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Andrew M. Gleason
1921–2008
Ethan D. Bolker, coordinating editor

A
ndrew M. Gleason 
was one of the 
quiet giants of 
twentieth-century 
mathematics, the 

consummate professor dedi-
cated to scholarship, teaching, 
and service in equal measure.

He was too modest to write 
an autobiography. The folder 
marked “memoir” in his files 
contains just a few outdated 
copies of his impressive CV. But 
those of us lucky to have known 
him will offer in the essays that 
follow some reflections on his 

mathematics, his influence, and his personality: 
codebreaking during the Second World War; his 
role in solving Hilbert’s Fifth Problem; Gleason’s 
Theorem in quantum mechanics; contributions to 
the study of operator algebras; work in discrete 
mathematics; concern for mathematics education 
as a teacher, author, and reformer; and his service 
to the profession.

Vita
Andrew Mattei Gleason was born November 4, 
1921, in Fresno, California, to Eleanor Theodolinda 
Mattei and Henry Allan Gleason. He died in Cam-
bridge, Massachusetts, on October 17, 2008.

He grew up in Bronxville, New York, and was 
graduated from Roosevelt High School, Yonkers, 
in 1938. He received his B.S. from Yale in 1942. 
While at Yale he placed in the top five in the Put-
nam Mathematical Competition in 1940, 1941, 
and 1942, and was the Putnam Fellowship winner 
in 1940.

In 1942 he enlisted in the navy, where he served 
as a cryptanalyst until the end of the war. He was 

recalled to active duty during the Korean War and 
retired from the navy in 1966 with the rank of 
commander.

Gleason went to Harvard in 1946 as a Junior 
Fellow of the Society of Fellows. He was appointed 
assistant professor of mathematics in 1950 and as-
sociate professor in 1953, when Harvard awarded 
him his highest degree, an honorary A.M. He be-
came a full professor in 1957. From 1969 until his 
retirement in 1992 he was the Hollis Professor of 
Mathematicks and Natural Philosophy.

Throughout his time at Harvard he maintained 
his association with the Society of Fellows, serving 
as a Senior Fellow for nineteen years and as its 
chairman from 1989 to 1996.

In 1952 the American Association for the Ad-
vancement of Science awarded Gleason the New-
comb Cleveland Prize for his work on Hilbert's 
Fifth Problem. He was elected to the American 
Academy of Arts and Sciences in 1956, to the 
National Academy of Science in 1966, and to the 
American Philosophical Society in 1977.

From 1959 to 1964 he chaired the Advisory 
Board of the School Mathematics Study Group; 
he was cochairman of the Cambridge Conference 
on School Mathematics in 1963 and a member of 
the Mathematical Sciences Education Board from 
1985 to 1989.

Gleason delivered the Mathematical Association 
of America’s Hedrick Lectures in 1962. He was 
president of the American Mathematical Society 
in 1981–82 and served on the Council of Scientific 
Society Presidents 1980–83. He was chairman of 
the organizing committee and president of the 
International Congress of Mathematicians, Berke-
ley, 1986.

On January 26, 1959, he married Jean Berko, 
who is now professor emerita of psychology at 
Boston University. They have three daughters: 
Katherine, born in 1960; Pamela, born in 1961; and 
Cynthia, born in 1963.

Ethan Bolker is professor of mathematics and computer 
science at the University of Massachusetts, Boston. His 
email address is eb@cs.umb.edu.
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Ethan D. Bolker
50+ Years…
I first met Andy in 1956, when he taught sopho-
more abstract algebra at nine in the morning (even 
on fall football Saturdays). He agreed to let me 
audit his course and submit homework papers.

It took me several years and two graduate 
courses to realize how deceptive a lecturer he 
was. The proofs scrolled by. You could read his 
writing. He literally dotted his i’s and crossed his 
t’s. I know; I recently found the purple dittoed 
handwritten linear algebra notes he wrote for us 
in the spring of 1957. Strangely, those notes were 
sometimes subtly hard to study from. Now I know 
why. He took such care preparing and searched 
so hard for economy and elegance that the rough 
places were made plain. The hard parts didn’t seem 
so in the seamless flow, so it could be hard to find 
the crux of a proof. George Mackey once told me 
it was good that one of his teachers (I choose to 
forget who) was disorganized because it forced 
him (George) to master the material for himself. 
What Andy’s style proves is that disorganization 
may be sufficient but is not necessary.

