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Abstract. The rigorous expression for the transmission of a thin 
absorbing film on a transparent substrate is manipulated to yield 
formulae in closed form for the refractive index and absorption 
coefficient. A procedure is presented to calculate the thickness to 
an accuracy of better than 190 with similar accuracies in the 
values of ti. A method to correct for errors due to slit width is 
also given. Various formulae to calculate the absorption 
coefficient accurately over almost three orders of magnitude are 
discussed. Only data from the transmission spectrum are used 
and the procedure is simple, fast and very accurate. All formulae 
are in closed form and can be used on a programmable pocket 
calculator. 

1. Introduction 
Amorphous silicon or hydrogenated a-Si:H is an important 
material for photovoltaic devices. These devices consist of films 
with thicknesses of about 1 ,um and it is important to know the 
refractive index and absorption coefficient as function of 
wavelength to predict the photoelectric behaviour of a device. 
Knowledge of these optical constants is also necessary to 
determine the optical gap or to verify theoretical models of 
a-Si:H (Clark 1980). 

The thickness of films can be determined using a surface- 
profiling stylus or by various interferometric methods (Bennet 
and Bennet 1967). A method is proposed in this paper to 
determine the thickness from the interference fringes of the 
transmission spectrum to an accuracy of better than 106 
provided the films are of good quality. 

The refractive index and absorption coefficient are usually 
determined by elaborate computer iteration procedures 
(Lyashenko et a1 1964, Wales et a1 1967, Szczyrbowski et a1 
1977) using both the transmission and reflection spectra. A 
simple straightforward process has also been devised 
(Manifacier et a1 1976) for calculating n and x but it will be 
pointed out in this paper that this process contains some 
mistakes. Methods are proposed in this paper to determine n(1) 
and a(L) by simple straightforward calculations using the 
transmission spectrum alone. The accuracy is also of the order 
of 1043 which is even better than the accuracy of the elaborate 
iteration methods. 

In the discussion only the spectrum in the optical region is 
considered. All formulae are, of course, also valid in the near- 
infrared region and for films with small optical gaps it may be 
essential to do measurements in this region. 

2. Theory 
The practical situation for a thin film on a transparent substrate 
is shown in figure 1. The film has thickness d and complex 
refractive index n = n - ik. where n is the refractive index and k 
the extinction coefficient which can be expressed in terms of the 
absorption coefficient a using equation (27). The transparent 

I: 
Figure 1. System of an absorbing thin film on a thick finite 
transparent substrate. 

substrate has a thickness several orders of magnitude larger than 
a' and has index of refraction s and absorption coefficient a, = 0. 
The index of the surrounding air is no = 1. Rigorous analysis has 
to take into account all the multiple reflections at the three 
interfaces when calculating T. 

If the thickness d is not uniform or is slightly tapered. all 
interference effects are destroyed and the transmission is a 
smooth curve as shown by the dotted curve T,  in figure 2. The 
spectrum can roughly be divided into four regions. In the 
transparent region CL = 0 and the transmission is determined by n 
and s through multiple reflections. In the region of weak 
absorption a is small but starts to reduce the transmission. In 
the region of medium absorption a is large and the transmission 
decreases mainly due to the effect of a. In the region of strong 
absorption the transmission decreases drastically due almost 
exclusively to the influence of a. The smooth transmission curve 
T,  is often used (Freeman and Paul 1979) to determine a( i )  in 
the optical and infrared region using a formula given in the 
appendix (A3). 

If the thickness d is uniform, interference effects give rise to 
a spectrum shown by the full curve in figure 2. Far from being a 
nuisance, these fringes can be used to calculate the optical 
constants of the film as will be shown in this paper. 

Considering the thick substrate alone in the absence of a 
film, the interference-free transmission is given by the well 
known expression 

where 

or 

and 

- (1  -R)2 
I , = -  

1 - R 2  

R = [(s - l)/(s + 

2s 
T,  =- 

s 2 +  1 

The basic equation for interference fringes is 

2nd = mi. 
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Figure 2. Simulated transmission spectrum (full curve) for a 1 p m  film of a-Si:H on a finite glass substrate with transmission 7, 
Curves T M :  T,, T;  and T, according to the text. 

where m is an integer for maxima and half integer for minima. 
Equation (3) contains information on the product of n and d and 
there is no way of obtaining information on either n or d 
separately using this equation only. 

