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Preface 

 
 
The material in this report was originally written as class notes in 1967 for a 

course I taught in electric and magnetic fields.  The derivation of Maxwell’s equations 
from special relativity and Coulomb’s law was developed at that time in collaboration 
with Dr. Carl T. Case who was then at the Air Force Avionics Laboratory at Wright-
Patterson Air Force Base.  We had served in the Air Force together between 1963 and 
1966 and had become intrigued with the possible limitations of Maxwell’s equations 
based on this derivation.  After 1970 I moved on to work in other areas including 
coherent optics, pattern recognition, microprocessors, and embedded systems.  Last year I 
came across this material when cleaning out my office and decided to reprint it in 
electronic form and make it available on my web site. 

If you are interested in understanding special relativity, then you should read Parts 
I – III.  The derivation of Maxwell’s equations from special relativity and Coulomb’s law 
is given in Part IV.  If you just want to find out why this topic is so intriguing then skip 
directly to the discussion in Section 19. 

 
        R. E. Haskell 
        July 2003 
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I.  SPACE AND TIME 

 
1.  Reference Frames  

 
We are familiar with using coordinate axes as reference frames to describe the 

motion of a particle. Thus, in Figure 1 we plot the displacement x of the particle as a 
function of the time t.  We say that any point on this graph represents an event. Thus E1  
is an event which occurs at x1  at the time t1 and E2 is an event which occurs at x2  at the 
time t2.  The world-line of a particle is the locus of events in the space-time (x-t) graph of 
Figure 1. The velocity of the particle in Figure 1 is given by tanv x t φ= ∆ ∆ =  and is the 
slope of the world-line.  

Now we may ask ourselves the 
following question:  Given the event El, is 
the time t1 found by dropping a 
perpendicular to the t-axis or is it found by 
moving parallel to the x-axis? In Figure 1 
it is clear that these two operations are the 
same so the question may seem 
unimportant. However, there is no reason 
other than convenience that our coordinate 
axes x and t should be orthogonal or 
perpendicular to each other. For example, 
we could just as well draw them at an 
oblique angle as shown in Figures 2 and 3.  
We now see that we have a choice of how 
to define our components of the events E1 
and E2.   In Figure 2 we move parallel to the coordinate axes while in Figure 3 we drop 
perpendiculars to the coordinate axes.  It is clear that either method is acceptable and that 
we can pick the one that is most convenient for any particular purpose.  In Figures 2 and 
3 the velocity of the particle is still given by v x t= ∆ ∆ , but note that in neither case is 
this equal to tanφ  as it was in Figure 1. You may wish to find expressions for the 

Fig. 1  Definition of a world-line 

Fig. 2  Moving parallel to the axes Fig. 3  Moving perpendicular to the axes
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velocity of the particle in Figures 2 and 3 in terms φ and the angle that the x-axis makes 
with the t-axis. 

 
2. The Galilean Transformation  

 
We should like to be able to describe how a given event or a series of events 

appears to two different observers who move at a constant velocity relative to each other. 
For example, suppose a bird is flying past a moving train in the direction in which the 
train is moving. How does the motion of the bird appear to an observer on the train and 
how does it appear to an observer on the ground?  

In order to answer this and similar questions we would like to be able to draw a 
set of space-time axes (x-t) for each of the observers (the train and the earth) in such a 
way that they could be used to describe a single event (the bird). Let us see how we might 
be able to do this.  

In Figure 1 the world-line which is shown is that of a particle moving with a 
constant velocity relative to an observer at some fixed value of x. To make these ideas 
concrete let x-t be the space-time coordinate axes for an observer at rest with respect to 
the earth. The world-line of such an observer would be a horizontal line as shown in 
Figure 4 since as time goes on he simply remains at the same value of x, namely x1. 

Now we know from Figure 1 that the world-line of a train which moves relative to 
the earth with a velocity tanv x t φ= ∆ ∆ =  will be a straight line inclined at an angle φ as 
shown in Figure 4.  We want to draw a set of space-time axes (called 'x t− ) for an 
observer at rest on the train.  The coordinate axis 'x  must be such that each point on the 
world-line of the train has the same value of 'x . This will be the case if we draw 'x  as 
shown in Figure 4 where we have adopted the convention of Figure 3 and locate the 
coordinate of an event by dropping 
perpendiculars to the coordinate 
axes.  Since 'x t−  are coordinates 
fixed to the train, as time goes on the 
observer on the train remains at his 
same value of 'x , namely '

1x .  The 
event E which occurs when the two 
observers meet is represented by the 
crossing of the two world-lines. Thus 
in Figure 4 the observer on the train 
is just passing by the observer on the 
ground at time t1.   

 It is not yet clear how the 
scale of distance on the x-axis 
compares with the scale of distance 
on the 'x -axis. How can we find out?  We need some definition of equivalent lengths. Let 
us denote the system of space coordinates fixed on the earth by S and those fixed on the 
train by 'S .  Then let 'F  be the value of 'x  at the front of the train and let 'B  be the value 
of 'x  at the back of the train.  Then ' ' 'x F B∆ = − is the length of the train as measured in 

'S  as shown in Figure 5.  

Fig. 4  World-lines of two observers 
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We know what we mean by the length of the train in 'S since the person on the 
train can leisurely measure the length by stretching a steel tape from the back of the train 
to the front.  But how can the observer on the ground measure the length of the train? 
One way might be to have two assistants, one stationed at the front of the train and the 
other stationed at the back of the train. Each assistant has an identical pistol and at 
precisely the same time they each fire a bullet straight down into the ground. The 
observer on the ground then leisurely walks over and measures the distance between the 
bullet holes in the ground with a steel tape.  He then says that this distance is equal to the 
length of the train.  Where is this 
length in Figure 5?  

The important idea is that 
the bullets must be fired 
simultaneously.  Suppose they are 
both fired at time t1.  Then in 
Figure 5 the event EB = firing the 
bullet at the back of the train while 
the event EF = firing the bullet at 
the front of the train. In the frame 
of reference fixed to the ground 
these events are separated by a 
distance x F B∆ = − . This distance 
is what the observer on the ground 
calls the length of the train.  

Now if the two observers are to measure the same length for the train (which 
seems reasonable) we must have 'x x∆ = ∆  in Figure 5.  Since these lengths are clearly not 
equal in Figure 5 we must assign different scales of length to the x and 'x  axes. This 
would be cumbersome and we 
would rather not do it if we can 
help it.  But there is another way 
out. Since we're finding our 
coordinates of events by dropping 
perpendiculars to the coordinate 
axes, we can make the length of 

x∆ equal to the length of 'x∆  in 
Figure 5 by tilting the x-axis to the 
right the same amount as the 'x -
axis is already tilted to the left as 
shown in Figure 6.  It is a simple 
matter to show that 'x x∆ = ∆  in 
Figure 6. Thus in Figure 6 the scale 
lengths along the 'x  and x axes are 
the same.  

Now since we have tilted the x-axis in Figure 6 it is clear that the velocity of 'S   
(the observer on the train) relative to S (the observer on the ground) will not be tanφ  as it 
was in Figure 4.  In order to find out what this relative velocity is let's draw the world line 

Fig. 5  World-lines of the front and back of a train

Fig. 6  Symmetric tilting of both x and 'x  axes 
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of an observer at rest on the train as 
shown in Figure 7. Note that angle 

'
1 2 2x E x is equal to 2θ  since '

1 2x E is 
perpendicular to '0x  and 2 2E x is 
perpendicular to 0x .   Similarly, 
angle 2 1E E A  is equal to θ .  

During the time interval 
2 1t t t∆ = −  the event describing the 

observer at rest on the train moves 
from 1E  to 2E .  In this time interval 
the position of the train as measured 
by the observer on the ground 
changes by an amount 2 1x x x∆ = − .  
Therefore, the velocity of the train 
( 'S ) relative to the ground (S) is u x t= ∆ ∆ .  From Figure 7  

 
 sin 2x L θ∆ =  
 cost L θ∆ =  
 

and since sin 2 2sin cosθ θ θ=  we obtain for the relative velocity u  
 

 sin 2
cos

x Lu
t L

θ
θ

∆
= =
∆

 

 2sin cos
cos
θ θ
θ

=  

or    
 2sinu θ=  (1) 

 
Figures 6 and 7 show how given events appear to two different observers who are 

moving relative to each other with a constant velocity. The relationship between the 
coordinates of the two systems shown in these figures is called the Galilean 
transformation.  As an example of this transformation we will now look at how velocities 
transform from one system to the other.  

 
3. Velocity Transformation  

 
Let us now consider the problem of a bird flying past the moving train. Since the 

bird is flying faster than the train its world line must have a positive slope relative to the 
world line of the moving train. The situation is shown in Figure 8.  From Eq. (1) we 
know that  

u = velocity of 'S  (train) relative to S (ground)  
2sinu θ=  

 

Fig. 7  Calculating the relative speed of the train 
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Also let  
v =   velocity of bird relative to S x t= ∆ ∆  

'v =  velocity of bird relative to ' 'S x t= ∆ ∆  
 
From Figure 8  

( )sin 2x L θ φ∆ = +  
' sinx L φ∆ =  

( )cost L θ φ∆ = +  
  
We can therefore write  
 

 ( )sin 2x L θ φ∆ = +  

( )sin 2 cos cos 2 sinL θ φ θ φ= +  

( )22sin cos cos 1 2sin sinL θ θ φ θ φ = + −   

( )sin 2sin cos cos sin sinL Lφ θ θ φ θ φ= + −  

( )sin 2sin cosL Lφ θ θ φ= + +  
or  

'x x u t∆ = ∆ + ∆  
 

which is the equation for the Galilean transformation. It follows that  
 

'x x u
t t

∆ ∆
= +

∆ ∆
      (2) 

or  
'v v u= +       (3) 

 
 
This is, of course, just what 

you would expect.  The velocity of 
the bird relative to the ground is the 
velocity of the bird relative to the 
train plus the velocity of the train 
relative to the ground.  Why all the 
fuss?  You say you could have 
figured that out in your head much 
easier.  And you're right.  If this were 
the way nature works it certainly 
would not be worth all the effort to 
make all these graphs.  But this is not 
the way nature works! We've made a 
mistake somewhere in our thinking.  Fig. 8  Calculating the velocity of the bird 
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The Galilean transformation does not predict everything that we observe experimentally.  
What then is the proper picture of space and time?  We will see in the next section that 
the graphs we have constructed for the Galilean transformation must be modified.  
However, our understanding of the use of these graphs will help us considerably in 
understanding this new theory of relativity.  We will find that it is time that is the culprit 
and that the proper picture of space and time is one in which the asymmetry of Figures 6-
8 disappears and space and time are put on an equal basis. 

