− (−t) , t > 0 , (7.3.32a)

A×
T−W×

− (t)A×
T+ =W×

+ (−t) , t < 0 . (7.3.32b)

This result has been obtained for the choice of AT− as in (7.3.29). If we made the choice
(7.3.30), a minus sign would appear on the right hand side of Eqs. (7.3.32). As mentioned
above, we prefer the choice (7.3.29), because we want Eqs. (7.3.32) to not have that minus
sign.

7.4 Appendix 10: Time Reversal

Textbooks on Quantum Mechanics usually define the time reversal operation in the position
representation as

Cψ(~x, t) = ψ∗(~x,−t) , (7.4.1)

where the star denotes complex conjugation. We are going to explain what this definition
means.

Following Wigner, time reversal is an operation such that the following operations, when
performed sequentially, yield the identity:
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time displacement by t× time reversal × time displacement by t× time reversal . (7.4.2)

If we denote the time reversal operator by C, a possible definition would be Cψ(t) = ψ(−t).
However, this kind of operation is obviously linear. The need for an antilinear time reversal
operation has been nicely shown by Wigner in the following terms:

Consider a system whose Hamiltonian has a complete set of eigenvectors ϕn (for
instance, the Harmonic oscillator, the bound states of the Hydrogen atom, or any
system formed by the bound states of the Hamiltonian, if any). Then, any state
vector ϕ can be expanded by those eigenvectors,

ϕ =
∑

n

anϕn , (7.4.3)

where

Hϕn = Enϕn . (7.4.4)

The operations (7.4.2) yield the identity if and only if:

time displacement by t× time reversal = time reversal × time displacement by − t .
(7.4.5)

Let us apply these operations to ϕ in (7.4.3). If we assume that the time reversal
operator C is linear, then

Cϕ =
∑

n

anCϕn . (7.4.6)

Since [H,C] = 0, Cϕn is also an eigenvector of the Hamiltonian with the same eigen-
value En. Therefore, time displacement by t on (7.4.6) gives

∑

n

ane
−iEntCϕn . (7.4.7)

According to the rule in (7.4.5), this should be equal to the result of performing first
the time displacement by −t on ϕ

∑

n

ane
iEntϕn , (7.4.8)

and then the time reversal operation C, which (assuming that C is linear) leads to

∑

n

ane
iEntCϕn . (7.4.9)

This result does not coincide with the expression given by (7.4.7). However, they do
coincide if C is defined as an antilinear operator.
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Once we have shown that the time reversal operator must be antilinear, we study its
action in the energy representation. In this representation, the Hamiltonian H acts as the
multiplication operator. If ψ(E) is a wave function in the energy representation, then the
action of the time reversal operator on it is defined by

Cψ(E) := ψ∗(E) , (7.4.10)

where we have chosen the complex conjugation as the time reversal operator (as Wigner
does). Time displacement by t on (7.4.10) gives

e−iEt ψ∗(E) . (7.4.11)

If we apply time reversal to (7.4.11), which is now equivalent to perform the complex
conjugation operation, we obtain

eiEt ψ(E) . (7.4.12)

Finally, time displacement by t on (7.4.12) gives

e−iEt eiEt ψ(E) = ψ(E) . (7.4.13)

Hence, the time reversal operator C defined by (7.4.10) fulfills the above rule (7.4.2) and is
antilinear. Obviously,

C (ψ(E, t)) = C (e−iEtψ(E)) = eiEt ψ∗(E) . (7.4.14)

We can look at eiEt ψ∗(E) as the result of applying time displacement by −t on ψ∗(E).
Therefore, eiEt ψ∗(E) is what should be identified with the ψ∗(E,−t) (or ψ∗

−t(E)) that
appears in the literature. Note that ψ∗(E,−t) = eiEt ψ∗(E) = [e−iEt ψ(E)]∗ = [ψ(E, t)]∗.

The same can be argued in the position representation, where time reversal is given by

C̃ ψ(~x) = ψ∗(~x) . (7.4.15)

However, in the momentum representation, the time reversal operator, which we denote
by C ′, acts as

C ′ ϕ(~p) = [ϕ(−~p)]∗ , (7.4.16)

since the time reversal changes ~p for −~p.
In order to show it, let ψ(~x) be a wave function in the position representation. Then
the corresponding wave function in the momentum representation is given by

ψ̂(~p) ≡ Fψ(~p) := 1

2π

∫ ∞

−∞
e−i~p~x ψ(~x) d~x . (7.4.17)

where F and hat denote the Fourier transform. The Fourier transform takes the time
reversal operator in the position representation into the time reversal operator in the
momentum representation,

C ′ = FC̃F−1 . (7.4.18)
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Hence,

(C ′ψ̂)(~p) = (FC̃F−1ψ̂)(~p)

= (FC̃ψ)(~p)

=
1

2π

∫ ∞

−∞
e−i~p~x(C̃ψ)(~x) d~x

=
1

2π

∫ ∞

−∞
e−i~p~xψ∗(~x) d~x

= [ψ̂(−~p)]∗ , (7.4.19)

which proves Eq. (7.4.16).