Andy was the reader for my undergraduate 
thesis on multiplicity theory for eigenvalues of 
bounded self-adjoint operators on Hilbert space. 
In those days (perhaps still) each senior was set a 
special exam on the thesis topic. One question on 
mine asked me to apply my theorems to the mul-
tiplication operator g  �  f g  for g  in a Hilbert space 
L2 (μ ). The function f  was a cubic polynomial, and, 
μ  was Lebesgue measure on [0, 2] with an extra 
atom of weight 1 at 1. Fortunately, I’d thought 
of putting an example like that in the thesis, so I 
knew how to do the problem. What mattered was 
where the cubic was 1  :  1, 2  :  1, or 3  :  1. But my 
answer seemed not to need the atom at 1. When 
I asked Andy later about that, he gently pointed 
out how he’d carefully constructed his cubic with 
a local maximum at 1, so there was a set of posi-
tive measure on which the cubic was 2  :  1. I missed 
that, because when finding the critical points I 
calculated 2 × 3  =  12. He graciously said only that 
I’d spoiled a good problem.

When I chose Andy as a doctoral thesis advisor I 
had neither a topic nor a direction. I thought I was 
an analyst and thought he was one and knew him, 
so I opted to try to work with him. I struggled with 
p -adic groups for a year, going nowhere. But I did 
have one idea about a way I might prove the Radon-
Nikodym theorem for measures on lattices like 
those that come up in quantum mechanics. The 
idea didn’t work, but I did manage to say some new 
things about measures on Boolean algebras even 
while the generalizations to lattices eluded me. 
Andy encouraged that play and said after a while 
that what I was working on was in fact my thesis. 

He told me he liked it better when his students 
found topics than when he had to suggest one.

In the spring of 1964 I thought my thesis was 
done. I found the central theorem in February, 
wrote it up, and sent it off to Andy. When I tele-
phoned to ask what he thought of it, he asked if I 
needed my degree in hand to accept my new job at 
Bryn Mawr. When I said “no” he said, “Work on it 
another year.” I know that if I’d said “yes” he’d have 
accepted what I’d written. But then I’d have had a 
thesis with just a theorem. The central mechanism 
for producing examples and counterexamples 
showing the theorem was sharp came later that 
spring. Moreover, I think the idea was his, although 
I didn’t give him due credit then. So Andy was right 
to care about the quality of the work and to ask 
for the extra year. The thesis was better and better 
written and ready for publication soon after the 
degree was awarded—and my year-old daughter 
got to go to my commencement. (He and Jean sent 
her a Raggedy Andy when she was born.)

Eighteen years later Andy employed her as a 
painter. That’s how I learned how he applied logic 
outside mathematics. She saw him eating breakfast 
hurriedly one day—peanut butter spread on bread 
right out of the freezer. He said the nutritional 
value was the same.

I was telling Andy once about a bijection I’d 
found for counting permutations with particular 
cycle structures. He was interested and had some 
further ideas and references. When he suggested 
a joint paper [BG] I jumped at the chance to earn 
a Gleason number of 1. When I wanted to say 
something numerical about the asymptotics which 
called for Γ (1/3), I looked up nearby values in a 
table and interpolated. In response to a draft I sent 
Andy he wrote back:

There is one not terribly important 
thing where I can’t check you. You 
obtain

31/6eπ
√

3/18

Γ(1/3) ≈ 0.6057624.

With my hand calculator I found 
Γ  (1/3)  ≈  2.678938543 (of which at 
least 8 figures ought to be right) and 
hence the above number comes out 
0.6065193. Hand calculators make 
substantial errors in exponentials, so I 
really don’t know which is right.

Andy’s “With my hand calculator I found …” is a 
little disingenuous. There’s no Γ  key on the calcula-
tor—he programmed the computation. Today Math-
ematica quickly finds Γ (1/3)  ≈  2.67893853471 
with twelve significant figures, so Andy’s intuition 
about eight was right.

Over the years I had lunch with Andy often, 
sampling Chinese, Vietnamese, and Indian food 
in Cambridge and nearby towns. Over lunch once, 
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thinking about geometry, he told me he’d give a 
lot for “one good look at the fourth dimension.” 
Any mathematical topic, at any level of sophistica-
tion, was fair game. I’d tell him why I thought the 
convention for writing fractions was upside down; 
he’d tell me he was thinking about the foundations 
of geometry or the Riemann hypothesis. Often in 
the past year I’ve wanted to ask him about some-
thing that came up in my teaching or while editing 
these essays and was stunned anew by the realiza-
tion that I couldn’t ever do that again.