 
 

 
II.  RELATIVISTIC KINEMATICS 

 
4.  The Principle of Relativity  

 
Newton's laws of motion are stated as holding only with respect to an inertial 

frame of reference.  Such a frame of reference is defined by Newton’s first law.  That is, 
an inertial frame of reference is one in which the law of inertia holds.  It follows that 
there are an infinite number of systems of reference (inertial systems) moving uniformly 
and rectilinearly with respect to each other in which the law of motion (F = ma) is of the 
identical form.  

The preceding is a statement of the principle of relativity for classical mechanics. 
It asserts that absolute uniform motion cannot be detected by any experiment of classical 
mechanics.  For example, if you were riding along on a train moving with uniform 
velocity there is no mechanical experiment that you can do completely within the train 
that could tell you whether or not the train were moving.  As far as you could tell the train 
might very well be at rest.  This is certainly consistent with our everyday experience.  Of 
course if the train accelerates or decelerates we can feel or detect this motion but as long 
as it is moving uniformly we have no way of detecting the motion.  

Now this is a very satisfying principle of physics.  It says that it is unnecessary to 
assume a special or specific frame of reference with respect to which the laws of 
mechanics are to hold.  It says that any of an infinite number of (inertial) frames of 
reference are equally acceptable and that no one frame of reference is given a special 
position of importance above any other frame.  If this weren't so then we would have to 
write a different equation of motion for every different frame of reference.  It is clearly 
desirable to have the laws of physics be independent of the particular frame of reference 
from which the experiment is observed.  

We see that for classical mechanics things seem to be in good shape with respect 
to the principle of relativity.  What about the rest of physics?  Toward the end of the last 
century it appeared as though the laws of electromagnetism violated the principle of 
relativity and as a result physicists thought that it would be possible to detect absolute 
uniform motion by certain experiments involving the propagation of light which is a form 
of electromagnetic energy.  Many such experiments were carried out, the most famous of 
which is the Michelson-Morley experiment which was designed to detect the uniform 
motion of the earth relative to a hypothetical ether which was assumed to be at rest 
throughout absolute space.  However, this experiment was unable to detect the absolute 
uniform motion of the earth.  
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There were many other examples of electromagnetic phenomena which were 
inconsistent with the concept of absolute rest.  As a result in 1905 Einstein took as his 
first postulate that the principle of relativity that we stated above as holding for the laws 
of mechanics also holds for the laws of electrodynamics and therefore optics.  We can 
therefore state Einstein's first postulate which is called the Principle of Relativity as 
follows:  Absolute uniform motion cannot be detected by any means.  This is to say that 
the concept of absolute rest and the ether have no meaning.  

 
5.  The Nature of Light  

 
The Principle of Relativity described in the previous section does not seem to be a 

particularly disturbing postulate.  As a matter of fact it seems quite reasonable.  However, 
when Einstein stated this principle as his first postulate it did not seem so reasonable. 
This was because Maxwell's equations of electromagnetism predicted that light would 
travel with a constant velocity c.  The question is -- a velocity c with respect to what?  It 
was thus supposed that it must be with respect to an ether which was at absolute rest in 
the universe.  It then followed from the Galilean transformation that absolute uniform 
motion with respect to the ether could be detected.  As pointed out above all attempts to 
detect such motion have failed.  

In addition to his first postulate of the Principle of Relativity, Einstein stated a 
second postulate concerning the nature of light.  It was that light is propagated in empty 
space with a velocity c which is independent of the motion of the source.  

We know that the velocity of some things do depend on the velocity of the source. 
For example, the velocity of a bullet will appear to travel faster to an observer on the 
ground if the gun is moving in the direction in which it is fired.  On the other hand the 
velocity of sound does not depend on the velocity of the source but always has the same 
velocity with respect to the air.  Physicists at the end of the last century thought light 
must act the same way.  They believed that the velocity of light was independent of the 
velocity of the source.  After all, the velocity of light must have the same value with 
respect to the ether.  Thus Einstein's second postulate would seem quite natural.  

However, we have seen that Einstein's first postulate implies that there is no ether. 
Thus at first sight there seems to be no way that both postulates can be true.  Einstein 
showed that in order for both postulates to be true we must modify our ideas about the 
nature of time.  Let us remind ourselves that the reason we accept the two postulates by 
themselves is that they agree with our experience.  The combination of the two postulates 
leads to predictions which at first sight seem quite unlikely.  However, many experiments 
have subsequently shown that these unlikely events do, in fact, occur.  

 
6.   The Nature of Time  

 
In order to understand the dilemma of Einstein's two postulates consider the 

Galilean transformation represented by Figure 8.  The velocity of the bird is different 
when viewed from two different inertial frames (the ground and the train).  However, 
Einstein's postulates state that if we send a light signal from the back of the train to the 
front of the train then an observer on the train and an observer on the ground must both 
measure the velocity of the light beam to be c!  How can we draw a world-line for the 
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light beam in Figure 8 so this will be so?  Only a vertical world-line would have the same 
velocity in both reference frames but this velocity would be infinite and not c. What else 
can we do?  

The only way that Figure 8 can 
be modified so the velocity of light 
will have the same value c in both 
reference frames is to split the t-axis as 
shown in Figure 9.  If we label the 
time axes in units of ct and 'ct  then the 
world-line of a light signal must have a 
slope of +1 in both frames of 
reference.  We notice that by splitting 
the time axis as we have this is 
accomplished and in each reference 
frame the velocity of light is given by 

' 'x t x t c∆ ∆ = ∆ ∆ = .  
This splitting of the time axis is 

the central result of relativity theory.  
We must try to understand what it 
means.  Let us first determine what the 
relative velocity between the reference frames S and 'S  is in terms of our new picture of 
space-time given by Figure 9.  A particle at rest in 'S will have a zero velocity relative to 

'S .  The world-line of such a particle is shown in Figure 10.  The velocity of 'S relative 
to S which we denote by u is then the velocity of the particle at rest in 'S relative to S.  
From Figure 10 this velocity will be u x t= ∆ ∆ .  Note that we have let 2θ α=  and also 
that the world-line of the particle at rest in 'S  is parallel to the ct-axis.  This is because 
the axes 'x  and ct are perpendicular as are the axes x and 'ct .  From Figure 10 we 
therefore can write 

 
sinx L α∆ =  

c t L∆ =  
so that  

sinxu c
t

α∆
= =
∆

 

or  
sin u cα =       (4) 

 
Since 2 2sin cos 1α α+ =  it follows that  

 
2cos 1 sinα α= −  

2

2cos 1 u
c

α = −      (5) 

 

Fig. 9  Splitting the t-axis 
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We immediately see from Eq. (4) that u must be an appreciable fraction of the 
speed of light c in order for α  to have a significantly large value. For example, if 

0.1u c= , then 5.7α = ° . The angle α  increases as u increases and approaches 90° as u 
approaches c.  

In order to try and understand 
the nature of time as depicted by 
Figure 10 let us consider how two 
observers on a train, one at the front 
and one at the back, might 
synchronize their clocks so they will 
know they read the same time.  One 
way might be for the two persons to 
meet somewhere on the train and set 
their clocks to the same time. Then 
one person moves to the back of the 
train and the other to the front of the 
train.  Can you think of anything 
wrong with this method?  How do 
you know that the beating of the 
clocks remained the same when they 
were in relative motion? The only 
direct comparisons of clocks that we 
can make are when they are at the 
same place at the same time.  
Probably the worst thing about the above method of synchronizing clocks from the 
physicists point of view is that there is no way of testing whether the clocks remained 
synchronized except by sending time signals once they are at the front and back of the 
train.  This suggests that a better method of synchronizing clocks would be to use time 
signals to begin with.  This could be done in the following way.  

We measure the length of the train with a steel tape and then place a third person 
at exactly the center of the train.  At a certain time that person explodes a flashbulb which 
sends a light signal in both directions at the constant velocity c.  Each person at the front 
and back of the train has a clock which automatically starts when the light signal arrives.  
Now since they know (by Einstein's postulates) that the light will take the same time to 
travel to the front of the train as it does to travel to the back they are justified in saying 
that the signals will arrive at the front and back of the train simultaneously and that their 
clocks will be synchronized.  Let us see what this looks like in our figures.  Figure 11 
shows the world-lines of the front ( 'F ), back ( 'B ), and center ( 'C ) of the train.  The 
event 1E  is the exploding of the flashbulb at the center of the train at time '

1t .  Event 2E   
is the arrival of the light signal at the back of the train and event 3E  is the arrival of the 
light signal at the front of the train.  As advertised these events occur simultaneously to 
the observer on the train at the time '

2t . 
Now how does an observer on the ground in reference frame S describe what is 

going on?  We see immediately from Figure 11 that event 1E  occurs at time 1t , event 2E   
occurs at time 2t , and event 3E  occurs at time 3t , all of which are different.  We 

Fig. 10  Finding the relative velocity  
between S and 'S  
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therefore see that events 2E  and 3E  which were simultaneous on the train are not 
simultaneous when viewed from the ground.  Why is this so?  Remember that Einstein's 
postulates say that both observers must measure c for the velocity of light and that it is 
independent of the velocity of 
the source.  Thus the observer 
on the ground must measure 
the light signal to travel at the 
velocity c in both directions.  
But since the train is moving 
with a velocity u with respect 
to the ground the light signal 
will clearly arrive at the back 
of the train, which is moving 
into the light signal, before it 
arrives at the front of the train, 
which is moving away from the 
light signal.  This is exactly 
what an observer on the ground 
sees as is shown in Figure 11.  

