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12.4 Thermal Physics
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12.3 PHASE SPACE AND QUANTUM STATES

Let us consider the motion of a particle along a straight line (Fig. 12.1a). The mechanica]
state of the particle at any instant is given by its position x from a fixed point on the

straight line and its velocity v, = ar at that instant. However, (in view of uncertainty

principle) it is more desirable to work with momentum p (= mv,) instead of velocity. As
the particle moves along the straight line, the values of x and p, change. So the state of the
particle at any instant is completely specified classically at a particular instant if its position
and momentum are known. It may be represented by any point P on a two-dimensional
hypothetical space, whose coordinate axes are x and p, (Fig. 12.1b). With the passage of
time, the point P traces out a certain trajectory in the x — p, plane.

Pay

@ . w |
Fig. 12.1 (a) Motion of a particle along a straight line and (b) Phase spa_ce for one- "
dimensional motion. '

The state of the particle is referred to as the phase, the poiﬁt P as the phase point, the
trajectory as the phase path and the hypothetical two-dimensional plane as the phase space.
These concepts are illustrated in the following example.

Example 12.2 Determine the phase path for a linear hafrhohic oscillator.
Solution: Suppose the mass and the force constant of the oscillator are m and k,

respectively. From your school physics, you may recall that the total energy E of a lmear
harmonic oscillator is given by- ‘ o

—lmv + lkx2 j i
2 2 APx
. 1, P
Since, p, = my,, we can write —mv; = '
2 2m ]

so that we can write

Y
®

or

"' Fig.12.2 Phase path for a linear

2mE 2(E/k) harmonic oscillator.
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gince E is constant, 2mE and 2E/k are also constant :

, illat : g’
int of the oscillator traces out an ellipse (Fig.12.2) in the x—p, plane with semi-major

dse mi-minor axes equal to /2 E/k apd V2mE respectively. ‘

Any l;omt ::J:;Sli]llif‘:e l'e'p:je'sents the phase at that time. As the oscillator moves to
4 fro along & periodically, the same positions and momenta are repeated. So

an A
Fig. 12.2 over and over again.

So this relation indicates that the phase

¢ phase point describes the ellipse of

(a this example, the.trajectory is a closed path. It may not al
put the curve will not intersect itself in any case. et ettt el

M A stone at rest falls freely. Determine its phase trajectory.

Ans: A parabola )

you will note that the actual motion of a linear harmonic oscillator takes place along a
sraightline. An actual mechanical system is, in general, more complex than a particle
moving along a straightline. A general treatment demands three position coordinates
(1, ¥» 2) and three components of momentum Py Py, p,)- In other words, we require six
numerical quantities to specify the state of a system at a particular instant. That is, we need
six-dimensional phase space. (Figure 12.1 only gives a symbolic representation of such a
space.) It is referred to as y—space. The state of translational motion of a molecule at any
instant is completely specified by a representative point in this hypothetical space and the
state of a system of particles corresponds to a certain distribution of points in phase space.
For a system of N molecules, the instantaneous state is represented by a set of N points.
As the position and momentum change with time, all these points may undergo extremely
complicated motions in this space.: rebaney g e0i voh N

Note that the notion of phase space provides geometrical framework of some sort to
statistical mechanics and helps to minimise abstraction. You will agree that it is not possible
to draw such a space on a plane and for this reason, phase space should be considered a
purely mathematical concept. ’ 13

The uncertainty principle helps us to elaborate what we mean by a point in phase space. ;
Suppose we divide the phase space into small six-dimensional cells of sides Ax, Ay, Az,. !
ép‘, Ap,, Ap,. If we reduce the'size of the cells, we approach more and morc.closely to the !
limit of 2 point in phase space. However, the volume of each of t.he:se cellsis . I

"H = AxAyAzdp, Ap, Ap,
According to the uncertainty principle, the uncertainty in position and momentum |
“ordinates in two-dimensional x — p, phase space is connected as 1
a1 b AxAp, 2 h \ (12.1a) |
Vhere h=zi; his Planck’s constant. ‘ L . 1
ldentical relations hold for y and z-components: 1 |
AyApy2 P o vz v B (12.1b) |
g PERRPITE LY oty
i AzAp, 2 h (12.1c)

& combining Eqs. (12.1 a~c), we can say that
L H2P. Ot %= qaes ety e (12,2)

.
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12.6 Thermal Physics

We can now conclude thata point in phase space Pxh

is a six-dimensional cell (or ‘quantum box’) R B b ek

whose volume is of the order of #%. A more. . ©° "?'1:'—i"'.’”’:"i"i"‘:"’:":"i'-x:

detailed analysis shows tha‘t t?ach cell ix.1 pha.se :E:I:‘::E:I:]Z:[:E:]:j:tj

space has volume I, which is mconfor_mlty w;th O S T

the uncertainty principle argument Since h > __i_i__L_:__4_1,__}_;_1;__:_4“5

#3. It means that a particle in phase space will __;'_ﬂ:__'l,__:,_,:_ﬂ:__i__:r_q:__i‘_.r_i

be located somewhere in such a cell centred at: --?--':—-E-—?-4:-4:--3--:»-4:-.;--;._3

some location (%, ¥, Z Pxs Py P2) instead of being 0 e

precisely at the point itself. ‘ . Fig-12:3 The total number of states
For simplicity, let us consider a particle available to a particle

moving along the x-direction. Let it be confined between 0 < x<x,

confined between x = 0 and x = xg and have its and 0 < p, < p.

x — component of momentum between p, = 0 ‘ SRR
and p, = p, (Fig. 12.3). The number of states available to the particle in two-dimensional

space is given by
Total area  Xq Po
P TAcap,  h | |
Similarly, we can say that the number Qf states available in six-diméqsional phase space
is given by

(12.3)

Total six-dimensional volume V, Vi ; (12.4)
AxAyAz Ap bp,Ap, K

where V, and V), denote the volumes in coordinate and momentum space, respectively.

The number of states available in the six-dimensional volume element d°r d’p is given by

d’r d&p .
h3

n=

] Math:matical}y, we ca;i W_rite : e

dxdydzdp, dp,dp,
%

From this we can say that the number of quantum states included in anj interval of any of

the coordinates is directly proportional to the length of the interval.

To give you an appreciation of the numbers, we give below a solved example. GO
through it carefully. '

(12.5)

Number of states =

TR VA& Calculate the number of quantum states available to the following:
(a) A particle is moving in one dimension. It is confined to 10~°m of space and its
momentum lies between —1072° kg ms™' and 1072 kg ms™",

' e .
(|'9’) A proton inside a nucleus (radius = 10_14m) whose momentum cannot CXCeed
107" kg ms™!, n WEY :

Solut.ion.‘ (a). From Eq. (12.3), we recall that the number of quantum states available 10
a particle moving in one dimension is given by

_XoPo @)
Here xo=10"" m, and p, = 2 x 10" kg ms™'. Hence,

el
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Basic Concepts of Statistical Mechanics  12.7

(107 m)x(2x107 kgms™")
(6.626 X 107* Js)

n

=3,000

(b) Since a proton inside a nucleus is free to move in 6 — D space, from Eq. (12.4),
we can write

n= r3” (ii)

_Am 5 — 104 4 - —10-19 -1
We know that v =" with ry=10"" mand v, =Tp8 with py= 107" kgm s™.
On substituting this data in Eq. (i1), we get
[(47/3)x 107 m® | x[(47/3) x 1077 kg’ m?s™]
(6.626 x 107 Js)?

=600

n
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