Solving Cubics by Trisecting Angles
Andy was a problem solver more than a theory 
builder. He liked hard problems, like Hilbert's 
Fifth, about which you can read more below. Others 
less deep interested him no less. I think he even 
enjoyed the problems in spherical trigonometry 
and navigation on the exams he took to maintain 
his naval commission while in the reserves.

Once he set out to discover which regular poly-
gons you could construct if you add the ability to 
trisect angles to the tasks available with Euclidean 
straightedge and compass. His answer, in “Angle 
trisection, the heptagon, and the triskaidecagon” 
[G1]: just the n -gons for which the prime factor-
ization of n  is of the form 2r 3s p1 p2 · · · pk,  where 
the pi  are distinct primes greater than 3, each of 
the form 2t 3u  + 1. His proof depends on the ob-
servation that these are precisely the primes for 
which the cyclotomic field has degree 2t 3u  and so 
can be constructed by a sequence of adjunctions 
of roots of quadratics and of cubics, all of whose 
roots are real.

You solve such a cubic by trisecting an angle, 
because when the cubic has three real roots (the 
casus irreducibilis), finding them with Cardano’s 
formula requires extracting the cube root of a 
complex number. To do that you trisect its polar 
angle and find the cube root of the modulus. For 
the particular cubics that come up in the construc-
tion of these regular polygons, the modulus is the 
3/2 power of a known quantity, so a square root 
computes the cube root.

Andy’s solution to that problem allowed him to 
indulge several of his passions. The paper is full 
of historical references, including the corollary 
that the ability to trisect angles doesn’t help you 
duplicate the cube. That requires solving the other 
kind of cubic. He cites (among others) Plemelj, 
Fermat, Euler, and Tropfke and concludes with a 
quote from Gauss’s Disquisitiones Arithmeticae.1

The “triskaidecagon” in the title, where most 
of us would be satisfied with “13-gon”, exempli-
fies Andy’s love of language. He had lots of ideas 
he never got around to publishing. I wonder if he 

wrote this paper in part just so he could use that 
word.

Andy loved to compute too. About his construc-
tion of the triskaidecagon he writes:

After considerable computation we 
obtain

Mathematica confirms this numerically to one hun-
dred decimal places. I don’t think there’s software 
yet that would find the result in this form.

I first explicitly encountered Andy’s passion for 
precision of expression when in graduate school he 
told me that the proper way to read “101” aloud is 
“one hundred one” without the “and”. That passion 
stayed with him to the end: when he was admitted 
to the hospital and asked to rate his pain on a scale 
of 1 to 10, he’s reputed to have said first, “That’s 
a terrible scale to use…”

Andy told me once that he knew he wanted to 
be a mathematician just as soon as he outgrew 
wanting to be a fireman.2 He succeeded.

Stories
In the essays that follow you’ll find more about 
Andy’s mathematics and more stories. I’ll close 
here by quoting some that aren’t included there.

Persi Diaconis writes about Andy’s legendary 
speed:

Andy was an (unofficial) thesis advisor. 
This was illuminating and depressing. 
My thesis was in analytic number the-
ory, and I would meet with Andy once 
a week. A lot of the work was techni-
cal, improving a power of a logarithm. 
I remember several times coming in 
with my current best estimates after 
weeks of work. Andy glanced at these 
and said, “I see how you got this, but 
the right answer is probably . . . ” I was 
shocked, and it turns out he was right.

Jill Mesirov describes a similar experience:

I remember quite clearly the first time 
that I met Andy Gleason. I was working 
at IDA in Princeton at the time, and 
Andy was a member of the Focus Ad-
visory Committee. The committee met 
twice a year to review the work being 
done, and I had been asked to give a 

1 Andy seems to have missed Viète’s construction [V]. My 
thanks to Robin Hartshorne for this reference and for 
some clarifying comments on this section.

2Perhaps I’m misremembering. His wife, Jean Berko Glea-
son, said, “He loved looking at the stars. He knew every 
star in the sky and could tell you their names. Early on, 
he was planning on becoming an astronomer, but then he 
learned how cold it was to sit outside and watch.”