Both observers are 
equally correct in describing 
the events in Figure 11.  All 
that it means is that the concept 
of simultaneity is a relative concept.  It depends on your frame of reference.  There is no 
such thing as absolute simultaneity.  If this seems strange to you note that there is now a 
certain symmetry of space and time as shown in Figure 11. It is not strange to you that 
two events which occur at the same place to one observer don't occur at the same place to 
another observer.  All the way back in Figure 7 the events 1E  and 2E  occur at the same 
place on the train but are separated by the distance x∆  on the ground.  The important 
thing is that they occur at different times.  In a similar way the events 2E   and 3E  which 
occur at the same time on the train in Figure 11 are separated in time on the ground by 
the  time interval ( )3 2c t t− . Again the important thing is that these events now occur at 
different locations.  

 
7.  Time Dilation  

 
Suppose the person at the back of the train in the caboose has a clock which he 

uses to keep time.  As he passes a person A on the ground who has his or her own clock, a 
photograph is taken which shows both clocks.  They happen to read the same value.  Now 
down the track a certain distance away there is another person B who has a clock which 
he has previously synchronized with A by using time signals as explained in the previous 
section.  As the caboose passes this second person another photo is taken which shows 
both the clock of person B and the clock in the caboose.  The clock in the caboose reads 
less than the clock of person B.  What has happened?  

Fig. 11  Showing that simultaneity is relative 
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Let us follow this sequence of events on our diagrams. The world- line of the 
person in the caboose is shown in Figure 12.  Event 1E  is the caboose passing person A 
and event 2E  is the caboose passing person B. The time between these two events is 
measured to be  't∆  to the person on the train, while it is measured to be t∆ to the 
observers on the ground.  From Figure 12 we see that 

 
' cost t α∆ = ∆  

or, from Eq. (5)  
' '

2

2

cos
1

t tt
u
c

α
∆ ∆

∆ = =

−

     (6) 

 
Therefore t∆  is greater than 't∆ .  How can we understand this time dilation of the time 
interval between events 1E   and 2E  as observed by observers on the ground?  

First let us review exactly 
what has happened.  The clock in 
the primed system (i.e., the clock 
in the caboose) has moved from A 
to B and has recorded the time 
interval 't∆ .  This time interval is 
measured by one and the same 
clock.  Such time which is 
measured by a single clock is 
called proper time.  On the other 
hand it required two different 
clocks which were separated in 
space to measure the time interval 

t∆ .  This kind of time is called 
non-proper, or coordinate time.  It 
is always the case that the shortest 
time interval is shown by the clock 
which measures proper time.  Let 
us try to uncover the source of this dilation.  

In order to measure the time interval t∆ on the ground we had to synchronize the 
clocks at A and B.  We found previously that we could do this by exploding a flashbulb at 
a point C exactly half-way between A and B.  If the clocks at A and B both start 
automatically just as the light signal reaches each one then we say that the clocks at A and 
B are synchronized.  Let's suppose that the light signal reaches A (and therefore B) just as 
the caboose is passing A.  This situation is shown in Figure 13.  Again, the event 1E   is 
the caboose passing A while the event 2E  is the caboose passing B as in Figure 12.  The 
event 3E  is the exploding of the flashbulb at C.  The arrival of this signal at B is event 3E      
while the arrival of this signal at A is 1E .  Events 1E  and 3E  occur simultaneously at time 

Fig. 12  World-line of caboose 

E1

E2

x

World-line of caboose

'x

0

c t∆ ct

'ct

α

A

B

'c t∆

1ct

2ct

'
1ct

'
2ct

α



 15

1t  in the reference frame of the earth.  However, as we already know these events are not 
simultaneous in the reference frame of the moving caboose.  In this frame of reference 
the light signal arrives at B (at time '

3t ) before it arrives at A (at time '
1t ). Therefore, from 

the point of view of the caboose, B starts his or her clock before he or she "ought to", i.e., 
before the caboose reaches A at time t'.  Therefore, it is not surprising that when A and B 
compare their clocks they get a 
longer time interval between events 

1E  and 2E  than does the person on 
the caboose.  However, it's not quite 
that simple.  For if the person on the 
caboose tried to correct this “error” 
by starting his or her clock at '

3t  
instead of '

1t  he or she would find 
that ' '

2 3t t−  is greater than 2 1t t t∆ = −  
by the same amount that t∆  was 
previously greater than ' ' '

2 1t t t∆ = − .  
Why?  Because t∆  is now the proper 
time since it measures the time 
between events 3E  and 2E  with the 
single clock at B.  However, the time 

'
3t  could only be determined by 

someone on the train who happened to be passing B at the instant it was receiving the 
light signal from C.  Perhaps the person L in the locomotive at the front of the train just 
passes B at 3E  as shown in Figure 13.  This person L can note the time '

3t  on his or her 
clock and later compare it with the person in the caboose who measures '

2t  when passing 
B.  But remember these two clocks must have previously been synchronized, but of 
course they will not appear synchronized to observers on the ground.  Thus the time 
interval ' '

2 3t t−  is an improper time interval since it requires two different clocks (one in 
the locomotive and one in the caboose) to measure.  It is, therefore, longer than the 
corresponding proper time interval t∆ .  

We therefore see that time dilation is a direct consequence of the fact that 
simultaneity is only a relative concept.  This in turn is a direct consequence of the fact 
that the velocity of light measures the same in all inertial frames.  As a result it is 
impossible to synchronize clocks which are in relative motion.  

 
 
 
 
 
 
 
 

Fig. 13  Understanding time dilation 
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8. Length Contraction  
 
Closely associated with the idea of time dilation is the phenomenon of length 

contraction.  Suppose the people on the train measure the length of the train with a steel 
tape and find it to be ' ' 'x F B∆ = −  as shown in Figure 14.  How can observers on the 
ground determine the length of the train?  You will recall in Section 2 that this length was 
measured by firing bullets simultaneously from the front and back of the train into the 
ground and then measuring the distance between the bullet holes.  But that was before we 
knew that simultaneity is only relative.  Events which appear to be simultaneous on the 
train will not be simultaneous to observers on the ground.  What we generally mean when 
we talk about the length of the train as measured by observers on the ground is the 
distance between two observers on the ground one of whom is beside the front of the 
train and the second of whom is simultaneous beside the back of the train.  This is, of 
course, simultaneous in the reference frame of the ground.  We can therefore not use the 
method of firing bullets simultaneously from the train.  What can we do?  

We can have an observer on 
the ground who notes the time on his 
or her clock 1t  as the back of the 
train passes.  We label this event 1E  
and designate the location of this 
person by B.  Now where is the front 
of the train at this same time 1t ?  We 
don't know ahead of time so we must 
station observers all along the rack 
each one of whom is a known 
distance from B and has a clock 
which has previously been 
synchronized with the clock at B.  
Then each one records the time at 
which the front of the train passes 
by.  They later get together and 
compare notes.  One of these many 
observers will have recorded the same time 1t  that B recorded when the back of the train 
passed by B.  

This observer was at the location F and we define the length of the train as 
measured on the ground to be x F B∆ = −  as shown in Figure 14.  From this figure we 
immediately see that  

 
  ' cosx x α∆ = ∆  

  
2

'
21 ux x

c
∆ = ∆ −       (8) 

 

Fig. 14  Understanding length contraction 
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so that the length of the train is shorter when measured by observers on the ground than it 
is when measured in the train.  This result is clearly another consequence of relative 
simultaneity and is closely related to time dilation.  

Now x∆  and 'x∆  are lengths measured in the direction of the relative motion u. 
What about lengths such as y∆  and 'y∆  measured perpendicular to the relative motion.  
It should be apparent that these lengths will be the same.  In order to see this consider 
Figure 15 in which a light signal is sent out from point C just as C’ (the center of the front 
of the train) passes C.  If line AB is perpendicular to the direction of motion it is clear that 
A and B will receive the light signal simultaneously in the earth's reference frame.  But it 
is also clear that 'A  and 'B  on the train will also receive the light signal simultaneously. 
Thus, if 'A  and 'B  fire bullets into the ground simultaneously (in their frame) this will 
also be simultaneous in the earth's frame so that if A and B go over and measure the 
distance between the holes in the ground they will measure the same width w of the train 
as 'A  and 'B  measure on the train.  Thus if the relative motion u is in the x-direction then 

'y y∆ = ∆  and 'z z∆ = ∆ .  

 
 
 

Of course time intervals are still measured differently in the two reference frames. 
Thus, although A and B receives the light signals simultaneously and so do 'A  and 'B , the 
two sets of observers differ on how long they say it takes the light to reach them from the 
source since both must measure the velocity of light to be c.  From Figure 15 we see that 
to observers on the ground  

 

  
2

2 2 2 2
21

2
w ud x t c u c t

c
= − = ∆ − = ∆ −  

 

while on the train '

2
w c t= ∆ .  Therefore 

2
'

21 ut t
c

∆ = ∆ −  just as was found in Section 7.  

 

Fig. 15  Lengths perpendicular to the direction of motion remain unchanged 

x u t= ∆

d c t= ∆

d c t= ∆
'

2
w c t= ∆

w

A'

C'

B'

A

C

B
Train

x

y

direction of motion



 18

 
9.  The Lorentz Transformation  
 

In Sections 2 and 3 we obtained diagrams which represented the so-called 
Galilean transformation.  This transformation is shown in Figure 8 for the case of a bird 
flying past a moving train and is given by Equation (3).  However, we have now seen that 
Figure 8 is really not an accurate picture of space and time but must be replaced by 
Figure 16.  From this figure we can write  

 
( )sinx L φ α∆ = +  (9) 

' sinx L φ∆ =   (10) 
cosc t L φ∆ =   (11) 

 ( )' cosc t L φ α∆ = +  (12) 
 
From Eqs. (5) and (6) recall that  
 

 sin u
c

α =   (13) 

 
and let  

 
2

2

1 1
cos

1 u
c

γ
α

= =

−

 (14) 

 
Then from Eqs. (9), (10), (11) and (14) it follows that  
 
   ( )sin cos cos sinx L φ α φ α∆ = +  

        ' cos sinx c tα α= ∆ + ∆  

        
'x u t

γ
∆

= + ∆  

 
from which         
 
   ( )'x x u tγ∆ = ∆ − ∆       (15)     
 
Also, from Eqs. (12), (11), (10), (14) and (13) it follows that 
 
   ( )' cos cos sin sinc t L φ α φ α∆ = −  

           'cos sinc t xα α= ∆ −∆  

           'c t u x
cγ

∆
= − ∆  

 

Fig. 16  Deriving the Lorentz transformation 
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( )' 'x x u tγ∆ = ∆ + ∆  

' '
2

ut t x
c

γ  ∆ = ∆ + ∆ 
 

 

( )'x x u tγ∆ = ∆ − ∆  

'
2

ut t x
c

γ  ∆ = ∆ − ∆ 
 

 

from which  

            ' '
2

ut t x
c

γ  ∆ = ∆ + ∆ 
 

      (16) 

 
Since there is complete symmetry between the observation in the two frames of reference 
except that the sign of the relative velocity u changes we can obtain x∆  in terms of 

'x∆ and 't∆  by simply interchanging the primed and unprimed quantities in Eq. (15) and 
changing the sign of u. Thus  
 
   ( )' 'x x u tγ∆ = ∆ + ∆       (17) 
 
This equation can be verified by substituting Eq. (16) in (15) and solving for x∆ .   