Consider now an arbitrary representation supported by the Hilbert space H. Let U be
the unitary operator that transforms from the position into that arbitrary representation.
Analogously to (7.4.18), we define the time reversal operator AT on H as

ATφ := UC̃U−1φ ≡ UC̃φ(~x) . (7.4.20)

If we denote φT := ATφ, φ(t) := e−itHφ, and call H ′ = U−1HU the Hamiltonian in the
position representation, then

ATφ(t) = AT e
−iHtφ

= UC̃U−1e−iHtφ

= UC̃U−1e−iHtUφ(~x)

= UC̃e−iH
′tφ(~x)

= UeiH
′tφ∗(~x)

= eiHtUC̃φ(~x)

= eiHtUC̃U−1φ

= eiHtATφ

= (ATφ)(−t)
= φT (−t) . (7.4.21)

Thus ATφ(t) = φT (−t), which generalizes the equation Cψ(~x, t) = ψ∗(~x,−t).
However, this is not the whole story. As mentioned above, Wigner [61, 62] realized that,

when constructing projective representations of the Poincaré group extended by time inver-
sion and parity, new possibilities exist. These new possibilities are not independent of the
representation of the parity and imply a doubling of the space supporting the representa-
tion. We do not want to discuss this construction here. Instead, we present a table with
the four possibilities (see Table I below). The four possibilities are characterized by two
parameters, which also appear among the parameters that characterize the representations
of the extended Poincaré group.

Consider the space, time, and total inversion operators on a Hilbert space H, which we
denote respectively by UP , AT and AI . The operator UP is unitary, while AT and AI are
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antiunitary. From the nature of the corresponding physical operations, it follows that the
operators U2

P , A
2
T , and A

2
I must be proportional to the unit operator. Since UP is unitary,

we can choose its phase such that
U2
P = I , (7.4.22)

while such a normalization is not possible for the antiunitary AT or AI . In fact, the antiu-
nitarity and the associative law of the group multiplication dictate that the squares of AT
and AI must necessarily equal either +1 or −1:

A2
T = ǫT I , ǫT = ±1 , (7.4.23a)

A2
I = ǫII , ǫI = ±1 . (7.4.23b)

Moreover, the phase of AI can be chosen such that

AI = UPAT . (7.4.24)

Corresponding to the values that ǫT and ǫI can take, there exist four extensions of the
continuous symmetry group. Barring the existence of any additional conditions, all four are
possible, and Wigner [61] has derived these four classes of projective representations of the
extended Poincaré group. The results are summarized in the following table:2

Table I
ǫT ǫI UP AT

(−1)2j (−1)2j 1 C

−(−1)2j (−1)2j
(

1 0
0 −1

) (
0 C
−C 0

)

(−1)2j −(−1)2j
(

1 0
0 −1

) (
0 C
C 0

)

−(−1)2j −(−1)2j
(

1 0
0 1

) (
0 C
−C 0

)

In this table, j refers to the spin of the particle under consideration, while C is the well
known (2j + 1)-dimensional matrix whose entries are cµ,ν = (−1)j+µδµ,−ν , −j ≤ µ, ν ≤ j.
In these representations, the continuous space-time transformations Ug, as well as any other
known observables such as the internal symmetry generators B, have the following form:

Ug =

(
Ug 0
0 Ug

)
, B =

(
B 0
0 B

)
. (7.4.25)

2In the non-relativistic case, J. F. Cariñena and M. Santander have obtained a totally analogous result
for the Galilei group (in the case with mass) [63].
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The representation space of the extensions of the space-time symmetry group by P and
T is therefore reducible under the restricted symmetry transformations and observables.
From Table I we see that only the case for which ǫT = ǫI = (−1)2j leads to no doubling
of the space of the microscopic system under inversions. This is the only case discussed in
relativistic quantum field theory, and quantum fields have so far been constructed only for
this class of the four classes of projective representations of the extended Poincaré group [94].
In the three other cases, the restricted space-time symmetry transformation is doubled
after the time reversal operator is adjoined—the time reversal doubling. In these cases,
the two subspaces that are left invariant under Ug and B remain invariant also under UP ,
albeit they have opposite relative parity in the two cases for ǫT ǫI = −1. In these two
cases, the two subspaces can in fact be distinguished by their parity eigenvalue, and to
the extent that we associate microscopic systems with irreducible representations of the
symmetry group, the two subspaces would describe particles with the same mass and spin
but opposite parity. This, however, is not the situation for the extended group characterized
by ǫT = ǫI = −(−1)2j for which the relative parity of the two subspaces of states is +1. It is
this class of projective representations which have been used in Ref. [64], because for these
representations a label r can be introduced, a two-valued parameter, which was used in
Ref. [64] to distinguish between the space of prepared states and the space of time reversed
registered observables. These two subspaces (have the same parity and) remain irreducible
under Ug and B. From Table I it is clear that AT changes the value r.





