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LINEAR AND QUADRATIC ELEMENTS

The above equations are equivalent to

AU T[A]UY) ‘
LR+ i
When [ 4] is symmetric,
U TA]IUS) ,
' 'CT{U;—I—ZZ[A]{U}

Appendix 3

MODIEYING THE SYSTEM
OF EQUATIONS

The system of equations
[Kllo)={F]
or
(KU} =1F+{P]

obtained by using the direct stiffness procedure must be modified whenever some
of the values in {®] or [ U} are known. All field problems except some problems
involving convection heat transfer must have some of the boundary values specified
and all solid mechanics problems must have displacements specified to eliminate
rigid body motion. Therefore, the modification of the system of equations to
incorporate known nodal conditions is more the rule than the exception.

Our objective here is to discuss and then illustrate a systematic procedure for
modifying [K] and {F] such that we satisfy two criteria. First, we must obtain
the correct answers for all values in {®} or { U . Second, we do not want to change
the size of [K], {F}, and { P} because this leads to programming difficulties. We
shall consider the steady-state situation first and then discuss the modification of
equations associated with time-dependent field problems.

111.1 STEADY-STATE EQUATIONS

The modification of the system of equations [ K]{®] = {F| is a two-step procedure
once the subscript of the known nodal parameter is available. For example,
suppose that @5 has a known value. The modification proceeds as follows.

1. All of the coefficients in row five are set equal to zero except the diagonal
term, which is left unaltered. In equation form, Ks;=0, j=1,...,n and j#5.
The associated term in the column vector [ F}, Fs, is replaced by the product
Kss®s.

2. All of the remaining equations are modified by subtracting the product
Ks®s from F; and then setting K;s=0, j=1,...,n, j#5.
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ILLUSTRATIVE EXAMPLE
Modify the following system of equations when ®; =150 and &5 =40.

55 —46 0 0 07 (@, 500
—46 140 —46 0 01D, 2000
4 —46 110 —46 4 145 L =23 1000

0 0 —46 142 —46 ||, 2000

0 0 4 —46 65 ®s 900

To implement step one, we set all of the coefficients in rows one and five to zero
except the diagonal terms, which are left unaltered. The corresponding terms in
{F}, Fy and Fs, are then replaced by F, =K, ®, and Fs=Kss®s, respectively.
This step yields

55 0 0 0 07(d, 8250
—46 140 —46 0 0|, 2000
4 -46 110 —46 4 |9®5 =4 1000

0 0 —46 142 —46 || D, 2000

0 0 0 0 6541 ds 2600

The second step involves the elimination of the columns of coefficients that
multiply ®; and ®s. This is accomplished by transferring the coefficients involving
®, and @5 to the right-hand side. For example, F, becomes 2000 + 46®,, or 8900.
Completion of this step gives

55 0 0 0 07(®, 8250
0 140 —46 0 0 [d)z 8900
0 —46 110 —46 0]q®; =4 240
0 0 —46 142 0[P, 3840
0 0 0 0 6511 ®; 2600

1.2 TIME-DEPENDENT EQUATIONS

The incorporation of specified nodal values in time-dependent problems is more
complicated because the solution procedure involves combinations of [C] and
[K], namely [4] and [P]. We shall place the same requirement on the time-
dependent solution that was placed on the steady-state solution. We want to keep
the dimensions of [C] and [ K ] and thus [ 4] and [ P] the same after modification
as they were before modification.

The algorithm for modifying [C] and [ K] is more easily understood once we
have looked at a specific problem. Let us reconsider the problem in Section 14.5
without the heat source at node one. Instead we assume that ®; =40°C for all time
values. The vector of initial conditions {®}, becomes {®};7={40 0 0]
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Our desire is to maintain [4] and [ P] as 3 x3 matrices with the new property
that ®, =40°C for all of the calculated solutions.

If we use a lumped capacitance matrix with the [ K] that was obtained for the
example problem in Section 14.5, the system of differential equations is

12d—c11:—1+2<b1—2d)2=0
c

1D
24'(72 — 20, +4d, — 20, =0
o
12%3 =20, +20,=0 (1
[t

The first equation of (1) comes from R; =0. Since ®, has the fixed value of 40, the
first equation should not be included. We must eliminate the residual equation for
node one because ®; is known. The correct system of differential equations is

®
24‘11—[2+4q>2—2q>3—8o=0
4

12‘1%—2¢2+2¢3=0 )
(

The value — 80 in the first equation of (2) comes from substituting ®, =40 into
—2®, in the original equation.
The equivalent matrix form is

24 0]did*) 4 =2],.,, 801 fo
[o 12} dt “{—2 2}“‘”‘ 0§ 10 G)

where (®*]T=[®, ;]
A central difference solution of (3) using Ar=1 is

26 —1 22 —1 80
[_1 13]{%,:[_1 “]{mm{ 0} @

Our objective is to have a system of equations that includes (4) but which also
gives the correct value of @, for each time step. One way of achieving this objective
is to expand (4) into a larger system as follows.

12 0 0 12 0 0 0
0 26 —1|{o,=10 2 ~1|lol,+180 (5)
0 -1 13 0 1 1 0

The diagonal values 4y, and P, are set equal to C,,. All of the other coefficients
in the first row of [ 4] and [ P] are zero. When (5) is solved, ®, at 1 =6 will be the
same as @, atr=a.

The modification of a system of differential equations when some of the nodal
values are known can be accomplished by the following algorithm. Assume that
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®; is the known nodal value.

1. Add the products K;®;, j=1,...,n to the corresponding coefficient in {F},

that is, F.

Replace the coefficients in row i and column i of [ K ] by zeros.

Set F;=0.

4. If [C] comes from the consistent formulation, sum the coeflicients in row ;
and replace C;; with this sum. Set all of the off-diagonal coefficients in the row
to zero.

w

When these three steps are completed, [ 4] and [ P] have properties similar to
the matrices in (6). The diagonal coefficients, 4;; and P, are the same as C; thus,
®; at time b is the same as ®,; at time qa.
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7 0
(c) G—d): —4204, Td): —134.7
ox dy

5.14 (a) ¢ =140.3, (b) (0.259, 0.060),
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