In a similar manner from Eq. (16) we can immediately write  
 

   '
2

ut t x
c

γ  ∆ = ∆ − ∆ 
 

      (18) 

 
which can also be verified by substituting Eq. (15) in (16) and solving for 't∆ .  Eqns. 
(15) - (18) are called the Lorentz transformation which can be summarized as follows:  
 
 
 
 
 
           (19) 
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10. Relativistic Velocity Transformation  
 

In Section 3 we found that the Galilean transformation gave rise to a velocity 
transformation of the form (see Eq. 4) 

 
   'v v u= +        (20) 
 
However, we see from Eq. (19) that the Lorentz transformation will produce a different 
velocity transformation law.  In particular  
 

   
( )' '

' '
2

x u tx
ut t x
c

γ

γ

∆ + ∆∆
=

∆  ∆ + ∆ 
 

 

 
If we divide numerator and denominator by 't∆  we obtain  
 

   
( )' '

'

2 '1

x t ux
t u x

c t

∆ ∆ +∆
=

∆  ∆
+ ∆ 

 

 
or  

   
'

'

21

v uv
uv
c

+
=

+
       (21) 

 
Similarly, from Eq. (19)     
 

   ( )'

'

22
1

x u tx x t u
u xut t x
c tc

γ

γ

∆ − ∆∆ ∆ ∆ −
= =

∆∆   −∆ − ∆  ∆ 

 

 
or  

   '

21

v uv uv
c

−
=

−
       (22) 

 
Eqs. (21) and (22) are the  velocity transformation laws for the Lorentz transformation.  
The first thing to notice is that they reduce to the Galilean transformation law, Eq. (20), 
for low relative velocities, u << c.  

Let's suppose the train has a speed relative to the earth of u = 0.6c, a very high 
speed!  Suppose also that a bird flies past the train with a velocity relative to the train of 

' 0.8v c= , a very fast bird.  How fast is the bird flying relative to the ground?  Our old 
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Galilean transformation Eq. (18) would tell us that v = 0.8c + 0.6c = 1.4c, faster than the 
speed of light.  However, the Lorentz transformation predicts by Eq. (21) that 

 

   ( )( )
2

0.8 0.6 1.4 0.946
0.6 0.8 1.48

1

c c cv c
c c
c

+
= = =

+
 

 
which is still less than the speed of light.  

Let the train be moving with a velocity u = kc  (k<1) relative to the earth.  A light 
signal which travels in the train frame of reference with a velocity 'v c= will by Eq. (21) 
travel in the earth frame of reference with a velocity  
 

   2

2

1
11

c kc kv c c
kc k
c

+ +
= = =

++
 

 
as it should by Einstein's postulates.  

Now the preceding examples show that Eqs. (21) and (22) predict that if an object 
is traveling less than the speed of light in one reference frame it will travel less than the 
speed of light in all other frames which move relative to the first with velocities less        
than c.  But is it possible for objects to travel faster than the speed of light in the first 
place?  Let us consider what this would have to mean by referring to Figure 17.   Suppose 
in the earth's reference frame a flashbulb is exploded at point A at time 1t .   This is event 

1E .  Event 2E  is the arrival of the light signal at point B at time 2t .   An observer on a 
fast moving train would 
say that event 1E  
occurred at time '

1t  and 
event 2E  occurred at 
time '

2t .  Now suppose 
that at the instant the 
flashbulb exploded a 
gun was fired which 
was able to fire a bullet 
at twice the speed of 
light in the earth's frame 
of reference.  It would, 
therefore, arrive at point 
B at the time 3t .  This is 
event 3E  in Figure 17.  
But to the observer on 
the moving train this 
event occurs at time '

3t  

Fig. 17  A bullet traveling at twice the speed of light 
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which is less than '
1t .  That is, to the observer on the train the bullet arrives at B before it 

was fired at A!  We might be able to accept this if there were no way for observers in the 
primed system to prevent the shooting.  But if they can have bullets that travel faster than 
c in their frame they can prevent the shooting.  To see this, consider Figure 18.  At time 

1t  A fires a bullet (event 1E ) at twice the speed of light and kills B at time 3t  (event 3E ).  
Observer 'B  who is just passing by at time '

3t  observes the killing and scoops up the dead 
body of B.  Observer 'B  immediately sends a message on a bullet traveling faster than c 
to 'A  telling of the shooting.  This message arrives at 'A  at time '

4t  (event 4E ).  
However, at this time 'A  is just passing A and since the time in the reference frame of A 
is 4t  which is less than 1t , then A hasn't yet fired the shot, so 'A  disarms A.  But 'B  has 
B’s dead body!  In order to avoid this kind of serious contradiction we must conclude that 
the bullets, or anything else, cannot travel faster than the speed of light in any reference 
frame.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 18  Illustrating logical contradiction when speed of light is exceeded 
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11.   Vector Representation of the Lorentz Transformation  

 
The Lorentz transformation was found in Section 9 to be given by Eq. (19) when 

the relative velocity u was in the x direction.  For this case we also found that 'y y∆ = ∆  
and 'z z∆ = ∆ .  If the origins of the two coordinate systems coincide at ' 0t t= =  then we 
can write the Lorentz transformation as  

 
    
 
 

          (23)  
 
 
 

 
 
 
       (24) 
  
 
 
where  

  

 
2

2

1

1 u
c

γ =
−

 

 
Let us consider 

the general case in which 
the relative motion can be 
in an arbitrary direction 
as shown in Figure 19.  
The speed of 'S  relative 
to S is u and iα  is a unit 
vector in the direction of 
motion ( 1i iα α = ).1 

 
 
 
 

                                                 
1 iα  (i =1,3) are the three components of the vector α.  Repeated indices are summed from 1 to 3; i.e., 

2 2 2
1 2 3 1i iα α α α α= + + =  

( )'x x utγ= −  
'y y=  
'z z=  

'
2

uxt t
c

γ  = − 
 

 

( )' 'x x utγ= +
'

'
2

uxt t
c

γ
 

= + 
 

Fig. 19  Reference frames for arbitrary direction of motion 
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Let  

   i i
u
c

β α=  

then  

   
2

2
2i i

u
c

β β β= =  

 
and  

   
2

1
1

γ
β

=
−

 

 
If   ix =  the displacement vector in S  
 '

ix =  the displacement vector in 'S   
  ix =&  the component of ix  parallel to the direction of motion  
 ix⊥ =  the component of ix  perpendicular to the direction of motion  

then  
   i j j ix x α α=&        (25)  
   i i ix x x⊥ = − &                                                     (26)  
 

and similarly for '
ix&  and '

ix⊥ .  
The Lorentz transformation given by Eq. (23) can then be written as  
 
 
 
      (27) 
 
 
 
 

We can therefore write  
   ' ' '

i i ix x x⊥= +&  

       ( )i i ix u t xγ α ⊥= − +&  

       i i i ix u t x xγ γ α= − + −& &  
       ( 1) j j i i ix u t xγ α α γ α= − − +  

       ( 1)ij i j j ix u tδ γ α α γ α = + − −   
 

( )'
i i ix x u tγ α= −& &

'
i ix x⊥ ⊥=  

'
2 j j

ut t x
c

γ α = − 
 
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In the last step ijδ  is the Kronecker delta that is equal to 1 when i j=  and is equal to 0 
when i j≠ ; therefore, 1 1 2 2 3 3ij j i i i ix x x x xδ δ δ δ= + + = .  Thus, the Lorentz transformation 
can be written in the vector form 

 
 
 

 
     (28) 
 
 
 
 
 
 
We can find the general velocity transformation by noting that  
 
    ' ( 1)i ij i j j idx dx u dtδ γ α α γ α = + − −   

    '
2 j j

udt dt dx
c

γ α = − 
 

 

 
Therefore    

    
'

'
'

2

( 1)

1

ij i j j ii
i

j j

v udxv
udt v
c

δ γ α α γ α

γ α

 + − − = =
 − 
 

  (29) 

and                                                                         

   
'

'
2

( 1)

1

ij i j j ii
i

j j

v udxv
udt v
c

δ γ α α γ α

γ α

 + − + = =
 + 
 

  (30) 

 
Note that if u is in the 1x  direction;  i.e., (1,0,0)iα =  then (29) reduces to  
 

   [ ] 1' 1
1

11
22

1 ( 1)

11

v u v uv uvuv
cc

γ γ

γ

+ − − −
= =

  −− 
 

   (31) 

 
which agrees with Eq. (22).  In addition  
 

    
2 2

' 22
2

11
22

1

11

v u cvv uvuv
cc

γ

−
= =

  −− 
 

   (32) 

 

' ( 1)i ij i j j ix x u tδ γ α α γ α = + − − 
' '( 1)i ij i j j ix x u tδ γ α α γ α = + − + 

'
2 j j

ut t x
c

γ α = − 
 

 

' '
2 j j

ut t x
c

γ α = + 
 
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III. RELATIVISTIC DYNANICS 
 
12.  Relativistic Momentum  
 

We have seen that the principle of relativity demands that the equations of physics 
have the same form in all inertial frames of reference.  We must therefore re-examine the 
laws of dynamics in terms of the relativistic kinematics developed in the preceding 
sections.  For low velocities these laws must reduce to Newton's three laws of motion.  

The first law essentially defines an inertial frame of reference.  That is, it is one in 
which, in the absence of all external influence (i.e. forces), a body will remain in a state 
of rest or uniform motion in a straight line.  The third law is a statement about forces, 
namely, that if body A acts on body B with a force BAF  then body B acts on body A with 
an equal and opposite force AB BA= −F F .  Let us accept these laws as holding in the 
relativistic case.  