The transmission T for the case of figure 2 is a complex 
function (Keradec 1973, Mini 1982) and is given in the appendix 

T= f l i ,  s, n, d. a). 

If s is known it is convenient to write the above equation in 
terms of n ( i )  and the absorbance x ( A ) ,  where x is defined in 
equation (5 f )  

(AI) 

T =  T(n, x ) .  

The expression (Al )  becomes much simpler if we put k=O, an 
approximation that is indeed valid over most of the region of the 
spectrum in figure 2. (A l )  then becomes 

AX 
T= (4) 

Dx2 B - Cx cos OJ 

where 

OJ = 4nnd:L 

x = exp(-ad). 

The extremes of the interference fringes can be written as 

AX T, = 
B - cs + D X ~  

A x  
T m  = B + cx + D,Y~ ( 7 )  

For further analyses TM and T ,  are now considered to be 
continltous functions of A and thus of a(?.) and x ( A )  (Manifacier 
et a1 1976) as is shown by the envelopes in figure 2. For any ;., 
T,, has a corresponding value T,. In  figure 2 for example TM7 
has the corresponding value TA, and T,, has the corresponding 
value Tb8. 

2.1. The transparent region 
In  the transparent region a = 0 or .Y= 1 in equations (6) and ( 7 ) .  
Substituting equations (5) into (6) yields 

2s 
T --- 

M - S 2 + 1  

Equation (8) is identical to equation (1) and the maxima of the 
interference fringes are a function of s only and coincide with T,. 
When the maxima depart from T, it denotes the onset of 
absorption. Equation (8) can be used to calculate s in the 
transparent region using the form of equation (2). 

Substituting equation ( 5 )  in equation ( 7 )  for x = 1 yields 

4 n2s 

n4 + n2(s2 + 1) + s2 
T, = 

or 

= [,v + (lv2 - s2)1/2] 

where 

(9) 

T ,  is thus a function of both n and s: and n can be calculated 
from T ,  using equation (9). 

2.2. The region of ,r*eak and medium absorption 
In this region x . t O  and .Y < I .  Subtracting the reciprocal of 
equation (6) from the reciprocal of equation ( 7 )  yields an 
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expression that is independent of x Substitution of equations (6) and (7) into (17) yields 

T ,  = d m .  1 1 2 c  ---=- 
Tm T M  A 

Substituting equation (5) into (10) and solving for n yields 

(1 1) ti = [ lv + (itr2 - s2) J 

where 

Equation (1 1) can be used to calculate n(L) from TM and T ,  I It 
is identical to the formula derived by Manifacier et a l  (1976) 
using the theory for an infinite substrate. 

Once n(d) is known, all the constants in equation ( 5 )  are 
known and x can be calculated in various ways. Both (6) and (7) 
are quadratic equations in x that can be solved for x and the 
results simplified using equation (5). Solving equation (6) gives 

E M  - [E; - ( n 2  - i )3 (n2  -s')] 1'2 

( n  - 1 ) 3 ( ~ ~  - s2) 

where 

8n2s 

TM 
=-* ( n 2 -  1)(n2-s2). 

Solving equation ( 7 )  gives 

E ,  - [E: - ( n 2 -  1)3(n2 - s4)] 
x = 

( n  - ~ ) ~ ( n  - s2) 

where 

Adding the reciprocals of equations (6) and (7) yields 

2 TM Tm A X  
~- - 
T,+T,  B + D x 2 '  

Solving for x this gives 

F - [ F 2 - ( n 2 -  1)3(n2-s4)] 'I2 

( n  - 1)3(n -s2) 
x = 

where 

an's F=- 
Ti 

and 

From equation (14) and (4) it can be seen that TI  represents a 
curve passing through the inflection points of the fringes as 
shown in figure 2. 

The interference-free transmission T,  can be calculated from 
the interference fringes by integrating equation (4) between a 
maximum and an adjacent minimum 

A x  
~ ~ = i j ~ B - c . x c o s p + D . x 2  do. 

