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The analysis of an isolated rod's 4-momentum changes 

under the framework of Special Relativity 

Abstract: Simplify an isolated rotating rod as an ideal system without any relative movement between the components, and the 

distribution of material and potential energy on the rod along the length is symmetry about the mid point and does not change with time, 

in an inertial reference frame. The 4 momentum of this isolated rod conservation in the inertial reference frame. Using Lorentz 

coordinate transformation formula and Lorentz velocity transformation formula between two inertial reference systems, find its 

4-momentum does not equal to each other at different times in another inertial reference frame.  

Keywords: Lorenz transformation; 4-momentum; Special Relativity 
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In Special relativity, the motion of an object in non inertial motion can be described in an inertial reference frame 

and the motion of the object can be converted to be described in another inertial reference system, by Lorenz 

transformation. Rotating wheel has been extensively studied. Such as, measured in the inertial reference frame K , a 

wheel rotates around the mid point at uniform angular velocity, keeps its spokes as the linear state. The shape of the 

spokes will bent measured in another inertial reference frame 'K
[1][2][3]

. 

Simplify one spokes on a rotating wheel as an ideal system without any relative movement between the 

components relative to K . 4-momentum of the spokes measured in K  is conservation. Using Lorentz coordinate 

transformation formula and Lorentz velocity transformation formula between two inertial reference frames K and 

'K  to calculate the 4 momentum of the spokes relative to 'K , the 4-momentum of the spokes on 'x direction 

measured in 'K is non-conservation. This is a result that is contrary to the current view. 

 

1. Research object, premise  

In K , an isolated rod AB rotates around its mid point O at uniform angular velocity , keeps the linear state. For 

each point on AB, the distance from point O to this point measured in K  is constant; denote it is r . Such as for point 

D， Dr is a constant. For each point on OA, its equation of motion is cos( )x r t , s ( )y r in t . For each point 

on OB, its equation of motion is cos( )x r t   , s ( )y r in t   . 

For actual rod AB, there is micro motion on molecular level. In the process of simplifying and establishing a 

mathematical model, we do not consider this micro motion. The rod AB is an ideal system without any relative 

movement between the components relative to K . The distribution of material and potential energy on the rod AB 

along the length is symmetry about mid point O and it does not change with time, measured in K . Rod AB is a Born 

rigid body. Rod AB has no thickness along  direction, if transform K from rectangular coordinate system to polar 

coordinate system. That is to say consider rod AB as a one-dimensional rod on x y plane relative to K . 

We consider: A body is static in an inertial reference system. When the body is free, it has a rest mass. When the 

body is stretched, it has another rest mass. The rest mass of the static body when it is stretched is greater than the rest 

mass of the body when it is free. When the body is static at different states such as free or stretched, the potential 

energy between the particles is different. 

 

2. The relationship of the rest mass line density along AB between K and 'K    

In K , static auxiliary circle D and M, take O as their center of their circle, intersecting rod OA at point D and M, 

intersecting rod OB at point E and N. Here Dr and Mr  can take any value from 0 to Ar . 

In K , at time t , for each position on OA, denote ( , )t r  as the rest mass line density at the position, thereinto 
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r is the distance from point O to this position. ( , )t r is equal to the rest mass of the segment at position r on OA 

divided by the length of this segment (the length of this segment need to be infinitesimal) at time t  in K . ( , )t r  

is a function only relative to r , ( , )t r = ( )r . Denote ( , )t r  as the rest mass line density for each position on 

OB. Because the mass distribution of AB is symmetry about mid point O, ( , )t r = ( , )t r = ( )r . 

The function's subscript   indicates that the function is valid for the point on OA. The function's subscript   

indicates that the function is valid for the point on OB.  

The inertial reference frame 'K  moves relative to K at speed v .  

Relative to 'K , the auxiliary circle D and M appear as ellipses D and M, and they move at speed v . 

 

 

 

 

 

 

 

 

 

 

 

 

 

Relative to 'K , rod AB can't keep the linear state at all times. In 'K , at time 't , for each position on AB, use 'l  

to represent the curve length from point O to this position along AB. 

In 'K , at time 't , for each point on OA, denote 'l as the curve length from point O to this point along curve OA. 