Newton's second law of motion states that in an inertial frame of reference as 
defined by the first law the net force acting on a body is equal to the rate of change of 
momentum p where m=p v , the product of the mass times the velocity of the body.  
Now since this law involves quantities like velocity and time which we have seen have 
special relativistic transformation laws we must examine this second law with care.  

Let us assume that for the relativistic case we can write the second law in the form 
d dt=F p  and try to determine what p must be in order to be consistent with the Lorentz 

transformation.  
Consider two isolated bodies A and B which are only interacting with each other. 

If BAF  is the force acting on A due to B and BAF  is the force acting on B due to A then by 
Newton's third law and our assumption about the form of the second law we can write  
 

    A B
AB BA

d d
dt dt

= = − = −
p pF F  

or  

    ( ) 0A B
d
dt

+ =p p  

 
so that the total momentum of the two bodies is conserved.  Since it must be conserved in 
all coordinate systems we can write  
 

    ( ) ( )' '
'A B A B

d d
dt dt

+ = +p p p p     (33) 

 
where the primed system is any inertial frame of reference.  

Now let us suppose that body A is at rest (at least instantaneously) in the 
unprimed system and that the primed system is moving in the 1x+ direction with a speed 
u.  That is, (1,0,0)iα = .  Further let the velocity of body B be ( ) ( ,0,0)i B Bv v=  in the 
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unprimed system and be ' '( ) ( ,0,0)i Bv v=  in the primed system.  From (31) these velocities 
are then related by the expression  
 

    '

21
B

B
B

v uv uv
c

−
=

−
      (34) 

 
Also, since ( ) 0i Av =  then '( ) ( ,0,0)i A Av v=  where '

Av u= − . 
We are looking for an expression for p which will be some function of the 

velocity of a body and will reduce to mv for low velocities.  We will therefore assume 
that p is in the direction of v and so for the one dimensional case being considered 

( ,0,0)p=p  and (33) can be written as  
 

    [ ] ' '
'( ) ( ) ( ) ( )A B A B

d dp v p v p v p v
dt dt

 + = +    (35) 

 
Since 0Av = it follows that ( ) 0Ap v = since for low velocities ( )A A Ap v m v= .  Also  
 

    
' ' '

' '

( ) ( ) 0A A A

A

dp v dp v dv
dt dv dt

= =  

since '
Av u= − = constant.  Eq. (35) then reduces to   

 

    
'

'

( ) ( )B Bdp v dp v
dt dt

=  

or  

    
' '

' '

( ) ( )B B B B

B B

dp v dv dp v dv dt
dv dt dv dt dt

=     (36) 

 
From (34)                      

    
( )' 2 2

2

2

1

1

B B B
B

B

B

uv dv dvuv u
dv c dt c dt
dt uv

c

 − + − 
 =

 − 
 

 

    
'

2
2

2

1

1

B B

B

dv dv
dt dtuv

c
γ

=
 − 
 

    (37) 

 

where 2 21 u cγ = − .  Since '
2 B

ut t x
c

γ  = − 
 

 then  
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'

21 Buvdt
dt c

γ  = − 
 

     (38) 

 
Substituting (37) and (38) into (36) we obtain  
 

    
'

3 '
3

2

( ) ( )1

1

B B

B BB

dp v dp v
dv dvuv

c
γ

=
 − 
 

   (39) 

 
Since (39) must hold for any Bv , let Bv v u= =  so that ' 0Bv = . B Then (39) can be written 
as  

    0
3 22

2

( )

1

B

B

Kdp v
dv v

c

=
 
− 

 

     (40) 

where               

    
'

'

0 '
0

( )

B

B

B v

dp vK
dv

=

=  

 
Integrating (40) we obtain  
 

    0 2 2
( )

1
vp v K const
v c

= +
−

 

 
Since (0) 0p =  and ( )p v mv= for v/c << 1 the constant of integration is zero and 0K m= . 
Therefore, the relativistic expression for momentum is  
 

    
2 2

( )
1

mvp v
v c

=
−

     (41) 

 
For arbitrary directions of motion the relativistic momentum can be written in the vector 
form  

    
2 21
i

i
mvp

v c
=

−
     (42) 

where 2
i iv v v= .   

The expression for the relativistic momentum is often written in the non-
relativistic form  

   i R ip m v=  
where  
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2 21

R
mm
v c

=
−

 

 
is called the relativistic mass (and m the rest mass) and increases with velocity.  This 
introduction of a relativistic mass that increases with velocity in order to force the 
expression for momentum to be R im v  is sometimes useful but not essential.  It will not be 
used in the following sections so the mass m which appears will always be the rest mass.  
 
13. Relativistic Energy  
 

In the previous section we found that the force acting on a particle is given by 
i iF dp dt=  where the momentum ip  is given by  

 

    
2 21
i

i
mvp

v c
=

−
     (43) 

 
The work dW done by the force iF  in moving the particle through a distance idx is by 
definition  
    i idW F dx=  

           i
i

dp dx
dt

=  

           i
i

dxdp
dt

=  

           i iv dp=       (44) 
 
From (43)   

   
( ) ( )

( )

1 2 1 22 2 2 2
2

2 2

1 21 1
2

1

i i

i

vv c mdv mv v c dv
cdp

v c

−
− + −

=
−

 

         
( ) ( )1 2 3 22 2 2 2 21 1

i
i

mvvm dv dv
v c c v c

= +
− −

   (45) 

 
Since 2

i iv v v= , i ivdv v dv=  and from (45) we can write  
 

   
( )

2 2

3 2 2 22 2
1

1
i i

mvdv v vv dp
c cv c

 
= − + 

 −
 

            
( )3 22 21

mvdv dW
v c

= =
−

     (46) 
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Let us define the kinetic energy T of the particle, as in classical mechanics, as the 
work done in bringing the particle from rest to a velocity v. Then from (46) we have that  
 

    
0

v

T dw= ∫  

        
( )3 22 2

0 1

v mvdv

v c
=

−
∫  

        
2

2 2
0

1

v

mc
v c

=
−

 

    2

2 2

1 1
1

T mc
v c

 
 = −
 − 

    (47) 

 
Note that for v/c << 1 this equation reduces to  
 

    
2 4

2
2 4

31 ... 1
2 8
v vT mc
c c

 
= + + + − 

 
 

    21
2

T mv=  

as in classical mechanics.  
Now the conservation of momentum discussed in Section 12 has another 

important consequence. Consider the inelastic collision shown in Figure 20.  In the 
unprimed system two equal masses approach each other with velocities v and -v.  They 
collide and stick together so that after the collision the total mass M is at rest.  (This is 
required because of the 
symmetry of the situation).  
The statement of the 
conservation of momentum for 
this case is thus  
 

2 2 2 2
0

1 1
mv mv
v c v c

− =
− −

 

 
Now let us view this 

same inelastic collision from a 
reference frame moving to the 
right with a velocity u = v.  
Before the collision one mass is 
at rest in this frame while the 
other has a velocity  
 

Fig. 20  Geometry of an inelastic collision 

m m

M

m

M

Before
Collision

After
Collision

At rest
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    '
2

2 2

2

1 1

v u vv uv v
c c

− −
= = −

+ +
     (48) 

 
After the collision the resultant mass M will be moving with a velocity 'v u v= − = −� .  The 
statement of the conservation of momentum in this frame is thus  
 

    
' '

'2 2 '2 21 1
mv Mv
v c v c

=
− −

�
�

 

or  

    
2 2 2 2 2

22 2

2

2
4 11 1

1

m v Mv
v v c v c
c v

c

− −
=

  −
+ − 

  
+ 

 

 

or  

    
( )2 2 22 2

2
11

m M
v cv c

=
−−

 

 
from which  

    
( )2 2

2

1

mM
v c

=
−

     (49) 

 
We therefore see that the total mass of the system after the collision M is greater 

than the total mass of the system before the collision 2m.  We also note that the system 
loses kinetic energy as a result of the collision.  This suggests that mass is a form of 
energy and that the loss in kinetic energy accounts for the increase in mass.  If this is the 
case we can define the total energy of a particle E to be equal to the sum of the kinetic 
energy plus the mass energy.  The statement of the conservation of energy would then 
read (kinetic energy + mass energy) before collision = (kinetic energy + mass energy) 
after collision.  We expect the mass energy to be some function of the mass f(m).  Using 
(47) and (49) and applying the conservation of energy to the unprimed frame we can 
write  

   2

2 2

12 1 (2 ) ( )
1

mc f m f M
v c

 
 − + =
 − 

 

or  

   
( )

2
2

2 2 2 2

2 22 (2 )
1 1

mc mmc f f m
v c v c

 
 − = − −  − 
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We note that this equation will be satisfied if the mass energy 2( )f m mc= .  Thus 
the total energy of a particle will be  
 
   2E T mc= +  

       2 2

2 2

1 1
1

mc mc
v c

 
 = − +
 − 

 

or  

   
2

2 21
mcE

v c
=

−
      (50) 

 
There are several important relations between the momentum of a particle given 

by (43) and the energy of a particle given by (50).  Since  
 

   
2 2

2
2 21

m vp
v c

=
−

  and   
2 4

2
2 21

m cE
v c

=
−

 

 
 it follows that  
 

   
2 4

2
2

p cE
v

=    or   
2 2

2 4

p v
E c

=  

from which  

    2
i ip v

E c
=       (51) 

Also note that  

    
2 2 4

2 2
2 2

m v cp c
c v

=
−

 

so that  

    
2

2 2 2 4 2 4
2 2

cp c m c m c
c v

 
+ =  − 

 

                     
2 4

2
2

21

m c E
v
c

= =
−

 

or  
    2 2 2 2 4E p c m c= +      (52) 
From (52) we can write  
 

    22 2 i
i

dpdEE p c
dt dt

=  

or 
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    2i ip dpdE c
dt E dt

=  

 
Using (48) and the relation i iF dp dt= we obtain  
 

    i i
dE v F
dt

=       (53) 

 
 
14. Transformation of Energy and Momentum  
 

The expressions (see Eqs. (43) and (50))  
 