Assuming a narrow integration region where all parameters are 
constant. the integral yields 

Ax  
[ (B - Cx + Dx2)(B + Cx + Ox2)] 'I2 

T ,  = (17) 

T ,  is thus just the geometric mean of TM and T,  and equation 
(1 8) is a very useful relation. Solving equation (1 7) for x gives 

{ G - [G2 - ( n 2  - 1)6(n2 - 1!2} l I 2  

x= (19) ( n  - i))(n -s2) 

where 

Equation (1 9) is equivalent to a well known equation often used 
in optical and infrared studies, (A3). It can also be used to 
determine n from T,  in the transparent region where x = O .  
Putting x = 1 in equation (1 9) and solving for n gives 

(20) n=[H+(~2-s2)1'2]1!2 

where 

4s2 s 2 +  1 
-- H =  

( s2 -  1) T i  2 ' 

Manifacier et a l ( l 9 7 6 )  also derived an equation for x using the 
theory for an infinite substrate. Their formula is 

( n  + l)(s + n)[  1 -(T,/T,)'I2] 
( n -  I)(s-n)[l +(T,/T,)'~2J X =  (21) 

Unlike the case with the refractive index, equation (21) is not 
equivalent to equations (1 2), (1 3), (1 5) and (19). 

2.3. The region of strong absorption 
In the region of strong absorption the interference fringes 
disappear. There is no way to calculate n and x independently in 
this region from the transmission spectrum alone. Values of n 
can be estimated by extrapolating the values calculated in the 
other parts of the spectrum. The values of x can then be 
calculated using any of the four formulae presented in the 
previous section with their appropriate curves. For very large x 
the four curves T,, T,. T,  and T ,  converge to a single curve To. 
If interference effects are ignored. equation (4) can be written for 
x< 1 as 

To N Ax/B 

or 

2.4 .  Numerical simulation 
T o  test the accuracy of the theory presented here, a film with the 
following properties is postulated. 

Substrate refractive index 

S =  1.51 (constant) 

Film thickness 

d= 1000 nm 

Film refractive index 

3 x io5 
n=- + 2.6 

d2 

Film absorption coefficient 

1.5 x lo6 8 ( a  in nm-I). 
Iga=-- 

i" 
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The above values of n(d) and a(A) represent typical values 
for a-Si:H (Freeman and Paul 1979). The spectrum in figure 2 is 
a plot of T(A) as calculated by ( A l )  using the above-postulated 
properties of the film. The true values of n(d). x(A) and d can 
thus be used to determine the accuracy of calculated values. The 
smooth envelopes TM and T ,  are constructed on this simulated 
spectrum and the values from these 'experimental' envelopes are 
used in the calculation in the following sections. The width of the 
interference pattern ( TM - T,) increases with increase in ( n  - S) 

and statements about accuracy in the following sections refer to 
a typical spectrum of a-Si:H as in figure 2. 

2.5 .  Injnite substrate approximation 
Another expression for T,  assuming an infinite substrate and 
thus ignoring the contribution of multiple reflections from the 
back of the substrate, has been used by many workers 
(Manifacier et a1 1976, Lyashenko 1977, Hadley 1947). One 
equivalent form of this expression is given in the appendix (A2). 
A plot of T calculated from equation (A2) using the film 
properties given in the previous section is shown by the full 
curve in figure 3. The broken curve shows again the values of T 
calculated by equation (Al) .  

It can be seen that equation (A2) yields higher values for 
both TM and T,,, than equation (Al) .  A disturbing aspect is that 
equation (A2) predicts a transmission in the transparent region 
that is about 4% larger than the transmission of the substrate 
alone. This is impossible as can be verified experimentally. I t  is 
the author's opinion that calculated transmission curves using 
equation (A2) or equivalent forms should be regarded with 
suspicion; the equation does not represent the experimental 
values of Tfor  real films on transparent substrates. 