It depends on the time 't and the position of this point on OA. Such as ( ') 'Dl t  is the curve length from point O to 

point D along AB at time 't  in 'K . Because r  represents the position of a point on OA, and r  is a constant for 

each confirmed point, so for each point on OA, 'l can be considered as a function of 't and r , remember it as 

'l = ( ', ) 'f t r . For example, at the moment 1 't , the length of the curve OD is 1( ') 'Dl t = ( ', ) 'f t r , here the 

parameter 't = 1 't ， Dr r  ( Dr is a constant). 

In 'K , at time 't , for each position on OA, denote ( ', ') 't l  as the rest mass line density at the position when 

the curve length from point O to this position is 'l  measured in 'K at the time 't . ( ', ') 't l  is equal to the rest 

mass of the segment at position 'l on OA divided by the length of this segment (the length of this segment need to be 

infinitesimal too) at the time 't  in 'K . ( ', ') 't l  takes 't and 'l as its parameters, 't is the time on 'K  and 

'l = ( ', ) 'f t r is the curve length from point O to this position along curve OA measured in 'K at the time 't . Then 

( ', ') 't l = ( ', ( ', ) ') 't f t r  . So relative to 'K , for each position on OA, the rest mass line density also can be 

Fig 1 schematic diagram of AB and the auxiliary circle D, M in K  and in 'K . Section MD is 

marked into numerous segments. The length of each segment is infinitesimal. 
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considered as it takes the time 't on 'K  and the distance r  from point O to this position measured in K as 

parameters. Remember ( ', ) 'g t r = ( ', ( ', ) ') 't f t r  . 

In 'K , at time 't , for each point on OB, denote 'l as the curve length from point O to this point along curve 

OB, 'l = ( ', ) 'f t r . For example, at the moment 1 't , the length of the curve OE is 1( ') 'El t = ( ', ) 'f t r , here the 

parameter 't =
1 't , Er r .  

In 'K , at time 't , for each position on OB, denote ( ', ') 't l  as the rest mass line density at the position when 

the curve length from point O to this position is 'l  measured in 'K at the time 't . 'l = ( ', ) 'f t r , 

then ( ', ') 't l = ( ', ( ', ) ') 't f t r  . So relative to 'K , for each position on OB, the rest mass line density also can be 

considered as it takes the time 't on 'K  and the distance r  from point O to this position measured in K as 

parameters. Remember ( ', ) 'g t r = ( ', ( ', ) ') 't f t r  . 

Use 0 ( )sum MDm t  to represent the sum of rest masses of section MD at time t  in K ; and 0 ( )MDm t  to 

represent the invariant mass of section MD at time t  in K . Here 0 ( )sum MDm t isn't 0 ( )MDm t . 

Use 0 ( ') 'sum MD tm  to represent the sum of rest masses of section MD at the time 't  in 'K . 

0 ( )sum MDm t = ( , )
D

M

r

r
drt r = ( )

D

M

r

r
r dr .  

In 'K , at time 't , the curve length of OD is ( ') 'Dl t = ( ', ) 'Df t r . In 'K , the sum of rest masses of section OD is 

0 ( ') 'sum ODm t =
( ') '

0
( ', ') ' '

Dl t

t l dl . 'l  is a function of 't  and r , 'l = ( ', ) 'f t r . Make variable substitution for 

the integral 'l r , 

0 ( ') 'sum ODm t =
0

( ', ) '
( ', ( ', ) ') '

Dr f t r
t f t r dr

r


 



 =
0

( ', ) '
( ', ) '

Dr f t r
g t r dr

r






 . 

The same 0 ( ') 'sum OEm t =
0

( ', ) '
( ', ) '

Er f t r
g t r dr

r







 . 

Rod AB is a Born rigid body, so 0 ( )sum ODm t = 0 ( ') 'sum ODm t . 

0
( )

Dr

r dr =
0

( ', ) '
( ', ) '

Dr f t r
g t r dr

r






 , and because of the arbitrariness of the auxiliary circle D, there is 

( ', ) '
( ', ) '

f t r
g t r

r







= ( )r for any position on OA direction.  

The same, there is 
( ', ) '

( ', ) '
f t r

g t r
r








= ( )r  for any position on OB direction. 

