An Approach to the Schrodinger Equation

Classical Mechanics: Energy Conservation:
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Quantum physics: particles have wavelength and angular frequency:
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A deBroglie particle-wave:
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Here Eyin is the Kinetic energy of the moving particle!

Quantum Mechanics: The Schrédinger Equation

Differentiating the particle wave equation twice with respect to x leads to
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Differentiating it once with respect to t and replacing Exin with E from classical
mechanics leads to
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This is a generalization since the Exin in the deBroglie wave is actually just the kinetic
energy. We are looking for an equation that is also true for particles in a potential so
we replaced the kinetic energy with the total energy. Generalizations like this lead to a
new theory which cannot be derived from any other theory. It is not possible to derive
a theory, one can only develop it. One theory never follows from another. If it did it
wouldn’t be a theory.

From the two last equations we can construct a differential equation as follows:

We multiply the first by -#%/2m and the second by i7 to give:
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If we add VY to the first of these equations the right hand sides are identical so the
left hand sides should be too and we get a differential equation from the left hand
sides.

This is the time-dependent Schroedinger equation in one dimension. It can be
generalized to three dimensions with the abbreviation
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To give the time-dependent Schroedinger equation.
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The expression in brackets is called the Hamilton operator H (it performs a

mathematical operation on V).

ihi‘P =HY

dt
Y is called the wave function. It is a complex valued function of X, y, z and t. The
wave function has no physical interpretation but its absolute square [¥|* is

understood as the probability to find the particle inside a small volume at position X,
y, z and time t, devided by the size of this volume. This is a probability density.

If a particle is bound in a potential, for example an electron bound in an atom, the
probability density does not depend on time, The probability to find a particle in a
certain volume in a certain position is always the same. The orbital does not change

shape.

A wave function with a time-independent probability density can be constructed as
follows:

‘P(x, V,Z, t) = exp(— i%tj t//(x, v, z)

with an absolute square that depends only on x,y and z and not on time since
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We’ll insert this wave function into the time-dependent Schrédinger equation now but
we will stick to the one-dimensional case

W)= exp(_i%jw(x)

to give:

m%{exp(_ igfjw(x)} _ [-%57 R V}{exp(— i%tjl//(x)}

The differentiation with respect to t on the left can be carried out directly, wheras on
the right the exponential can be moved in front of the bracket since it only depends on
t and not on x.
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which simplifies to

or swapping right and left side, using H for the Hamilton operator and generalizing to
three dimensions

H w(x, y,z) = Et//(x,y,z)
This is the time-independent Schrodinger equation which describes orbitals that are
constant in time.
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