12 cos
2π
13

=
√

13− 1

+
√

104− 8
√

13 cos
1
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√
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13+ 1)
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presentation of some work on speech 
I had done jointly with Melvin Sweet. I 
worked hard on the presentation, and 
designed it to give some idea of how 
we were led step by step to the answer. 
The groundwork was laid for revealing 
each insight we had gained, but in such 
a way that it should come as a surprise 
to the audience and thus make them 
appreciate the sense of discovery we 
had enjoyed as we did the research and 
solved the puzzle ourselves. Needless 
to say, I hadn’t counted on Andy’s “in-
famous” speed!

Twice I carefully led the audience 
through some twisted trail to end with 
the question, “So, what do you think 
we tried next?” Twice, before the words 
had begun to leave my mouth, Andy 
was saying, “Oh, I see, then you want 
to do this, this, and this, after which 
you’ll observe that …” While I appreci-
ated his quick grasp of the issues, I was 
beginning to see my carefully laid plans 
falling by the wayside. Therefore, as I 
was reaching the next crescendo, and I 
saw Andy leaning forward in his seat, 
I turned around, pointed my finger at 
him and shouted, “You, be quiet!” He 
smiled, and left me to lead the rest of 
the crowd through the revelations.

Finally, Victor Manjarrez, a graduate school 
contemporary of mine, offers this summary:

In the late fifties and early sixties I took 
graduate algebra and a reading course 
from Andrew Gleason. Whenever we 
spoke at meetings in later years I was 
struck by how unfailingly polite he 
always was. The English word “po-
lite” (marked by consideration, tact, or 
courtesy) evokes the French “politesse” 
(good breeding, civility), and the Greek 
“polites” (citizen—of the mathematics 
community and the world), all of which 
Andrew Gleason exemplified to the full-
est. This, of course, in addition to his 
amazing erudition.
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John Burroughs, David 
Lieberman, Jim Reeds
The Secret Life of Andy Gleason
Andrew Gleason was a senior at Yale on Decem-
ber 7, 1941, when the Japanese bombed Pearl 
Harbor. He applied for a commission in the navy; 
upon his graduation the following June he reported 
to their crypanalytic service: the Office of Chief of 
Naval Operations (OPNAV), 20th Division of the 
Office of Naval Communications, G Section, Com-
munications Security (OP-20-G). There he joined a 
group of eight to ten mathematicians working to 
crack enemy codes. The group included Robert E. 
Greenwood and Marshall Hall Jr., one of Andy’s 
Yale professors. The National Archives contains 
declassified documents describing much of the 
wartime work of OP-20-G. We found there a set 
called Enigma Studies [ES], which describes the 
group’s contributions to the attack on the German 
Enigma machine. These documents showcase that 
part of Gleason’s work which we will describe.

The Enigma ciphers presented diverse and 
rapidly mutating challenges. The Germans used 
several different models of the Enigma machine. 
Each day they changed the keys on each of per-
haps a hundred or so different communications 
networks. Three of those networks were “Shark”, 
used by the Atlantic U-boat fleet; “Sunfish”, by 
blockade runners and the German U-boats in the 
Pacific; and “Seahorse”, for traffic between German 
navy HQ and their attaché in Tokyo. Breaking one 
system or one day’s traffic provided only clues 
towards breaking the others, clues which were 
sometimes misleading. Several times during the 
war the Germans made significant modifications 
to the Enigma.

OP-20-G worked on Enigma in collaboration 
with the British cryptanalysts at the Government 
Code and Cypher School at Bletchley Park, in par-
ticular, with “Hut 8”, whose most famous member 

David Lieberman and Jim Reeds are research staff mem-
bers at the IDA Center for Communications Research in 
Princeton, NJ.

John Burroughs is an adjunct research staff member 
there.

Their email addresses are jeburro@comcast.net, 
david_lieberman_ab63@post.harvard.edu, and 
reeds@idaccr.org.

We owe special thanks to Colin Burke; to Ellen J. L. Knight, 
Certified NSA Archivist; and to Rene Stein, librarian, Na-
tional Cryptologic Museum, for guiding us and helping us 
locate archival records of Gleason’s contributions.

We are also grateful to R. Erskine and F. Weierud for 
searching through the wartime diaries of OP-20-G and the 
history of Coral, which they had copied at the National 
Archives. They located information about Gleason’s activi-
ties and forwarded many interesting items to us.
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was being done not by a 
standard naval Enigma 
machine but by a sim-
pler version of Enigma. 
In March 1943 the prob-
lem was turned over to 
OP-20-G. Their analysis 
revealed new structure 
in the traffic that al-
lowed them to reject 
the hypothesized sim-
pler version of Enigma 
to correctly diagnose 
an underlying naval 
Enigma and to specify 

a menu (i.e., a program) for the naval Bombes so 
they could efficiently read the traffic.

