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1 The interaction picture
s.intpic

In the Schrödinger picture, a wave function ψ = ψ(t) (time-dependence of wave func-

tions and operators is suppressed, except in initial conditions) evolves according to the

Schrödinger equation

ih̄ψ̇ = Hψ,

where H is the Hamiltonian of the system of interest. To define the interaction picture we

split H as

H = H0 + V

into a reference Hamiltonian H0 and the Schrödinger picture potential V := H −H0. We

consider the reference evolution operator U0 = U0(t) defined by the initial-value problem

ih̄U̇0 = H0U0, U0(0) = 1,

and note that the solution U0 is unitary,

U∗
0
= U−1

0
.

In the interaction picture, the associated wave function is defined by

ψI := U−1
0
ψ = U∗

0
ψ,

and operators X in the Schrödinger picture are represented by corresponding operators

XI := U−1
0
XU0 = U∗

0
XU0.

Note that X → XI is an isomorphism:

(X ± Y )I = XI ± YI , (XY )I = XIYI , (X∗)I = (XI)
∗.

Since
ψ∗IψI = ψ∗U0U

∗

0
ψ = ψ∗ψ,

states normalized in the Schrödinger picture are normalized in the interaction picture, and

conversely, and for normalized states,

〈X〉 := ψ∗Xψ = (U0ψI)
∗XU0ψI = ψ∗IU

∗

0
XU0ψI = ψ∗IXIψI .
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Thus quantum expectations are invariant under a change of the picture. From

ih̄U̇0ψI + ih̄U0(ψI)
• = ih̄(U0ψI)

• = ih̄ψ̇ = Hψ = (H0 + V )U0ψI

= H0U0ψI + V U0ψI = ih̄U̇0ψI + U0VIψI ,

we find ih̄U0ψ̇I = U0VIψI , hence the dynamics

ih̄(ψI)
• = VIψI , ψI(0) = ψ(0) (1) e.psiInt

for the wave function ψI in the interacting picture. Similarly

ih̄(XI)
• = ih̄(U∗

0
XU0)

• = −(ih̄U̇0)
∗XU0 + U∗

0
ih̄ẊU0 + U∗

0
Xih̄U̇0

= −(H0U0)
∗XU0 + U∗

0
ih̄ẊU0 + U∗

0
XH0U0 = U∗

0
(ih̄Ẋ − [H0, X])U0,

hence

ih̄(XI)
• = (ih̄Ẋ − [H0, X])I , XI(0) = X(0). (2) e.XIprop

2 A silver beam in the Stern–Gerlach experiment
s.silver

Now we apply this to quantum field theory in the halfspace x3 ≥ 0, modeling a beam of

silver in the Stern–Gerlach experiment emanating from a hole in a plate placed at x3 = 0.

(At this stage of modeling there is no second plate where the silver would be absorbed and

the measurement takes place. This will be remedied later.)

We use the second quantization formalism, writing a(x) for time-independent fermionic

2-component annihilation operators, satisfying the canonical anticommutation relations

aj(x)ak(y) + ak(y)aj(x) = 0,

aj(x)ak(y)
∗ + ak(y)

∗aj(x) = δjkδ(x− y).

a(x) is the Fourier transform of the more conventional momentum space annihilation oper-

ators ap. (The latter are convenient only in the absence of an external field.)

As reference Hamiltonian we take the 1-particle operator

H0 :=

∫
dxa(x)∗H1(t, x, p̂)a(x) (3) e.H0

where H1(t, x, p̂) is the Hermitian single-particle Pauli Hamiltonian for a particle in an

external magnetic field. To model the silver source behind the hole in the plate we need to

add a Hermitian interaction term. 1-particle interactions require terms linear in a(x) and

a(x)∗, so we choose an interaction of the form

V = V (t) := a(J) + a(J)∗, (4) e.V
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with the most general 1-particle annihilator

a(f) :=

∫
dxJ(t, x)a(x). (5) e.af

Since the Hamiltonian must be even, J(t, x) must be an odd operator, acting on a Fermionic

Fock space of hole states. Introducing time-independent fermionic 2-component hole anni-

hilation operators bh satisfying the canonical anticommutation relations

bhbh′ + bh′bh = δhh′ ,

bhak(y)
∗ + ak(y)

∗bh = 0,

we take J(t, x) to have the form

J(t, x) =
∑

h

Jh(t, x)bh,

where the Jh(t, x) are complex 2 × 2 matrices with spinor indices, and a sum over spin

indices is implied. The positions of the holes that are created in the silver source together

with each silver atom in the beam need not be modeled explicitly since they are outside

the halfspace x3 ≥ 0, hence are not affected by the dynamics on this halfspace.

The canonical anticommutation relations imply that H0 commutes with the bh and that

[H0, a(J)] = −a(H1J), [H0, a(J)
∗] = a(H1J)

∗. (6) e.a1comm

Since the source producing the silver beam is outside the halfspace x3 ≥ 0, we must have

Jk(t, x) = 0 if x3 > 0. (7) e.Vboundary

Thus J(t, x) only involves boundary terms at x3 = 0. By (11), the dynamics (1) for the

wave function in the interaction picture involves the interaction potential

VI = a(J)I + a(J)∗I = a(U1J) + a2(U1J)
∗

I .

Thus
VI = a(v) + a(v)∗, (8) e.VI

where

v := U1J =
∑

h

vh(t, x)bh,

where the
vh(t, x) := U1Jh(t, x)

satisfy the Pauli equation for a particle in an external magnetic field.
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