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1 Lagrangian

I consider the Lagrangian:

L =
1

2
(∂µφ1∂

µφ1 −m2
1φ

2
1) +

1

2
(∂µφ2∂

µφ2 −m2
2φ

2
2) + λφ1φ2

which gives the following Euler-Lagrange equations:

(�+m2
1)φ1 = λφ2

(�+m2
2)φ2 = λφ1

2 Canonical quantization

Since the interaction Lagrangian doesn’t contain derivatives of the fields one has, as
in the free case, π1 = ∂0φ1 and π2 = ∂0φ2. Then one expands the fields (a thing one
can always do) like this:

φ(x) =

∫
d3p

(2π)3
φ1(t,p)eip·x

ψ(x) =

∫
d3p

(2π)3
φ2(t,p)eip·x

with φ†1(t,p) = φ1(t,−p) and φ†2(t,p) = φ2(t,−p) so that both φ1 and φ2 are
hermitian. Then, since canonical quantization demands that canonical commutation
relations hold between fields and their conjugate momenta, these relations must
hold:1

[φi(t0,p), φj(t0,k)] = 0 ∀p,k, i, j
[φ̇i(t0,p), φ̇j(t0,k)] = 0 ∀p,k, i, j
[φi(t0,p), φ̇j(t0,k)] = iδijδ(p− k)

1I’ve taken them at time t0 because from Noether’s theorem I know that there is an Hamiltonian
such that φj(t,x) = eiHtφj(0,x)e

−iHt. Then these relations will continue to hold at a time different
from t0.
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The first problem one gets into is the fact that it should be iδ(p + k) in the
second relation above, in order to get a iδ(x−y). Let’s see how far I can get before
having to refer to that again. First of all, the equations one has to solve are:

φ̈1(t,p) = −ω2
1(p)φ1(t,p) + λφ2(t,p)

φ̈2(t,p) = −ω2
2(p)φ2(t,p) + λφ1(t,p)

then one calls φ̇1(t,p) = π1(t,p). There comes again the problem that one should
have:

[φ1(t0,p), π1(t0,k)] = iδ(p + k)

so the reasoning I’m going to make to solve the equations doesn’t convince me so
much. Same problem for φ̇2(t,p) = π2(t,p).

Then, the only thing left is to solve quantum mechanically the equations:

φ̇1(t,p) = π1(t,p)

φ̇2(t,p) = π2(t,p)

π̇1(t,p) = −ω2
1(p)φ1(t,p) + λφ2(t,p)

π̇2(t,p) = −ω2
2(p)φ2(t,p) + λφ1(t,p)

that is: 
φ̇1(t,p)

φ̇2(t,p)
π̇1(t,p)
π̇2(t,p)

 =


0 0 1 0
0 0 0 1

−ω2
1(p) λ 0 0
λ −ω2

2(p) 0 0



φ1(t,p)
φ2(t,p)
π1(t,p)
π2(t,p)


Forgetting the problem I spoke of before (because after all it arises in the free

case, too. But there things come off pretty well, so why bother?), I asked Mathe-
matica to diagonalize the matrix with m1 = m2 (otherwise it is a nightmare). One
gets that (with ω2

1(p) = ω2
2(p) = ω2(p)):


ȧ−(t,p)
ȧ+(t,p)

ḃ−(t,p)

ḃ+(t,p)

 =


−i
√
ω2(p) + λ 0 0 0

0 i
√
ω2(p) + λ 0 0

0 0 −i
√
ω2(p)− λ 0

0 0 0 i
√
ω2(p)− λ



a−(t,p)
a+(t,p)
b−(t,p)
b+(t,p)


with:


a−(t,p)
a+(t,p)
b−(t,p)
b+(t,p)

 =


i
√
ω2(p)+λ

4 − i
√
ω2(p)+λ

4 −1
4

1
4

− i
√
ω2(p)+λ

4

i
√
ω2(p)+λ

4
1
4 −1

4

− i
√
ω2(p)−λ

4 − i
√
ω2(p)−λ

4
1
4

1
4

i
√
ω2(p)−λ

4

i
√
ω2(p)−λ

4
1
4

1
4



φ1(t,p)
φ2(t,p)
π1(t,p)
π2(t,p)


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and:


φ1(t,p)
φ2(t,p)
π1(t,p)
π2(t,p)

 =


− i√

ω2(p)+λ

i√
ω2(p)+λ

i√
ω2(p)−λ

− i√
ω2(p)−λ

i√
ω2(p)+λ

− i√
ω2(p)+λ

i√
ω2(p)−λ

− i√
ω2(p)−λ

−1 −1 1 1
1 1 1 1



a−(t,p)
a+(t,p)
b−(t,p)
b+(t,p)



3 Vacuum and one particle states

First of all I noticed that in order to have that the eigenvalues of the diagonal matrix
that dictates the evolution of the a and b are purely imaginary (as it should be in
quantum mechanics), it must be that m2 − λ > 0 and m2 + λ > 0.