Equation (A2) can also be written in the form of equations 
(4) and (5) for the case of k=O. The only difference is in the 
expressions for B and D in (5b)  and ( 5 4 ,  i.e. B=(n + l)'(n + s)' 
and D = ( n  - l)'(n - s)'. Since the expression for n, equation 
(1 l), is independent of B and D it is valid for both ( A l )  and 

(A2). The expressions for x do contain B and D and will thus be 
different for the two cases. 

3. Determination of the refractive index 
The refractive index of the substrate can be determined by 
measuring the transmission spectrum of the clean substrate 
alone and using equation (2) to calculate s. If significant 
dispersion is present the data can be fitted to a simple linear 
function to give s(d). In this work s is assumed to be constant at  
a value s = 1.5 1 ,  yielding a transmission of 0.921. as shown by 
T,  in figure 2. 

For the calculation of n in the region of weak and medium 
absorption the values of TM and T,  at different d must be 
obtained. The accuracy to which ,I can be measured depends on 
the scale used and for the case of figure 2 the maximum 
accuracy is about +1 nm or about 0.1%. The maximum 
absolute accuracy of TM and T,  is also about 0.001 or 0.1%. 
These two values set the limits for the accuracy of the calculated 
values of n and a. 

Table 1 shows the values at the extremes of the spectrum of 
i, Tu and T ,  obtained from figure 2. The transmission values 
should be read on the curves of Tu and T,,, at each wavelength 
and not on the actual spectrum. This procedure partly 
compensates for the approximations made in deriving equation 
(4) from equation (Al).  If the intermediate values is to be 
calculated by computer, a parabolic interpolation between three 
nearest points should be done. since linear interpolation is not 
accurate enough. Attempts should not be made to fit TM or T,  
to some mathematical function since this leads to unacceptable 
errors and relevant physical information may be lost. 

The values of refractive index n ,  as calculated from equation 
(1 1) is shown in table 1. There is a fair agreement with the true 
values ntr .  The accuracy can be improved after calculating d ,  as 
will be described in the next section. 

A relative error in s of 1% leads to a relative error of about 
0.5% in n over the whole spectrum. An absolute error of 1% in 

Wave leng th  Inn? )  

Figure 3. Simulated transmission according to the theory for an infinite substrate (full curve) in comparison with that of a finite 
substrate (broken curve). 
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Table 1. Values of A. T, and T, for the spectrum of figure 2. Calculation of n and d. 

859 0.919 0.478 3.015 7 
814 0.919 0.470 3.052 7.5 
775 0.916 0.460 3.095 1035 8 
740 0.913 0.448 3.149 988 8.5 
710 0.908 0.437 3.198 979 9 
683 0.896 0.426 3.240 1023 9.5 
659 0.882 0.413 3.293 1013 10 
636 0.847 0.398 3.335 1002 10.5 
617 0.805 0.378 3.400 975 1 1  
598 0.715 0.354 3.420 1049 11.5 
582 0.616 0.319 3.496 1006 12 
564 0.433 0.256 3.570 &I9 12.5 
555 0.328 0.210 3.668 S f 3  13 

997 
1000 
1002 
999 
999 

1001 
1000 
1001 
998 

1005 
999 

3.007 3.006 
3.053 3.053 
3.100 3.099 
3.145 3.147 
3.195 3.195 
3.244 3.243 
3.295 3.291 
3.339 3.341 
3.394 3.389 
3.439 3.439 
3.492 3.484 

3.542 
3.573 

Tx, leads to a relative of about 0.506 in 17 in the region of weak 
absorption but increases to about I90 in the region of medium 
absorption. An absolute error of 1% in T ,  yields a relative error 
of about 1.596 in n in the region of weak absorption and this 
increases to about 3% in the region of medium absorption. 
Equation (1 1) is thus more sensitive to errors in T,  than in TM. 
T o  obtain 1% accuracy in 17.  T, and T, should be measured to 
about 0.290 absolute accuracy. 

The values of n ,  in table 1 are calculated at the extremes of 
the spectrum only for illustrative purposes. It can of course be 
calculated at  any value of 2 using the smooth envelopes T,  and 
T m .  