    
2 21
i

i
mvp

v c
=

−
     (54) 

and  
 

    
2

2 21
mcE

v c
=

−
     (55) 

 
are the momentum and energy of a particle as measured in a certain reference frame 
(namely, one in which the velocity of the particle is iv ).  An observer in a different 
reference frame will measure a different momentum and energy for this particle since he 
or she will measure a different velocity.  In this new primed reference frame the 
momentum and energy are  
 

    
'

'

'2 21
i

i
mvp
v c

=
−

     (56) 

and  
 

    
2

'

'2 21
mcE

v c
=

−
     (57) 

 
where '

iv  is related to iv  by (29).  In order to relate 'E  and '
ip  directly to E and ip  we 

first need an expression for  
 
    '2 21 v c−  
 
in terms of the unprimed quantities.  If we let j jv vα = &  then from (29) we can write  
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 '2 ' '
i iv v v=  

      
{ } [ ]{ }

2
2

2

( 1) ( 1)

1

ij i j j i ik i k k iv u v u

u v
c

δ γ α α γ α δ γ α α γ α

γ

 + − − + − − =
 − 
 

&

 

      
2 2 2 2

2
2

2

2( 1) ( 1) 2

1

jk j k j k j k i iv v u u

u v
c

δ γ α α γ α α γ γ α α

γ

 + − + − + − =
 − 
 

&

 

      
2 2 2 2 2 2

2
2

2

( 1) 2

1

v v u uv

u v
c

γ γ γ

γ

+ − + −
=

 − 
 

& &

&

 

      

2 2
2 2 2

2 2

2

2

1 2

1

u uv v u uv
c c

uv
c

 
− + + − 

 =
 
− 

 

& &

&

 

Therefore 
 

 

2 2 2 2
2 2 2 2

2 4 2 2'2

22
2

2

2
1 1 2

1

1

uv u v u uc v v u uv
c c c cv

c uv
c

c

   
− + − − − − +       − =

 
− 

 

& &
& &

&

 

  

2 2
2 2

2 2

2
2

2

1 1

1

u uc v
c c

uv
c

c

   
− − −   

   =
 
− 

 
&

 

  

2 2

2 2

2

2

1 1

1

u v
c c

uv
c

  
− −  

  =
 
− 

 
&

 

so that 
   

  

2 2

2 2
'2 2

2

1 1
1

1

u v
c cv c

uv
c

− −
− =

 
− 

 
&

      (58) 
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Using (58) we can write the energy El given by (57) as  
 

   

2
2

'

2 2

2 2

1

1 1

uv
mc

c
E

u v
c c

 
− 

 =

− −

&

 

        
2

2 2 2 2

2 2 2 21 1 1 1

umvmc
u v u v
c c c c

= −

− − − −

&  

        
2 2

2 21 1

j ju pE
u u
c c

α
= −

− −

 

 
 
The energy therefore transforms according to the relation  
 
   ( )'

j jE E u pγ α= −       (59) 
 
or its inverse relation  
 
   ( )' '

j jE E u pγ α= +       (60) 
 
Using (29) and (58) we can write the momentum '

ip  
 

   
'

'

'2 21
i

i
mvp
v c

=
−

 

        
2

2 2

22 2

1 ( 1)

11 1

ij i j j i

uv
m v uc

uvu v
cc c

δ γ α α γ α

γ

  
−     + − −    =

  
−− −   

  

&

&

 

        
2

2 2
2

2 2

( 1)

1 1

ij i j j i
mv u mc

v vc
c c

δ γ α α γ α + − = −

− −

 

or,  
 

   '
2( 1)i ij i j j i
up p E

c
γδ γ α α α = + − −      (61) 
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with its inverse relation 
 

   ' '
2( 1)i ij i j j i
up p E

c
γδ γ α α α = + − −      (62) 

  
Equations (59) - (62) are the transformation relations for momentum and energy.  
 
15. Transformation Law for Force  
 

The equation of motion of a particle in the unprimed frame is  
 

    i
i

dpF
dt

=       (63) 

 
and in the primed frame is  
 

    
'

' i
i

dpF
dt

=       (64) 

 
We wish to relate iF  and '

iF  directly.   
From (61) we can write  
 

   '
2( 1)i ij i j j i
udp dp dE

c
γδ γ α α α = + − −     (65) 

 
and from (28)  
 

   '
2 k k

udt dt dx
c

γ α = − 
 

     (66) 

 
Thus                                                   

   
' 2

'
'

2

( 1)

1

ij i j j i
i

i

k k

u dEFdp c dtF
udt v
c

γδ γ α α α

γ α

 + − − 
= =

 − 
 

 

 
or, using (53)        
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2

'

2

( 1)

1

ij i j j i j j

i

k k

uF v F
cF

u v
c

γδ γ α α α

γ α

 + − − 
=

 − 
 

 

or  
 

   '
2

2

1 ( 1)
1

i j
i i i j j

u v
F F F

uv c
c

γ α
γ α α

γ

   = + − −       − 
 

&

  (67) 

 
Equation (67) gives the force measured in the primed system in terms of the force 

in the unprimed system and the velocity of the particle in the unprimed system.  We 
could obtain the inverse relation by interchanging primed and unprimed quantities and 
changing the sign of u.  That would give us the force in the unprimed system in terms of 
the force in the primed system and the velocity of the particle in the primed system. 
However, it turns out to be convenient to have an expression for the force in the 
unprimed system in terms of the force in the primed system and the velocity of the 
particle in the unprimed system.  This expression can be obtained simply by solving Eq. 
(67) for the unprimed force iF .  Thus from (67) we can write  
 

   '
2 21 ( 1)i i i j i j j

uv uF F v F
c c

γγ γ α α α
   = − − − −     

&   (68) 

 
Multiplying (65) through by iα we obtain  
 

   '
2 21 ( 1)i i i i j j j j

uv uF F F v F
c c

γα γ α γ α
 

= − − − + 
 

&  

or  
 

   '
2 21j j j j j j

uv uF F v F
c c

α α
 

= − + 
 

&     (69) 

 
Substituting (69) into (68) we obtain  
 

 ' '
2 2 2 21 ( 1) 1i i i j j i j j i j j

uv uv u uF F F v F v F
c c c c

γγ γ α α α α
    

= − − − − + +    
    

& &  

 ' '
2 2 21 ( 1) 1i i i j j i j j

uv uv uF F F v F
c c c

γ γ α α α
   

= − − − − +   
   

& &    (70) 

 
Multiplying (70) through by iv we obtain  
 



 38

 ' '
2 21 ( 1)i i i i i j i j i i j j

uv uv F v F v F v v F
c c

γ γ α α α
   = − − − +    

&  

 ' '
2 21 1 ( 1)j j j j k k j j

uv uv
v F v F v F

c c
γ γ α α

     − = − − −        
& &  

 ' '( 1)j j j j j jv F v F v Fγ γ α= − − &        (71) 
 
Substituting (71) into (70) we obtain  
 

 ' ' ' '
2 2 2 21 ( 1) 1 ( 1)i i i j j i j j i j j

uv uv u uF F F v F v F
c c c c

γ γ α α γα γ α α
   

= − − − − + − −   
   

& &
&  

 ' ' ' '
2 2( 1)i i i j j j j i i j j
u uF F F v F v F

c c
γ γγ γ α α α α= − − − +  

 
from which  
 

  ( )' ' '
2( 1)i ij i j j i j j i j
uF F F F v

c
γγδ γ α α α α = − − + −     (72) 

 
This is the equation we sought giving the force in the unprimed system iF  in 

terms of the force in the primed system '
iF  and the velocity in the unprimed system jv .  

This equation will be used to derive the Lorentz force for charged particles in Part IV. 
 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 39

 
IV. MAXWELL’S EQUATIONS 

 
16.  Coulomb’s Law 

 
Consider a charge Q located at 1r  and a second charge q located at 2r .  If 12r̂  is a 

unit vector in the direction of 2 1−r r  and 12 2 1r = −r r  then Coulomb’s law states that the 
force on q due to Q is given by 

 

   12
2

0 12

ˆ
4
qQ

rπε
=

rF       (73) 

 
where 12 2 2

0 8.85 10 coul m Ntε −= ×  is the permittivity of free space. 
If we define the electric field E due to Q to be the force per unit charge on q then 

from (73) we can write 
 

   12
2

0 12

ˆ
4

Q
q rπε

= =
rFE      (74) 

 
We can think of the force on q as being proportional to E, and E is proportional to 

Q and is inversely proportional to the square of 12r .  If we consider a sphere to be 
centered at Q then we can picture 
the electric field vector as shown 
in Figure 21 where the number of 
electric field lines is proportional 
to Q and the force on a test 
charge q will be proportional to 
the density of the electric field 
lines per unit area.  This force 
must decrease as 21 r inasmuch 
as the area of a sphere increases 
as 2r and the number of electric 
field lines is constant for a given 
value of Q. 

More generally we can 
consider a charge density ρ  such 
that the total charge Q within a 
volume V is given by  

 

V

Q dVρ= ∫∫∫x  

 
 

Fig. 21  Electric field of a point charge 

24Area of sphere rπ=
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The electric flux EΦ on a closed surface S is defined as 
 
  E

S

dAΦ = ∫∫ E niw       (75) 

 
where n is an outward unit vector normal to the area dA.  Gauss’s law states that this flux 
is equal to 01 ε times the total charge in the volume V enclosed by S.  We can then write 
Gauss’s law as 

   
0

1
E

S V

dA dVρ
ε

Φ = =∫∫ ∫∫∫E niw x     (76) 

 
Using the divergence theorem we can write (76) as 
 
 

  
0

1

S V V

dA dV dVρ
ε

= =∫∫ ∫∫∫ ∫∫∫E n Ei iw x x∇    (77) 

or 

   
0

0
V

dVρ
ε

 
− = 

 
∫∫∫ Eix ∇  

from which 

   
0

ρ
ε

=Ei∇        (78) 

 
Let charge Q be at the origin and define the scalar potential  
 

  
04

Q
r

ψ
πε

=        (79) 

 
If we take the gradient of ψ  in spherical coordinates we can write 
 

   2
0 0

ˆ ˆ1
4 4
Q d Q

dr r r
ψ

πε πε
 = = − 
 

r r
∇     (80) 

 
Comparing (74) and (80) we see that we can write E as 
 
   ψ= −E ∇        (81) 
 

Because E can be written as the negative gradient of a scalar, it follows that 
 
  0× =E∇        (82) 
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since the curl of a gradient is always zero.  You can verify this by writing the components 
of the curl as2  

   ,
k

ijk ijk k j
j

E E
x

ε ε∂
=

∂
      (83) 

 
and the components of the gradient as 
 

   ,k
kx
ψ ψ∂

=
∂

       (84) 

 
Then writing the components of (81) as ,k kE ψ= − we can write the curl of the gradient 
from (83) as 
 
   , , 0ijk k j ijk kjEε ε ψ= − =       (85) 

 
which is easily seen to be zero by summing the repeated indices j and k from 1 to 3 and 
noting that , ,jk kjψ ψ= for all j and k. 

