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11.6.

STATICALLY INDETERMINATE ELASTIC BEAMS [CHAP. 11
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Fig. 119

A free-body diagram of the horizontal beam appears as in Fig. 11-9(b). Here. P denotes the force
exerted upon the beam by the copper rod. Since this force is initially unknown, there are three forces acting
upon the beam. but only two cquations of equilibrium for a parallel force system; hence the problem is
statically indeterminate. It will thus be necessary to consider the deformations of the system.

A free-body diagram of the two vertical rods appears as in Fig. 11-9(c). The simplest procedure is
temporarily to cut the connection between the beam and the copper rod, and then allow the vertical rods
to contract freely because of the decrease in temperature. If the horizontal beam offers no restraint, the
copper rod will contract an amount

A, = (20X 107%)(10%) (40) = 0.8 mm
and the aluminum rod will contract by an amount
Ay = (25 % 10 %) (500) (40) = 0.5 mm
However, the beam exerts a tensile force P upon the copper rod and the same force acts in the

aluminum rod as shown in Fig. 11-9(c). These axial forces clongate the vertical rods and this elongation
(see Problem 1.1) is

PA0°) (109 . P(500)(10°)
500(100 X 10°) ~ 10°(70 x 10°)

The downward force P exerted by the copper rod upon the horizontal beam causes a vertical
deflection of the beam. In Problem 9.12 this central deflection was found to be A = PLY/48EI.

Actually, of course, the connection between the copper rod and the horizontal beam is not cut in the
true problem and we realize that the resultant shortening of the vertical rods is exactly equal to the
downward vertical deflection of the midpoint of the beam. This change of length of the vertical rods is
caused partially by the decrease in temperature and partially by the axial force acting in the rods. For the
shortening of the rods to be equal to the deflection of the beam we must have

P0) 0 P(soo)(w“)] P X10%)(10°)
500(100 % 10°) ~ 10%(70 X 10°)

(08+0.5) - [ 48(10 X 10°) (400 X 10°)

Solving, P = 3.61 kN; then,
.. = 3.61 X 10°/500 = 7.22 MPa and oy = 3.61 X 10°/1000 = 3.61 MPa

The beam of flexural rigidity Ef shown in Fig. 11-10 is clamped at both ends and subjected to
a uniformly distributed load extending along the region BC of length 0.6L. Determine all
reactions.

At end A as well as C the supporting walls exert bending moments M, and M plus shearing forces
R, and R, as shown. For such a plane, parallel force system there are two equations of static equilibrium
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and we must supplement these equations with additional relations stemming from beam deformations. The
bending moment along the length ABC is conveniently written in terms of singularity functions:

& —04LY
EI%Y = M0+ Ry =224 0
dx* 2
Integrating,
Ldy . x> wi{x—04Ly
El== —Mux)' 4+ Ry =5 ————+ G, @)

where C, is a constant of integration. As the first boundary condition, we have: when x = 0, the slope
dyldx = (). Substituting in Eq. (2), we have

0=-0+0-0+C for ¢, =0
As the second boundary condition, when x = L, dy/dx = 0. Substituting in Eq. (2), we find

3
0= —M,,L+R"2L

- 1;—(0.&)-‘ 3

Next, integrating Eq. (2), we find
(xP R, &P w{x—04L)

Ely=-M,~+2A2 2 "7 4¢C 4
Y 27273 6 a4 2 )

The third boundary condition is: when x = 0, y = 0, so from Eq. (4) we have C; = 0. The fourth boundary
condition is: when x = L, y =0, so from Eq. (¢) we have
M,L? R L} w

0= ———2"—+T_£(0.6L)¢ (5}

The expressions for M, given in Egs. (3) and (5) may now be equated to obtain a single equation
containing R, as an unknown. Solving this equation, we find

0.6)°
a0y - 2]
= 0.1512wL

Substituting this value in Eq. (3), we find M, = 0.0396wL>.
From statics we have

SF, = —(0.6L)w+0.1512wL + Re =0 R = 0.4488wL
and +) M, = —0.0396wL? — M+ (0.4488wL) (L) — [w(0.6L)} (0.7L) = 0
- M¢ = 0.0684wL?

1L7. The beam in Fig. 11-11 of flexural rigidity ET is clamped at A, supported between knife edges
at B, and loaded by a vertical force P at the unsupported tip C. Determine the deflection
at C.