4. Determination of the thickness d 
If n ,  and n2  are the refractive indices at  two adjacent maxima 
(or minima) at  A I  and A 2 .  it follows from equation (3) that the 
thickness is given by 

(23) 
AIL*  

2(J.,n2 - & 1 2 1 )  
d= 

Equation (23) is very sensitive to errors in n and is not very 
accurate. The values of d calculated from equation (23) are 
shown as d ,  in table 1. There is some dispersion in the values of 
d ,  but the last two values deviate considerably from the other 
values. This deviation is an indication that 111 as calculated from 
equation (1 1) and A is not accurate enough and these values 
must be rejected. As a general rule the last two extremes of the 
spectrum should not be used in equation ( 1  1). 

The average value of d : ,  ignoring the last two values, is d, = 
1008 k 25 nm. This value of d l  can now be used with 171 to 
determine the order numbers for the extremes from equation (3). 
A big increase in accuracy now results in taking the exact 
integer or half-integer values of m for each J. and calculating the 
thickness d 2  from equation (3) using the values of n ,  again. If 
the values of m cannot be determined with certainty by 
inspection using equation (3), a few sets of values should be tried 
and d 2  calculated. The set of values of m that gives the smallest 
dispersion in 8, should be taken. The average value of d 2  in 
table 1 is d= 1000 2 nm. This is an accuracy better than 14.0. 
Even if the values of J. are rounded off to even values and the 
values of T5, and T,  rounded off to 106 precision. the procedure 
still yields an answer of d, = 1000 * 3 nm, illustrating the 
accuracy of the procedure to determine d. 

Using the accurate values of m and 8,. n can again be 
calculated for each i. using equation (3). These values are shown 
as n 2  in table 1 and there is an excellent agreement with the true 
values nr r .  Now n2  can be fitted to a function for extrapolation to 
shorter wavelengths. Using a function of the form n = a/A2 - c. a 
least-squares fit of the values n 2  in table I yields 

n = 3.028 x 105/12 + 2.595. (24) 

This is almost exactly the theoretical function used to generate 
the spectrum. Its form is a safe function to use for extrapolation, 
but a better fit to experimental values may be obtained by also 
including a term b/,i in equation (24). 

The values of M and d can also be determined by a simple 
graphical method. Suppose the order number (integer or half 
integer) of the first extreme is m, .  Equation (3) can now be 

' I  

Figure 4. Plot of 1/2 versus n / A  to determine the order number 
and thickness. 
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written for the extremes of the spectrum as 

2nd =(in , - 1/2)i, l = O .  1,2,  3 , * .  

or 

1/2 = 2 din/;.) - m , (25) 

This is in the form of a straight line. If 1/2 is plotted versus n / I ,  
a straight line will be obtained with slope 2d and cut-off on t h e j  
axis of -ml. Figure 4 shows a graph of equation (25) for the 
values of i. and n of table 1. 

The straight line is now drawn such that the line through the 
points passes exactly through the nearest integer (or half integer 
if the first extreme is a minimum) on the j axis. From figure 4 it 
follows that m ,  = 7. The slope of the line is exactly 2000, 
yielding a value for d of 1000 nm. 

The graphical method has an appealing simplicity. In 
principle only the values of i and n of two extremes are 
necessary to determine the order number m and the thickness d. 

5. Corrections for slit width 
In practice a spectrophotometer always has a finite spectral 

width or slit width S and a band in the range d f S/2 is incident 
on the film. The effect of this finite bandwidth on the 
transmission spectrum is to shrink the interference fringes: TM 
becomes smaller and T,  larger. The effect can be minimised by 
experimentally reducing the slit S, but noise problems reduce the 
accuracy of T for small values of S. The effect of S becomes 
important when the width of the fringes is of the order of 
magnitude of S. as is the case for thicker samples, as is shown in 
figure 5. 

Figure 5 shows a part of the spectrum on an expanded scale 
for a film with the same properties as that of figure 2, but with a 
thickness of 4,um. The full curve is the transmission simulated 
for a slit of S = 4  nm while the broken curve represents the 
spectrum that would have been obtained with essentially zero S. 
For these narrow fringes the change in T M .  ATM, can be as 
much as 6Y0, which leads to serious errors, as shown in table 2. 