Reading the first-hand accounts of this work in 
the Enigma Studies E-2 and E-4, one can share the 
excitement, the frustrations, and finally the elation 
when success was achieved. Greenwood’s “History 
of Kriegsmarine attack” (paper 6 in E-2) describes 
how the group first discovered the working of Sea-
horse’s “indicators”, which told the message recipi-
ent how to set up his receiving Enigma machine. 
These were appended to the message, encrypted 
in a “throw-on” cipher. The standard method of 
attack required interception of a large number of 
messages from the same day. A successful attack 
revealed which set of four wheels was being used 
in the machine and the setting used to encipher 
all the indicators. One could then decipher the 
indicators and in turn use them to decipher all the 
day’s messages.

Marshall Hall noticed an interesting feature of 
the throw-on indicators. On a given day the set of 
first letters of encrypted indicators for Berlin-to- 
Tokyo messages was disjoint from the set of first 
letters for Tokyo to Berlin, but the sets changed 
from day to day. Gleason came up with and statis-
tically tested a simple hypothesis explaining this, 
namely, that the wheel settings—the unencrypted 
form of the indicators—started with letters A–M 
for messages from Tokyo to Berlin and letters N–Z 
for the opposite direction.

In “Kriegsmarine indicators” (paper 5 in E-2) 
Gleason, Greenwood, and Hall show how this struc-
ture allowed one to derive extra equations, which 
led to much more efficient Bombe runs. The practi-
cal implication was that far fewer messages needed 
to be intercepted in any one day to be able to work 
out that day’s key. In August 1943 a Bombe run 
at Bletchley using these ideas broke the first Sea-
horse messages. This confirmed the model for the 
underlying Enigma and its indicator system and 
verified the correctness of their attack programs. 
This concluded the research phase. The problem 
was then turned over to a development team. Using 
the newly available four-wheel naval Bombes and 
the special tricks discovered for Seahorse, they 

was Alan Turing. Shortly 
before the U.S. entered 
the war the British code 
breakers began teaching 
their American counter-
parts about the Enigma 
problem: the general 
theory and notation 
(largely due to Turing), 
a host of particular so-
lution methods, and 
the design of a special-
purpose electromechan-
ical computing machine, 
the “Bombe”, which car-
ried out one of the steps of the arduous con-
strained trial-and-error solution process. Some 
of these lessons the British had learned from the 
Poles just before the war; some they had developed 
during the first two years of the war. At about the 
time the U.S. entered the war the German navy 
began using a four-wheel model of the Enigma ma-
chine, against which the existing Bombes (designed 
for attacking three-wheel Enigmas) were compara-
tively ineffective. This ended the Allies’ ability to 
read Shark in a timely manner during 1942 and 
early 1943, with devastating consequences to Al-
lied shipping.

In November 1942 Turing visited the U.S. to 
assist the Americans in mastering Bletchley’s 
methods and to consult on the construction of 
the American Bombes designed to attack the four- 
wheel Enigma. Andrew Hodges’s biography of 
Turing discusses Turing’s report back to Bletchley, 
in which he expresses some dismay that the Ameri-
cans really had not grasped the British work-saving 
algorithmic ideas, relying instead on technological 
overkill. Nevertheless, he was impressed with the 
mathematicians being hired at OP-20-G, in particu-
lar “the brilliant young Yale graduate mathemati-
cian, Andrew Gleason” [H, p. 243]. Hodges relates 
an anecdote from this visit:

Gleason and Joe Eachus “looked after Alan 
during his period in Washington. Once Gleason 
took Alan to a crowded restaurant on 18th Street. 
They were sitting at a table for two, just a few 
inches from the next one, and talking of statistical 
problems, such as that of how to best estimate the 
total number of taxicabs in a town, having seen a 
random selection of their license numbers. The 
man at the next table was very upset by hearing 
this technical discussion, which he took to be a 
breach of ‘security’. … Alan said, ‘Shall we continue 
our conversation in German?’”

At first OP-20-G was the junior partner to Hut 8, 
but later it took the lead in attacking Seahorse. A 
recent paper [EM] describes the Seahorse story in 
considerable detail. We draw on that account. The 
Hut 8 team had failed to solve Seahorse because 
traffic externals convinced them that encryption 

Andy Gleason in uniform—left, active duty 
(1940s) and right, Naval Reserve (1960s).