We therefore see from Coulomb’s law that when the charges are at rest the 
electric field E satisfies the electrostatic equations (82) and (78) which can be written in 
component form as 

 

   0k
ijk

j

E
x

ε ∂
=

∂
      (86) 

and 

    
0

i

i

E
x

ρ
ε

∂
=

∂
      (87) 

 
 

17.  The Lorentz Force 
 

Let a collection of source charges with a charge density 'ρ  be at rest in a reference 
frame 'S which has velocity i iu uα=  and moves uniformly relative to another reference 
frame S.  This charge density gives rise to an electrostatic field '

iE  in the frame 'S and 
will produce a force ' ' '

i iF q E=  on a test charge 'q .  The force on a test charge q as 
measured by observers in reference frame S can be found by using the force 
transformation given by (72).  

                                                 
2 ijkε  is the alternating unit tensor that is equal to +1 if i, j, k are in cyclic order, -1 if i, j, k are in noncyclic 

order, and 0 if any two subscripts are repeated.  We also use the comma notation , j
jx

∂
=

∂
. 
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Two cases can be distinguished.  If the velocity iv of the test charge is zero, the 
electric field iE  measured in S is defined by the force relation i iF qE= .  Assuming that 
charge is invariant (i.e., that 'q q= ) and setting i iF qE= , ' ' '

j jF q E=  and 0jv =  in (72), 
one finds that iE  is given by  

 
  '( 1)i ij i j jE Eγδ γ α α = − −       (88) 
 
If the test charge q is now allowed to move with a velocity iv  then (72) becomes  
 

  ( )' ' '
2( 1)i ij i j j i j j i j

q uF qE E E v
c
γγδ γ α α α α = − − + −    (89) 

 
which, using (88), can be written as  

 
  i i ij jF qE qC v= +       (90) 

where  
  

  ( )' '
2ij i j j i
uC E E

c
γ α α= −      (91) 

  
Since ijC  is anti-symmetric, an axial vector iB , called the magnetic flux density, 

can be defined by the relation3  
 
  ij ijk kC Bε=        (92) 
 

Therefore, (90) can be written as  
 
  ( )i i ijk j kF q E v Bε= +       (93) 
or  
  ( )q= + ×F E v B       (94) 
 

which is the Lorentz force.  Note that the introduction of the magnetic flux vector is a 
convenient, not a necessary, step.  

A variety of relationships exists between the field vectors '
iE , iE , and iB . These 

relations will be used in Section 18 to aid in the derivation of Maxwell's equations.  By 
multiplying (91) by rijε  and using (92), we can write4 

                                                 

3 Note that 
3 2

1 1 2 2 3 3 3 1

2 1

0
0

0
ij ijk k ij ij ij

B B
C B B B B B B

B B
ε ε ε ε

− 
 = = + + = − 
 − 
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  ( )' '
2rij ijk k rij i j rij j i
uB E E

c
γε ε ε α ε α= −  

  ( )' '
2ijr ijk k rij i j rji j i
uB E E

c
γε ε ε α ε α= +  

  ( ) ( )' '
2jj rk jk rj k rij i j rij i j
uB E E

c
γδ δ δ δ ε α ε α− = +  

  ( ) '
2

23 rk rk k rij i j
uB E

c
γδ δ ε α− =  

  '
2r rij i j
uB E

c
γ ε α=       (95) 

 
which is the same as 
 

   ( )'2c
γ

= ×B u E       (96) 

 
Multiplying (88) by the unit vector iα , leads to  
 
  '

i i i iE Eα α=        (97) 
 

and thus the component of E in the direction of motion is invariant.  Also multiplying 
(88) by rsi sε α  leads to5    
 

  '
rsi s i rsj s jE Eε α γε α=       (98) 

 
and thus the component of E perpendicular to the direction of motion is larger than the 
corresponding component of 'E by the factor γ .   

From (95) and (98) an expression relating iB  and iE  can be written as  
 

  2i ijk j k
uB E
c
ε α=       (99) 

 
Multiplying (91) by jα  and using (92) and (97), we can write  
 

  ( )' '
2j ij j i j j j i
uC E E

c
γα α α α α= −  

                                                                                                                                                 
4 In step 3 we use the general relationship ijk irs jr ks js krε ε δ δ δ δ= −  
5 Note that 0rsi s iε α α =  
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  ( )'2j ijk k j i j j j i
uB E E

c
γα ε α α α α= −  

from which 

  
2

'
i i j j ijk j k

cE E B
u

α α ε α
γ

= −      (100) 

 
Using (97), Eq. (88) can also be written as  
 

  ' 1 ( 1)
i i i j jE E Eγ α α

γ γ
−

= +      (101) 

 
Equating the right-hand sides of (85) and (86), we can write 

 

 
2 1 ( 1)

i j j ijk j k i i j j
cE B E E
u

γα α ε α α α
γ γ γ

−
− = +  

 
2

ijk j k i i j j
c B E E
u
ε α α α− = −  

 
2

i j j i ijk j k
cE E B
u

α α ε α= +       (102) 

 
Substituting (102) into (100), and using ( )2 2 2 21u c γ γ= − we obtain  
 

 
2 2

'
i i ijk j k ijk j k

c cE E B B
u u
ε α ε α

γ
= + −  

 
2

' 1
i i ijk j k

cE E B
u

γ ε α
γ

 −
= +  

 
 

 '

1i i ijk j kE E u Bγ ε α
γ

= +
+

      (103) 

 
 

18.  Maxwell’s Equations 
 
Since '

iE  is a static field in the 'S  reference frame, it satisfies the electrostatic 
equations (see Eqs. (86) and (87)) 

 

    
'

' 0k
ijk

j

E
x

ε ∂
=

∂
     (104) 

and 

     
' '

'
0

i

i

E
x

ρ
ε

∂
=

∂
     (105) 
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In this section it will be shown that these two equations transform into the four 

Maxwell equations which describe the time and spatial variations of iE  and iB  in the S 
frame.  

First it is necessary to relate time and spatial variations in the two frames of 
reference.  Consider some function ( )' ',if x t .  From the Lorentz transformations given in 

(28) we see that both '
ix  and 't  will be functions of x and t.  Using (28) we can write 

 

  
' '

' '
j

i j i i

xf f f t
x x x t x

∂∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

         ' 2 '( 1)ij i j i
j

f u f
x c t

γδ γ α α α∂ ∂ = + − −  ∂ ∂
   (106) 

and  

  
''

' '
j

j

xf f t f
t t t x t

∂∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

       ' 'j
j

f fu
t x

γ γ α∂ ∂
= −

∂ ∂
      (107) 

 
In a similar way we can write 

 

  ' ' '
j

i j i i

xf f f t
x x x t x

∂∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

        2( 1)ij i j i
j

f u f
x c t

γδ γ α α α∂ ∂ = + − +  ∂ ∂
   (108) 

and 

   ' ' '
j

j

xf f t f
t t t x t

∂∂ ∂ ∂ ∂
= +

∂ ∂ ∂ ∂ ∂
 

         j
j

f fu
t x

γ γ α∂ ∂
= +

∂ ∂
     (109) 

 
When f is a static field in 'S  [i.e., ( )'f f t≠ ], then (106) and (107) reduce to  
 

  '( 1)ij i j
i j

f f
x x

δ γ α α∂ ∂ = + − ∂ ∂
     (110) 

and 

  '

1
j

j

f f
x u t

α
γ

∂ ∂
= −

∂ ∂
      (111) 
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and (109) reduces to 
 

  j
j

f fu
t x

α∂ ∂
= −

∂ ∂
      (112) 

 
Substituting (112) into (108) we obtain 
 

  
2

' 2( 1)ij i j i j
i j j

f f u f
x x c x

γδ γ α α α α∂ ∂ ∂ = + − − ∂ ∂ ∂
    

   '

( 1)
ij i j

i j

f f
x x

γδ α α
γ

 ∂ − ∂
= − ∂ ∂ 

     (113) 

 
where ( )2 2 2 21u c γ γ= − was used in the last step. 

Consider first iB  and form the divergence of iB  using (110) and (95).  Thus  
 

  [ ]
'

2 '( 1)i k
ir i r ijk j

i r

B Eu
x c x

γδ γ α α ε α∂ ∂
= + −

∂ ∂
 

  
' '

2 ' 2 '

( 1)i k k
j jik ijk j i r

i i r

B E Eu u
x c x c x

γ γ γα ε ε α α α∂ ∂ ∂−
= − +

∂ ∂ ∂
 

  0i

i

B
x

∂
=

∂
       (114) 

 
since the first term is zero by (104) and in the second term 0ijk j iε α α = . 