Table 2 shows the values TMs and T,, for the extremes of 
the spectrum for S = 4 nm. The values of the refractive index n ,  
as calculated by equation (1 1) from TMs and T ,  is about 10% 
lower than the true values n,, and n ,  even decreases for shorter 
wavelengths. If equation (23) is used to calculate d using a,. a 

1 . 3 F , , , , , , , , , , , ,  " '  " " , " " " " "  ' , " " "  ' ,  " " " "  ' , " " "  , ", 

h a v e l ? n g t b  l n m i  

Figure 5 .  Simulated transmission for a slit width of 4 nm (full curve) compared to that of zero slit width (broken curve) for a film of 
4 pm thickness. 

Table 2. Transmission of a film of 4 pm with a slit of 4 nm and corrected values. 

696.0 
689.4 
682.8 
676.4 
670.4 
664.2 
658.4 
652.6 
647.2 
641.6 

0.802 
0.790 
0.778 
0.764 
0.749 
0.732 
0.715 
0.695 
0.674 
0.650 

0.436 
0.432 
0.428 
0.424 
0.419 
0.414 
0.408 
0.402 
0.395 
0.387 

3.05 7 
3.059 
3.06 1 
3.06 1 
3.062 
3.062 
3.062 
3.061 
3.060 
3.057 

13.6 
13.2 
13.0 
12.4 
12.2 
12.0 
11.6 
11.2 
11.0 
10.8 

0.857 
0.847 
0.835 
0.822 
0.810 
0.793 
0.776 
0.755 
0.734 
0.709 

0.420 
0.415 
0.410 
0.405 
0.400 
0.395 
0.389 
0.381 
0.374 
0.367 

3.226 
3.236 
3.247 
3.259 
3.270 
3.278 
3.290 
3.303 
3.313 
3.322 

3.219 
3.23 1 
3.244 
3.256 
3.268 
3.280 
3.292 
3.304 
3.316 
3.329 
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value of d- 6000 nm is obtained - an error of 50%. The errors 
due to the effect of the slit s are thus lery serious indeed, but can 
fortunately be corrected for. 

The change in T, AT, is proportional to T and S and 
inversely proportional to the linewidth, w. Theoretical analyses 
show the proportionality dependence to be quadratic 

A Tcc ( Ts/n')2. 

The constant of proportionality depends on the way M: is defined. 
If M, is simply taken to be the width between the two extremes 
immediately adjacent to the one under consideration, the 
constant of proportionality is very close to 1 for a wide range of 
conditions, for both TMS and Tms. The correct values TM and 
Tm can thus be calculated from the following equations 

where 

bt'M(i)=i.m(t-l)  - A ~ ( ! + I )  

and 

lt'm(i) =j-w(i- i )  - A M ( ! +  1). 

The way of calculating w is shown in figure 5 and the values 
are given in table 2. The corrected values T,, and T,  using 
equation (26) are also shown as well as the refractive index n ,  
calculated from equation (1 1) using the corrected values. There 
is a good agreement between n ,  and ntr .  If the thickness is 
calculated from 11 ,  using the procedure shown in table 1: a value 
of d = 4000 i 4 nm is obtained with corresponding accuracies in 
the final values of n.  

The use of the slit correction equation (26) thus transformed 
an error of 50YO in d to an accuracy of 0.1%. Equation (26) is 
valid over a wide range of practical values of w3 S and T. In 
practice the slit can be increased to reduce noise and equation 
(26) can be used to correct the experimental values of T. thus 
increasing the overall accuracy. 

6. Determination of CY 
Since n(A) is known from equation (24), x(A) can be determined 
from any of the four curves TM. T,, T,  or T ,  using their 
respective formulae. a(;,) can be calculated from x(i) and d 
using (Sf). The values of a at the extremes are shown in table 3. 

using the values of TM and T ,  from table 1. a is expressed in the 
commonly used units of cm-' .  

If the values n l  of table 1 according to equation (1 1) are 
used in the calculations, all four formulae will of course give 
identical values. Equation (24) is used for n in the calculation of 
a in table 3. All four formulae yield values of a that are in very 
good agreement with the true values. 