 

3. Velocity character of each position on AB in 'K    

In K , at time t , the coordinates of point D on OA is ( cos( ), sin( ),0, )D Dr t r t t  ; the coordinates of point E on 
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OB is ( cos( ), sin( ),0, )E Er t r t t     ; the velocity of point D is ( , )Du t r ; the velocity of point E is 

( , )Eu t r .  

In 'K , at time 't , for each point on OA, its velocity is ( ', ') 'u t l , thereinto 'l = ( ', ) 'f t r ; for each point on OB, 

its velocity is ( ', ') 'u t l , thereinto 'l = ( ', ) 'f t r . 'l represent the curve length from point O to this point along 

curve AB, such for position D, its velocity ( ', ( ') ') 'Du t l t  is ( ', ( ', ) ') 'Du t f t r   

Set time
1 't =0 in 'K .  

In 'K , at time 1 't , the event 1D t
E ＇ occurs at the coordinates of point D 1 1 1( ', ',0, ')D Dx y t . Using Lorentz 

transformation between K and 'K , translate coordinates 1 1 1( ', ',0, ')D Dx y t  into the coordinates in K . The 

event
1D t

E ＇ occurs at coordinates ( , ,0, )
D one D oneD t D t D onex y t , or ( cos( ), sin( ),0, )D D one D D one D oner t r t t  , the 

coordinates of point D at time  D onet in K . D onet = 1( ', )Dt t r .  

In 'K , at time 1 't , the event 
1E t

E ＇occurs at the coordinates of point E 1 1 1( ', ',0, ')E Ex y t . The event
1E t

E ＇ 

occurs at ( cos( ), sin( ),0, )E E one E E one E oner t r t t     , the coordinates of point E at time E onet  in K . E 

 

 

 

 

 

 

 

 

 

 

 

 

 

Set time threet =
2




 in K .  

In K , at time threet , the event E t threeE occurs at the coordinates of point E ( , ,0, )Ethree Ethree threex y t , 

here 0Ethreex   . The event E t threeE  occurs at the coordinates of point E at time 3 't  = ( ) threev t = ( )
2

v





 in 'K . 

In K , at time threet , the event D t threeE occurs at the coordinates of point D ( , ,0, )Dthree Dthree threex y t , 

here 0Dthreex   . The event D t threeE  occurs at the coordinates of point D at time 3 't  in 'K  too. 

 

Fig 2  the relationship of 1 't and D onet , E onet . 

 

B 

E 

K  

circle D 

circle M 

x  

y
 

1 't =0 

 

D E 

'K  'y
 

'x  

1 1 1( ', ',0, ')D Dx y t
 ( , ,0, )

D one D oneD t D t D onex y t  

D 

K  

circle D 

circle M x  

y
 

1 1 1( ', ',0, ')E Ex y t
 

( , ,0, )
E one E oneE t E t E onex y t  

  =t D onet    =t E onet  

Lorentz transformation of  

event 1D t
E ＇

 between K and 'K  

D is here E is here 

Lorentz transformation of  

event 
1E t

E ＇
 between K and 'K  



page 5 of 9  

In K , at time D onet , the coordinates of point D is ( cos( ), sin( ),0, )D D one D D one D oner t r t t  , the velocity of point 

D is ( , )D one Du t r . In 'K , at time 1 't , the velocity of point D is 1( ') 'Du t = 1 1( ', ( ') ') 'Du t l t . 

( )Dx D oneu t = ( , )x D one Du t r = sin( )D D oner t  . 

( )Dy D oneu t = ( , )y D one Du t r = s( )D D oner co t  . 

1( ') 'Dxu t = 1 1( ', ( ') ') 'x Du t l t =

2 2

( ) sin( )

1 ( ) 1 sin( )

Dx D one D D one

Dx D one D D one

u t v r t v

v v
u t r t

c c

 

 

  


 

. 

 1( ') 'Dyu t = 1 1( ', ( ') ') 'y Du t l t =

2

2

2 2

( ) s( )1
1

( )
1 ( ) 1 sin( )

Dy D one D D one

Dx D one D D one

u t r co t v

v vv c
u t r t

c c

 

  

 

 

. 

1( ( ') ')Du t = 1 1( ( ', ( ') ') ')Du t l t =1/

2

1

2

( ') '
1 Du t

c
 =1/

2 2

1 1

2

( ') ' ( ') '
1

Dx Dyu t u t

c


  

=
2

(1 sin( )) ( ) ( )D D one D

v
r t v r

c
     . 