Chapter 8

Conclusions

In this last chapter, we present the conclusions of the dissertation.

There is never an ending to Paris and the memory of each
person who has lived in it differs from that of any other. We
always returned to it no matter who we were or how it was
changed or with what difficulties, or ease, it could be reached.
Paris was always worth it and you received return for what-
ever you brought to it. But this is how Paris was in the early
days when we were very poor and very happy.

Ernest Hemingway, A movable Feast

245
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The RHS language has been used to describe Dirac kets, Lippmann-Schwinger kets and
Gamow vectors in a consistent way. We have seen that the mathematical image of those
objects should be the following:

Physical quantity Mathematical image Symbol Name

Bound state of Normalizable eigenvector of H |En) Bound state
energy En < 0 with eigenvalue En
Scattering state of Generalized eigenvector of H |E+〉 Lippmann-Schwinger
energy E > 0 with real eigenvalue E ket
Resonance of energy Generalized eigenvector of H |z−R〉 Gamow ket
ER and width ΓR with complex eigenvalue zR

In terms of results, we would like to highlight the following:

• We have presented a systematic review of the mathematical methods of the Rigged
Hilbert Space.

•We have reviewed and improved the construction of the RHS of the harmonic oscillator.

•We have shown that the natural framework for the solutions of the Schrödinger equation
is the RHS. We have illustrated this point by constructing a RHS of the square barrier
potential explicitly.

• We have shown that a consistent description of the Lippmann-Schwinger equations
needs a pair of RHSs. We have also shown that the Lippmann-Schwinger kets act as anti-
linear functionals over spaces of wave functions that are boundary values of functions that
can be continued analytically.

• We have translated A. Mondragón et al.’s integral equation for the Gamow vectors
into the RHS language.

• We have constructed the Gamow vectors of the square barrier potential Hamiltonian.
We have shown that the [0,∞)-energy representation of these vectors is the complex delta
functional, and that their (−∞,∞)-energy representation is the Breit-Wigner amplitude.

• We have disclosed the time asymmetry of the purely outgoing boundary condition.

• We have studied the action of the time reversal operator on resonances for the stan-
dard case and for one of the cases that lead to a doubling of the space supporting the
representation. The doubling has been explicitly constructed within the RHS framework.
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[63] J. F. Cariñena, M. Santander, J. Math. Phys. 22 (8), 1548 (1981).

[64] A. Bohm, Phys. Rev. A, 51, 1758 (1995); A. Bohm, S. Wickramasekara, Found. Phys.,
27, 969 (1997).

[65] E. Nelson, Ann. Math. 70, 572 (1959).

[66] E. Nelson, W. F. Stinespring, Amer. Journ. Math. 81, 547 (1959).

[67] I. M. Gelfand, G. F. Shilov, Generalized Functions, Vol. I, Academic Press, New York
(1967).

[68] J. Dixmier, Comp. Math. 13, 263 (1958).

[69] A. A. Kirillov, Dokl. Akad. Nauk. SSSR, 130, 996 (1960).

[70] A. Bohm, Journ. Math. Phys. 8, 1557 (1967), Appendix B.

[71] B. Nagel, Lecture Notes, College de France (1970).

[72] R. G. Newton, Scattering Theory of Waves and Particles, McGraw-Hill, New York
(1966).

[73] J. R. Taylor, Scattering theory, Jhon Wiley & Sons, Inc., New York (1972).

[74] R. de la Madrid, Chaos, Fractals & Solitons 12, 2689 (2001); quant-ph/0107096.



Bibliography 253

[75] W. Amrein, J. Jauch and K. Sinha, Scattering Theory in Quantum Mechanics, Ben-
jamin, Reading, Massachusetts (1977).

[76] P. L. Duren, Theory of Hp Spaces, Academic Press, New York (1970).

[77] K. Hoffmann, Banach Spaces of Analytic Functions, Prentice Hall, New Jersey (1962).

[78] P. Koosis, Introduction to Hp Spaces, Cambridge, UK (1980).

[79] P. Koosis, The Logaritmic Integral, Cambridge, UK (1990).

[80] E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals, Clarendon Press,
Oxford, UK (1937).

[81] R. Paley and N. Wiener, Fourier Transforms in the Complex Domain, American Math-
ematical Society, New York (1934).

[82] M. Reed and B. Simon, Methods of Modern Mathematical Physics: Fourier Analysis,
Self-Adjointness, Academic Press, New York (1975).
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