Table 4 shows the sensitivity of the various formulae to 
inaccuracies in the experimental parameters. The table shows 
the absolute change in the values of x of table 3, for small and 
large values of a. if the parameters are changed (by about 1%) 
as indicated. 

From table 4 it is evident that formulae involving T,  are 
more sensitive to errors in s and n. a is also more sensitive to 
errors in T ,  than in Tu. Equation (12) thus seems the best 
equation to use for calculating a. It can be shown however that 
the position of Ti in figure 2 is independent of errors due to slit 
width. Equation (15) may be used to calculate a without 
performing the slit correction with equation (26). 

The values of a as calculated by equation (A3), using the 
value of Tu from equation (1 8), are also shown in table 3 and 
there is an excellent agreement with the other four formulae, 
thus verifying the correctness of the theory presented here. 

The values of a calculated from equation (21) are also 
shown in table 3 and it can be seen that these values are much 
too high. especially in the region of weak absorption where the 
error is more than a factor of 10. This could be expected by 
considering the spectra of figure 3. The approximation assuming 
an infinite substrate thus leads to serious errors in determining a 
and k and the author maintains that the formula for a of 
Manifacier et a l ( l976)  is wrong. 

Table 5 shows the values for x in the region of strong 
absorption calculated from T ,  extrapolated to To in figure 2 and 
using equation (24) for the values of n. 

The mistakes in the first few values of a calculated from TM 
and T ,  in table 5 are due to the fact that Tu was used in the 
calculation. If their appropriate curves are used better values are 
obtained. For values of T < 0.05 all curves converge to To. The 
approximate formula (22) works well for values of T <  0.2 but 
becomes invalid for T >  0.25. Equation (19) can however not be 
used for values of T < 0.01 since due to its structure! round-off 
errors in calculations lead to errors. The values for a as 
calculated by equation (A3) again agree excellently with the 
other values. 

A relative error of 190 in s leads to an absolute error of 

Table 3. Values of a in units of l o3  cm-l calculated from the different 
formulae in the text. 

859 
814 
775 
740 
7 10 
683 
659 
636 
617 
598 
582 
5 64 
555 

0.01 1 
0.018 
0.03 1 
0.054 
0.094 
0.165 
0.286 
0.508 
0.877 
1.5 75 
2.644 
5.115 
7.349 

0.013 
0.013 
0.036 
0.058 
0.095 
0.183 
0.287 
0.555 
0.890 
1.686 
2.712 
5.277 
7.428 

0.033 
0.01 1 
0.026 
0.062 
0.101 
0.177 
0.29 1 
0.542 
0.912 
1.652 
2.732 
5.316 
7.544 

0.042 
0.010 
0.022 
0.064 
0.105 
0.174 
0.294 
0.534 
0.924 
1.634 
2.74 1 
5.329 
7.575 

0.070 
0.006 
0.008 
0.070 
0.115 
0.164 
0.301 
0.5 14 
0.957 
1.581 
2.770 
5.381 
1.720 

0.047 
0.026 
0.043 
0.078 
0.1 19 
0.195 
0.3 10 
0.561 
0.912 
1.669 
2.748 
5.329 
7.553 

0.24 1 
0.308 
0.349 
0.329 
0.356 
0.480 
0.552 
0.870 
1.111 
2.082 
2.95 1 
5.446 
7.217 
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Table 4. Change in values of x (cm-’) due to changes in the parameters of the formulae. 

Change in TM(12) TA191 T,(15) Tm(13) 
parameters a = l O  5000 10 5000 10 5000 10 5000 

s -0.01s + 30 - 1 0  -10  -20 -30 -30 -80 -70 
n - 0.01n 0 - 4 0  + 6 0  +80 + 100 + 100 + 2 0 0  - 180 
T M  - 0.0 1 +80  +180 + 5 0  1-110 + 4 0  + 9 0  0 0 
T,  -0.01 0 0 -100 -180 -140 -240 -280 -500 
T~~-O.Ol,T,+O.Ol + 8 0  + 1 8 0  -50 -70 -100 -140 -280 -500 

Table 5 .  Values of x in units of l o 3  cm-’  for the region of strong absorption using the 
different formulas in the text. 