1 1 1 1( ( ', ( ') ') ') ( ', ( ') ') 'D x Du t l t u t l t  = ( sin( ) ) ( ) ( )D D one Dr t v v r      . 

Set  >0, c > v = Ar >0. 

In 'K , at time 't , for any point on OA, its coordinates is ( ', ',0, ')x y t .  Assume an event 'r tE  occurs 

at ( ', ',0, ')x y t . Using Lorentz transformation between K  and 'K , translate ( ', ',0, ')x y t  into ( , ,0, )x y t , here, 

't is a function of t and r . Also it can be considered ( ', )t t t r . the coordinates of event 'r tE in K . The event 'r tE  

occurs at ( , ,0, )x y t in K . Here are ( ( ', ') ') ( ', ') 'xu t l u t l   = ( sin( ( ', )) ) ( ) ( )r t t r v v r      , 

' ( ', ) 'l f t r . Though r  is a constant of each point. But for determined 't , each r  corresponds to 'l one by one. 

So r  can be considered as a function of 't and 'l . Corresponding to the time 't = 1 't =0, in 'K , for any point on 

OA except O, there are 1sin( ( ', ))t t r >0 (reason 1); Corresponding to the time 't = 3 't = ( ) threev t , in 'K , for any 

point on OA except O, there are 3( ', )t t r = threet =
2




, 3sin( ( ', ))t t r =1. 

In 'K , at time 't , for any point on OB, its coordinates is ( ', ',0, ')x y t . Event 'r tE  occurs at ( ', ',0, ')x y t . 

Translate ( ', ',0, ')x y t  into ( , ,0, )x y t , the coordinates of event 'r tE in K , here ( ', )t t t r . The event 'r tE  

occurs at ( , ,0, )x y t in K . Here are ( ( ', ') ') ( ', ') 'xu t l u t l   = ( sin( ( ', ) ) ) ( ) ( )r t t r v v r        , 
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' ( ', ) 'l f t r . Though r  is a constant of each point. But for determined 't , each r  corresponds to 'l one by one. 

So r  can be considered as a function of 't and 'l . Corresponding to the time 't =
1 't =0, in 'K , for any point on 

OB except O, there are 1sin( ( ', )+ )t t r  >0 (reason 2); Corresponding to the time 't = 3 't = ( ) threev t , in 'K , for 

any point on OB except O, there are 3( ', )t t r = threet =
2




, 3sin( ( ', )+ )t t r  = 1 . 

 

4. 4-momentum of AB in 'K at time 
1 't =0 and 

3 't = ( ) threev t  

For confirmed auxiliary circle D and auxiliary circle M, 
Dr =

Er , Mr =
Nr . Now calculate 4-momentum of MD 

and NE on 'x direction in 'K at time 
1 't =0 and 

3 't = ( ) threev t . 

1( ') 'MDxP t =
1

1

( ') '

1 1 1
( ') '

( ( ', ') ') ( ', ') ' ( ', ') ' '
D

M

l t

x
l t

u t l t l u t l dl            (here 'l = 1( ', ) 'f t r .  )    

=
1

1

( ') '

1 1
( ') '

( ', ') ' ( sin( ( ', )) ) ( ) ( ) '
D

M

l t

l t
t l r t t r v v r dl         

Though r  is a constant of each point. But for determined 't = 1 't , each r  corresponds to 'l one by one. So r  

can be considered as a function of 1 't and 'l . And 'l  also can be considered as a function of 1 't and r . 

Because 1sin( ( ', ))t t r >0 

1( ') 'MDxP t <
'

1
'

( ', ') ' ( ) ( ) '
D

M

l

l
t l v v r dl        

'l is function of 1 't and r , 'l = 1( ', ) 'f t r . 1 't =0 is a constant. Make variable substitution 'l r  

1( ') 'MDxP t < 1
1 1

( ', ) '
( ', ( ', ) ') ' ( ) ( )

D

M

r

r

f t r
t f t r v v r dr

r


    




  

= 1
1

( ', ) '
( ', ) ' ( ) ( )

D

M

r

r

f t r
g t r v v r dr

r


   




  

= ( ) ( ) ( )
D

M

r

r
r v v r dr    . 