Therefore, the divergence of iB  is zero in the S frame because the curl of '
iE  is 

zero in the 'S frame.  
Now form the curl of '

iE  as in (104) and use (113) and (112) to write  
 

  
' '

'

( 1)0k k
ijk ijk js j s

j s

E E
x x

γε ε δ α α
γ

 ∂ ∂−
= = − ∂ ∂ 

 

          
' '( 1)k k

ijk j
j

E E
x u t

γε α
γ

 ∂ ∂−
= + 

∂ ∂  
   (115) 

 
Substituting (103) for '

kE  in the first term of  (115) and using (95) for iB  in the second 
term of (114) we can write 
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2

2 2

( 1) 0
1

k s i
ijk ijk krs r

j j

E B Bcu
x x u t

γ γε ε ε α
γ γ

∂ ∂ ∂−
+ + =

∂ + ∂ ∂
 

   ( )
2

2 2

( 1) 0
1

k s i
ijk ir js is jr r

j j

E B Bcu
x x u t

γ γε δ δ δ δ α
γ γ

∂ ∂ ∂−
+ − + =

∂ + ∂ ∂
 

   1 0
1 ( 1)

jk i i
ijk i j

j j j

BE B Bu
x x x t

γε α α
γ γ

 ∂∂ ∂ ∂
+ − + =  ∂ + ∂ ∂ + ∂ 

  (116) 

 
where ( )2 2 2 21u c γ γ= − was used in the last step.  The first term in the parentheses in 
(116) is zero by (114) and the second term in parentheses can be changed to a time 
derivative using (112).  Equation (116) then reduces to  
 

   1 0
1 ( 1)

k i i
ijk

j

E B B
x t t

γε
γ γ

∂ ∂ ∂
+ + =

∂ + ∂ + ∂
 

from which 

   k i
ijk

j

E B
x t

ε ∂ ∂
= −

∂ ∂
      (117) 

 
which is Maxwell's equation for the curl of E.  That is, (117) is the same as 
 

    
t

∂
× = −

∂
BE∇        (118) 

 
Equation (114) is the same as 
 
   0=Bi∇        (119) 
 
Equations (118) and (119) are Maxwell’s homogeneous equations.  

Both Eqs. (119) and (118) for the divergence of B and the curl of E have been 
derived from (104) for the curl of '

iE .  In order to derive other equations by transforming 
(105), it is necessary to determine how the charge density 'ρ  transforms under a Lorentz 
transformation.  Since it has been postulated that charge is invariant, then  

 
  ' 'dV dVρ ρ=        (120) 

where  
  1 2dV dx dx dx⊥ ⊥= &  and  ' ' '

1 2'dV dx dx dx⊥ ⊥= &    (121) 
Then 
   ' '

1 1 2 2 and  dx dx dx dx⊥ ⊥ ⊥ ⊥= =      (122) 
and  
   ' ( )x x utγ= −& &  
   'dx dxγ=& &        (123) 
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Substituting (121), (122), and (123) into (120) we find that 
 

    ' ρρ
γ

=       (124) 

 
Using_(113) and (124) one can write (105) as  

 

  
' '

0

( 1)i i
i j

i j

E E
x x

γ ρα α
γ ε γ

∂ ∂−
− =

∂ ∂
     (125) 

 
Substituting (100) for '

iE  in (125), we can write 
  

 
2 2

0

( 1) ( 1)j k k s
i j ijk j i j i k i j irs r

i i j j

E B E Bc c
x u x x u x

γ γ ρα α ε α α α α α α α ε α
γ γ γ γ ε γ

∂ ∂ ∂ ∂− −
− − + =

∂ ∂ ∂ ∂
 

 
2

0

( 1)1j k
i j j jki

i i

E Bc
x u x

γ ρα α α ε
γ γ ε γ

∂   ∂−
− − = ∂ ∂ 

    (126) 

 
which, by using (112), can be written as  

 

  
2

0

1 1j k
j j jki

i

E Bc
u t u x

ρα α ε
γ γ ε γ

∂ ∂
− − =

∂ ∂
 

  2
0 0

i k
i i ijk

j

E Bc u
t x

α ε ε α ε ρ∂ ∂
− + =

∂ ∂
    (127) 

 
Multiplying the right-hand side of (127) by 1i iα α =  and defining the current 

density of the source charges as i iJ uρ α= , the permeability as 2
0 01 cµ ε= , the magnetic 

field intensity as 0k kH B µ= , and the electric flux density as 0i iD Eε= , we can write 
(127) as 

  0i k
i i ijk

j

D HJ
t x

α ε
 ∂ ∂
− − + =  ∂ ∂ 

     (128) 

  
Since iJ  is in the direction of iα , the total vector in parentheses cannot be 

perpendicular to iα .  Therefore, the expression in parenthesis in (128) must vanish and 
 

  k i
ijk i

j

H DJ
x t

ε ∂ ∂
= +

∂ ∂
       (129) 

 
which is Maxwell's equation for the curl of H and is the same as 
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t

∂
× = +

∂
DH J∇       (130) 

 
Now, if we return to (125) and substitute (101) for '

iE , we obtain  
 

 
2

0

( 1) ( 1)( 1) ji i k
i j i j i j i k

i i j j

EE E E
x x x x

γ γ ργ α α α α α α α α
γ γ ε

∂∂ ∂ ∂− −
+ − − − =

∂ ∂ ∂ ∂
 

2

0

( 1) ( 1)( 1)ji
i j

i i

EE
x x

γ γ ρα α γ
γ γ ε

∂  ∂ − −
+ − − − = ∂ ∂  

    (131) 

 
The term in the square bracket in (131) is equal to zero so that (131) reduces to 
 

   
0

i

i

E
x

ρ
ε

∂
=

∂
 

 
which is Maxwell's equation for the divergence of E and is the same as 
 

   
0

ρ
ε

=Ei∇        (132) 

 
We have therefore derived the four Maxwell equations given by (118), (119), 

(130), and (132) directly from special relativity and Coulomb’s law.  These equations are 
summarized in (133). 

 
 
 
 
      (133) 
 
 
 
 
 
 
 

19.  Discussion 
 

In the preceding sections we have derived Maxwell’s equations directly from 
special relativity and Coulomb’s law.  R. S. Elliott published a similar derivation in 1966 
[1,2].  The graphical methods of showing the Lorentz transformation described in Parts I 
and II were first given by Brehme in 1962 [3].  Good paperbacks on special relativity 
include those by Helliwell [4], Ney [5], and Born [6].  

t
∂

× = −
∂
BE∇  

0=Bi∇  

t
∂

× = +
∂
DH J∇

0

ρ
ε

=Ei∇  
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In his classic book on electromagnetic theory, Stratton states, "A vast wealth of 
experimental evidence accumulated over the past century leads one to believe that large-
scale electromagnetic phenomena are governed by Maxwell’s equations."[7]  Indeed the 
evidence appears to be overwhelming since Maxwell's equations with singular success 
have predicted electrostatic, magnetostatic, and electromagnetic phenomena associated 
with a wide range of technological applications. However, certain aspects of 
electromagnetic theory, which deal with the radiation emitted by accelerating charges, 
remain troublesome.  In discussing Maxwell's theory of electromagnetism, Feynman has 
written, "this tremendous edifice, which is such a beautiful success in explaining so many 
phenomena, ultimately falls on its face . . .. The classical theory of electromagnetism is 
an unsatisfactory theory all by itself. There are difficulties associated with the ideas of 
Maxwell's theory which are not solved by and not directly associated with quantum 
mechanics...when electromagnetism is joined to quantum mechanics, the difficulties 
remain" [8].  In the discussion of radiation damping, Jackson states that ". . .a completely 
satisfactory treatment of the reactive effects of radiation does not exist" [9].  

In this report we have shown that the electric and magnetic fields measured in an 
unprimed reference frame satisfy Maxwell's equations when the source charges giving 
rise to the fields are moving uniformly with respect to the unprimed frame. It is to be 
expected, therefore, that Maxwell's equations will be valid for fields resulting from 
unaccelerated source charges.  Note that in the derivation given above, the time-variation 
of the field vectors arises from the spatial variation of the source charges in the primed 
reference frame.  Of course, Maxwell's equations are frequently applied in cases where 
the source charges do accelerate; here they predict that accelerating charges radiate 
electromagnetic waves.  Based upon the derivation given above, is it justified to apply 
Maxwell's equation in cases where the source charges are accelerated?  Elliott [2] 
answers this question in the affirmative by arguing that the most general time-varying 
spatial distributions of current and charge density can be Fourier synthesized from static 
charge distributions in all Lorentzian frames.  Some of these frames will have velocities 
greater than c.  Elliott states that this is mathematically admissible since these are 
fictitious charge distributions that are added to synthesize real time-varying charges that 
do not have velocities in excess of c. However, is it admissible to do things 
mathematically, which cannot, in principle, be done physically--what is the consequence 
of assuming that some frame of reference has a velocity greater than the speed of light? 
The consequence is that a frame of reference always exists in which causality is violated. 
Therefore, if one insists on applying Maxwell's equations to systems involving 
accelerated charges, then one should expect to encounter causality problems.  Hence, it is 
not surprising that attempts to explain radiation reaction effects using Maxwell's theory 
lead to results that violate causality [10,11]. 

If the basic cause of these is the fact that one should not expect Maxwell's equations 
to be exactly valid for accelerating charges, the derivation carried out in Sections 16 - 18 
should give some clue as to how the appropriate equations might be found.  If the source 
charges are at rest, then the electric field is introduced to describe the force exerted on a 
test charge also at rest.  However, if the source charges are in uniform motion, the 
magnetic field is introduced to describe that additional force exerted on a test charge that 
is in uniform motion.  Might it be convenient to introduce additional field vectors to 
describe source and test charges in non-uniform motion?  For instance, might a field 
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vector that arises from source charges moving with a constant acceleration be introduced 
to describe the additional force exerted on a uniformly accelerating test charge?  Could 
the form of this field vector be determined if it were known how forces transform 
between reference frames which are accelerating with respect to each other? Would 
additional fields and forces arise for each additional time derivative of velocity of the 
source and test charges, and would the equations describing these fields be a set of 
coupled equations with an additional equation being added for each additional time 
derivative of velocity of the source charges considered?  

The failure of classical electromagnetic theory mentioned above arises from the 
fact that the Lorentz force does not predict a radiation reaction force, while Maxwell's 
equations predict that accelerated charges lose energy by radiation.  This loss of energy 
should be accounted for by some additional force acting upon the accelerated charge. 
From the point of view outlined in the previous paragraph, an accelerated charge would 
feel an additional force, but the origin of the force would be accelerating source charges 
located elsewhere.  Such a description leads to the conclusion that an accelerated point 
charge in otherwise charge-free space would not radiate electromagnetic energy.  This, of 
course, is not a new idea and is, in fact, one of the assumptions used by Wheeler and 
Feynman [12] in their description of radiation reaction.  

The derivation in Part IV shows Maxwell's equations to hold under conditions of 
special relativity; however the above discussion indicates that they cannot be used with 
complete confidence for problems involving accelerated charges.  Therefore, the question 
of whether something is missing from Maxwell's equations remains. 
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