550 0.223 9.09 10.61 9.09 8.93 6.90 9.00 9.10 
545 0.179 11.22 12.48 11.21 11.10 9.49 11.14 11.21 
540 0.135 13.93 14.96 13.95 13.89 12.69 13.92 13.96 
535 0.095 17.40 18.14 17.40 17.37 16.52 17.38 17.40 
530 0.060 21.88 22.42 21.93 21.92 21.39 21.92 21.93 
525 0.034 27.68 27.84 27.55 27.54 27.24 27.55 27.55 
520 0.016 35.26 35.17 34.95 35.02 34.89 35.02 35.03 
518 0.011 38.93 38.85 38.66 38.75 38.66 38.75 38.75 
516 0.007 43.02 43.31 44.39 43.25 43.19 43.25 43.25 
514 0.005 47.60 46.64 45.46 46.59 46.55 46.59 46.59 
512 0.003 52.73 51.70 51.68 51.65 51.68 51.68 
510 0.002 58.48 55.72 55.71 55.70 55.71 55.71 

about 20 cm-l  in a and a relative error of 1% in n leads to an 
absolute error of about 100 cm- ’  in a over the whole region of 
strong absorption. From equation (22) it follows that an 
absolute error of A T  in To leads to an absolute error of 
( l /d) In( 1 + A T  T i ‘ )  in a. The accuracy of a thus decreases 
for T<O.Ol, 

In conclusion the author recommends that TM with equation 
(12) be used to calculate a over the whole range of the spectrum. 
TM is also the easiest curve to construct experimentally. 

In cases where TM cannot be constructed accurately, e.g. for 
very thick samples where slit errors may be present or very thin 
samples with a few fringes, T,  can be constructed and a be 
calculated from equation (15). x can be calculated with about 
1% accuracy in the range of about 100 cm-’  to 5 x lo4  cm-l 
but the accuracy decreases outside this region. 

Once x @ )  is known. k(A) can be calculated from the 
equation 

k = d / 4 n  (27) 

which completes the calculation of the optical constants. 

7. Conclusion 
Formulae and procedures have been presented to calculate n(L), 
a(;.) and d for a-Si:H films to an accuracy of the order of 1YO 
using data from the transmission spectrum alone. All formulae 
are in closed form and can easily be used on a programmable 
pocket calculator. The procedure has been used on a large 
number of a-Si:H films using a Varian DMS-90 
spectrophotometer and the results showed that the accuracy 
claims are justified. 

Appendix 
The rigorous expression for the transmission T for a system as 

shown in figure 1 is 

A’x 
B’ - C’X - D’x’ 

T =  

where 

A’ = 1 6s(n2 + k’) 

B‘= [(n + 1)2 + k2][(n + l)(n + s2) + k’] 

C’=[(n’- 1 +k’)(n2-s2+k2)-2k2(s2+ 1)]2cosq~ 

-k[2(nz - s 2  + k’) + (s’ + l)(n’ - 1 + k2)]2 sin v 

D t = [ ( n -  l)’+k’][(n- l)(n-s2)+ k’] 

v = 4nnd//Z, x = exp(-ad), a = 4nk/i. 

In the case of an infinite substrate the transmission Tis given by 

where 

A”= 16 s(n’ + k2) 

B”= [(H + 1)’ + k’][(n + + k’] 

C”=[(n’-l  +k’ ) (n ’ - s ’+k’ )+4k’ s ]2cos~  

-k[2(n2-s2-k2)+2s(n2-1 + k 2 ] 2 s i n q  

D” = [(N - 1)2 + k’] [ ( n  - s)’ + k’], 

The absorbance x for a system as shown in figure 1 is given in 
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terms of the interference-free transmission T,  by 

x= { P  + [P' + 2Q T,( 1 - R,R,)J"*}/Q (A3) 

where 

Q=2Ta(RiR2  + R i R , - 2  RIR2R3) 

P = ( R ,  - 1)(R2 - l ) ( R 3  - 1) 

R = [( 1 - n)/(  1 + n ) J 2  

R 2 = [ ( n - s ) / ( n + s J 2  

R3 = [(s- l ) / ( ~  + l)]'. 
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