1( ') 'NExP t < ( ) ( ) ( )
E

N

r

r
r v v r dr    . 

3( ') 'MDxP t = ( ) ( ) ( ) ( )
D

M

r

r
r r v v v r dr      . 

3( ') 'NExP t = ( ) ( ) ( ) ( )
E

N

r

r
r r v v v r dr     . 

For confirmed auxiliary circle D and auxiliary circle M, Dr = Er , Mr = Nr . 

( ) ( ) ( )
D

M

r

r
r r v r dr     + ( ) ( ) ( )

E

N

r

r
r r v r dr     =0.. 

So 3( ') 'MDxP t + 3( ') 'NExP t = ( ) ( ) ( )
D

M

r

r
r v v r dr    + ( ) ( ) ( )

E

N

r

r
r v v r dr    . 
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Then 
1( ') 'MDxP t +

1( ') 'NExP t <
3( ') 'MDxP t +

3( ') 'NExP t . 

When 
Dr =0, Mr =

Ar , get the sum of the momentum of rod AB on 'x direction along the curve AB, in 'K  at 

time
1 't and 

3 't : 

1( ') 'BAxP t <
3( ') 'BAxP t , under the condition  >0, c > v =

Ar >0. 

The 4-momentum on 'x direction of one isolated spokes measured in 'K is non-conservation. 

In K , AB is an isolated system, 4 momentum conservation. In 'K , the 4 momentum of AB must be conserved. 

 

5. The momentum change is not caused by space-time bending.  

Remember ABk = 1 3

3

( ') ' ( ') '

( ') '

BAx BAx

BAx

P t P t

P t


. Reduce the mass of the rod AB to half of the original mass, and then 

reduce it to half of the mass just now, until infinitesimal, in K . And the velocity of 'K  relative to K  is not infinitely 

close to c  (
v

c
 is not infinitely close to 1). Value of ABk will not change at this process of the quality of rod AB 

changing. So ABk is determined by parameters v , and Ar , and the result in paper is independent of the space-time 

bending. 

 

6. Conclusion 

The momentum of an isolated system consisting of particles is conserved when calculate the momentum at the 

times when there is no any interact between each other under any inertial reference frame. Of course at other intervals, 

particles can interact with each other. There is no doubt about it. 

But now there is a result: The 4-momentum on 'x direction of one isolated spokes is non-conservation, in 'K . 

To eliminate the contradictory result in paper, it is necessary that the potential energy of rod AB at 1 't  is less 

than it at 3 't , that is 0 1( ') 'sum ABm t < 0 3( ') 'sum ABm t , 0 ( )sum ABm t  0 ( ') 'sum ABm t . 

So the contradiction is that the internal potential energy of a rigid body varies relative to a fixed frame of 

reference, according to the requirements of special relativity. But rod AB is a born rigid body, its potential energy is 

unchanged, which has nothing to do with reference frame. 
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reason 1:  

1 2

1

1

' ( )( )

cos( )

( ', )

' 0

v
t v t x

c

x r t

t t t r

t








 

 
 




 

1 12
( ', ) cos( ( ', ))

v
t t r r t t r

c
    =0.  

For any point on OA except O, 0< r  Ar , 0 r c  , 0<
2

v
r

c
 <1.( Because 0  , 0 v  ) 

There is only one solution 0 / 2x    satisfying for the equation cos 0x a x  , at condition 0< a <1.   

So,  0<
1( ', )t t r < / 2 , 

1sin( ( ', ))t t r >0. 

Reason 2: 1 't = 1 12
( )( ( ', ) cos( ( ', ) ))

v
v t t r r t t r

c
     =0,  

1 12
( ', ) cos( ( ', ) )

v
t t r r t t r

c
      =0,  

1 12
( ', ) cos( ( ', ))

v
t t r r t t r

c
    =0.  

For any point on OB except O, r  Br , 0 r c  , 0<
2

v
r

c
 <1. ( Because 0  , 0 v  ) 

There is only one solution / 2 < x <0 satisfying for the equation cos 0x a x  , at condition 0< a <1.   

So,  / 2 < 1( ', )t t r <0, 1sin( ( ', ) )t t r  >0. 