This is because ω2(p) − λ = m2 + p2 − λ and ω2(p) + λ = m2 + p2 + λ, then
since p2 is at least 0, it sure is ω2(p)− λ > 0 and ω2(p) + λ > 0 if m2 − λ > 0 and
m2 + λ > 0. The condition on λ is:

|λ| 6 m2

For simplicity I’ll call
√
ω2(p) + λ = ωa(p) > 0 and

√
ω2(p)− λ = ω2

b (p) > 0.
With that said, since one has that there exists (from Noether theorem) a Pµ =
(H,P ) operator conserved in time that generates spacetime translations, it must be
that:

ȧ−(t,p) = −i[a−(t,p), H] = −iωa(p)a−(t,p)

ȧ+(t,p) = −i[a+(t,p), H] = iωa(p)a+(t,p)

ḃ−(t,p) = −i[b−(t,p), H] = −iωb(p)b−(t,p)

ḃ+(t,p) = −i[b+(t,p), H] = iωb(p)b+(t,p)

and then:

[H, a−(t,p)] = −ωa(p)a−(t,p)

[H, a+(t,p)] = ωa(p)a+(t,p)

[H, b−(t,p)] = −ωb(p)b−(t,p)

[H, b+(t,p)] = ωb(p)b+(t,p)

After this observation, I saw that since the Hamiltonian is:

(∫
d3x

2∑
j=1

{πj(t0,x)2+‖∇φj(t0,x)‖2}
)

+

(∫
d3x

{m2

2
(φ21+φ

2
2)−λφ1φ2

})
= T+U

and since I took m2 > 0, I have that the potential has only one absolute minimum.
Then from what I learned (I don’t know very much yet, so this argument could be
flawed) in the course of particle physics about spontaneous symmetry breaking and
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the correspondence between minima of the potential functional and the quantum
vacuum (ground) state, I have that quantum mechanically this hamiltonian has
only one, non degenerate, ground state. The picture I have in mind is the one where
one graphs (φ1, φ2,U(φ1, φ2)) where U is the potential energy density. The density
in this case is a paraboloid with only one minimum because as I said one takes
m2 > 0 (the sign of λ doesn’t matter: whatever it is the paraboloid has always the
concavity facing down).

Then there exists |Ω〉 which, up to a redefinition of the ground state energy (as
one does in the free case), is an eigenstate of the Hamiltonian with zero eigenvalue:

H |Ω〉 = 0

and all other eigenvalues are greater than 0. Once I did this, I tried to find the one
particle states, and to see which was the physical mass of the particles of the theory.
To see this, I considered the states:

a−(p) |Ω〉
a+(p) |Ω〉
b−(p) |Ω〉
b+(p) |Ω〉

where a−(p) is a shorthand for a−(t0,p), and the same holds for the other three.
Using the commutation relations I wrote above, one has that:

Ha−(p) |Ω〉 = −ωa(p)a−(p) |Ω〉
Ha+(p) |Ω〉 = ωa(p)a+(p) |Ω〉
Hb−(p) |Ω〉 = −ωb(p)b−(p) |Ω〉
Hb+(p) |Ω〉 = ωb(p)b+(p) |Ω〉

then I concluded that a−(p) and b−(p) must annihilate the vacuum for every value
of p, otherwise the states a−(p) |Ω〉 and b−(p) |Ω〉 would have negative energy, and
this would contradict what I said above about the ground state.

Then I observed that the states a+(p) |Ω〉 and b+(p) |Ω〉 have positive energy, and
the eigenvalue is in accord with Einstein’s energy-momentum relation2 with mass√
m2 + λ and

√
m2 − λ, respectively. So I concluded that those are one particle

states, and this field theory describes two particles with masses different from m.

4 Conclusions and open questions

Apart from the problem I spoke about at the beginning of the section 2 about the
commutation relations3, there’s another problem that I consider more physical. If

2Sure, one should show that they have definite momentum p, that is they must be eigenstates
of the momentum operator P i with eigenstate pi, but I’ll take that to be the case here. However a
proof I can give is that since [Pµ, P ν ] = 0, energy eigenstates are momentum eigenstates, and from
the properties of the Poincaré group I conclude that since Einstein relation holds, those states have
momentum p.

3I stress again the point that this problem is present also in the free case, that is if λ = 0. Then
I don’t think it is a real problem.
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my reasoning about the one particle states (which used only the equations of motion
and the hypothesis of the existence of a vacuum) is correct, I don’t understand why
there is asymmetry (one mass has a plus sign and the other a minus sign) in the
particle masses, given that the equations of motion treat in the same way the two
fields.

Another problem I get is that, even without knowing the commutation relations
of the a and b operators, I could apply the same reasoning (using the commutations
between a and b operators and the Hamiltonian) I made before to conclude that the
state:

a+(p1) . . . a+(pN ) |Ω〉

has energy:

N∑
i=1

ωa(pi)

and so on for the other states, just as the free case. The commutation relations of
the a and b operators should be only useful to get the statistics of my particles (that
I guess are bosons). With that said, I can add the fact that the observations I made
before make me draw the conclusion that my Hilbert space has a Fock structure,
as in the free case. Then if I use the formula that Peskin and Schroeder give for
the S-matrix (equation 4.70 of their book), using the physical states (which I have a
closed expression for), I obtain that S-matrix elements are 0 if the initial number of
particles is different from the final number of particles, and proportional to sum of
Dirac delta of physical momenta if the initial number of particles is equal from the
final number of particles, multiplied by a phase which comes from applying e−i2Ht

to the ket on the right, which is an eigenstate. I’ve been a bit (a lot) sloppy here
but the conclusion I make is that there is no non trivial scattering, and I don’t like
this because after all this is an interacting theory (I guess: maybe the answer is that
by a field redefinition i can bring the potential in a diagonal form, that is something
like m2

+φ
2
+ +m2

−φ
2
−, as I do in ordinary mechanics. If it is so this theory is free).
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