 

Detailed process 1/

2

1

2

( ') '
1 Du t

c
 =1/

2 2

1 1

2

( ') ' ( ') '
1

Dx Dyu t u t

c


  

2

2
2 2

2
2

2 2

sin( ) cos( ))

1 sin( )

( ) ( (1 )

(1 sin( ))

D D one

D D one D D one

D D one

r r

v
r t

c

v
t v t

v cr t
c c

   

 

 





   

 

 

=

2

2

2 2 2 2 2 2 2
sin( ) sin( ) cos( ))

(1 sin( ))

( ) ( ) ( ( )

D D one

D D one D D one D D oner r r

v
r t c

c

c v t c t v t c v     

 

     
 

=

2

2

4 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

sin( ) sin( ) sin( ) sin( )

cos( ) cos( )

(1 sin( ))

+ +2 2

D D one

D one D D one D D one D D one

D one D D one

r t r r r v

r t r

v
r t c

c

c v c v t c t c v c t

c v t

       

   

 

  

 

 

=

2

2

4 2 2 2 2 2 2 2 2

(1 sin( ))

+

D D one

D Dr r

v
r t c

c

c v c c v 

 

 
=

2

2

4 2 2 2 2 2 2 2 2

(1 sin( ))

+

D D one

D Dr r

v
r t c

c

c c c v v 

 

 
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=

2

2

2 2 2 2 2

(1 sin( ))

( )( )

D D one

D

v
r t c

c

c r c v

 





 
=

2
(1 sin( )) ( ) ( )D D one D

v
r t v r

c
      

 

Detailed process 1( ') 'NExP t =
'

1 1 1
'

( ( ', ') ') ( ', ') ' ( ', ') ' '
E

N

l

x
l

u t l t l u t l dl      

=
'

1 1
'

( ', ') '( sin( ( ', )+ ) ) ( ) ( ) '
E

N

l

l
t l r t t r v v r dl          ,    because 1sin( ( ', )+ )t t r  >0 

<
'

1
'

( ', ') ' ( ) ( ) '
E

N

l

l
t l v v r dl     

=
1

1 1

( ', ) '
( ', ( ', ) ') ' ( ) ( )

E

N

r

r

f t r
t f t r v v r dr

r



    



  

=
1

1

( ', ) '
( ', ) ' ( ) ( )

E

N

r

r

f t r
g t r v v r dr

r



   



  

= ( ) ( ) ( )
E

N

r

r
r v v r dr     

 

Detailed process 3( ') 'MDxP t =
'

3 3 3
'

( ( ', ') ') ( ', ') ' ( ', ') ' '
D

M

l

x
l

u t l t l u t l dl      

=
'

3 3
'

( ', ') '( sin( ( ', )) ) ( ) ( ) '
D

M

l

l
t l r t t r v v r dl         ,       because 3sin( ( ', ))t t r =1 

=
'

3
'

( ', ') '( ) ( ) ( ) '
D

M

l

l
t l r v v r dl       

= 3
3 3

( ', ) '
( ', ( ', ) ') ' ( ) ( ) ( )

D

M

r

r

f t r
t f t r r v v r dr

r


     


 

  

= 3
3

( ', ) '
( ', ) ' ( ) ( ) ( )

D

M

r

r

f t r
g t r r v v r dr

r


    


 

  

= ( )( ) ( ) ( )
D

M

r

r
r r v v r dr       

 

Detailed process 3( ') 'NExP t =
'

3 3 3
'

( ( ', ') ') ( ', ') ' ( ', ') ' '
E

N

l

x
l

u t l t l u t l dl      

=
'

3 3
'

( ', ') '( sin( ( ', )+ ) ) ( ) ( ) '
E

N

l

l
t l r t t r v v r dl          ,     because 3sin( ( ', )+ )t t r  = 1  

=
'

3
'

( ', ') '( ) ( ) ( ) '
E

N

l

l
t l r v v r dl      

=
3

3 3

( ', ) '
( ', ( ', ) ') ' ( ) ( ) ( )

E

N

r

r

f t r
t f t r r v v r dr

r



     



  

=
3

3

( ', ) '
( ', ) ' ( ) ( ) ( )

E

N

r

r

f t r
g t r r v v r dr

r



    



  

= ( )( ) ( ) ( )
E

N

r

r
r r v v r dr      