NOVEMBER 2009  NOTICES OF THE AMS   1241

were able to read Seahorse sporadically in 1943 
and almost continuously in 1944 and 1945, result-
ing in the decryption of thousands of messages.

An excellent discussion of the application of 
group theoretic ideas to the solution of Enigma 
problems is given in Greenwood, Gleason, Clifford, 
and Hanson’s “Enigma wiring recovery from the 
reading of a depth” (paper 7 in E-4, dated 19 April 
1945).1 Simplifying slightly, they reduce the prob-
lem of finding the four permutations performed 
by the Enigma wheels to one of solving a system 
of simultaneous equations in permutations. The 
right side of the t -th equation is the permutation 
effected by Enigma to encipher the t -th plain text 
character. These are assumed “known” (at least in 
part) by “depth reading”. The left side of the t-th 
equation expresses the known way the Enigma 
machine composes the unknown rotor wirings at 
time t . The paper shows how this problem can be 
broken into a series of subproblems of the form 
“given several permutation pairs (πi , σi ), find a 
single permutation x for which πi  =  xσi x−1  for all 
i .” Interestingly, one of these subproblems is 
solved by exhibiting an isomorphism of a pair 
of labeled graphs. The explanation, unlike most 
technical Enigma exposition of the era, such as 
found in [T], is couched in standard mathematical 
terminology.2 According to one modern commen-
tator, [W], the method in this paper “is a lot more 
powerful than the ‘Rodding’ and ‘Buttoning-up’ 
methods described by Alan Turing, mainly be-
cause it allows recovery of the wiring even when 
the Stecker is unknown.” The exposition is both 
compelling and charming. One can imagine one 
is listening to the young Andy Gleason in some of 
the informal asides:

The reader may wonder why so much is 
left to the reader. A book on swimming 
strokes may be nice to read, but one 
must practice the strokes while actually 
in the water before one can claim to 
be a swimmer. So if the reader desires 
to actually possess the knowledge for 
recovering wiring from a depth, let the 
reader get his paper and pencils, using 
perhaps four colors to avoid confu-
sion in the connecting links, and go 
to work.… Note: the writing of C −1 C 2  
instead of C 1  is a whim of the writer. 
Please humor him to this extent.…

The final page of the typescript (shown above)
concludes:

The recovery of wiring from a depth can 
be a very interesting problem. Let the 
reader surround himself with pleasant 
working conditions and try it.

—as if this were a problem in pure mathematics, 
not an urgent wartime endeavor.

The mass production of four-wheel Bombes 
led to dramatic successes against Seahorse and 
the other naval Enigma problems. Research then 
focused on Japanese machine ciphers. A major 
achievement of this effort was the diagnosis of the 
naval cipher Coral and the subsequent decryption 
of Coral traffic throughout 1944–45. This required, 
as in Enigma, a painstaking examination of the traf-
fic to find and explain statistical structure and the 
design and programming of new special purpose 
machines. Gleason’s mathematical contributions 
to this work included the eponymous “Gleason 
crutch”, a method for estimating extreme tail 
probabilities for sums of random variables. It can 
be regarded as a version of Chernoff’s theorem in 
large deviations theory, and like it, it is based on 
the idea of exponential tilting.

As the war came to an end, Gleason partici-
pated in efforts to systematically document the 
techniques developed by OP-20-G and to set up a 
postwar curriculum for training cryptanalysts. He 
also participated in courses and seminars on both 
applied methods and mathematical foundations, 
including (prophetically) one based on Pontrjagin’s 
new book on topological groups.3

Gleason’s codebreaking work exhibits some of 
his characteristic traits. One is his extraordinary 
quickness in grasping the heart of a problem and 

1 There is a copy of this paper on the Net in Frode Weierud’s 
Enigma Archive website,  http://cryptocellar.org/
Enigma/EnigmaWiringRecovery.pdf.
2 This use of group theory had to be modified in a novel 
and clever way to exploit the extra structure available 
in the Seahorse indicator problem. This is described in 
“Kriegsmarine indicators” (paper 4 in E-4) by Gleason 
and Greenwood.

3 Our comments on the post-Enigma work are based on 
extracts from the wartime diaries of OP-20-G and the 
voluminous Coral history, which were culled out for us 
by R. Erskine and F. Weierud.

http://cryptocellar.org/Enigma/EnigmaWiringRecovery.pdf
http://cryptocellar.org/Enigma/EnigmaWiringRecovery.pdf
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There, we took various CA [cryptanalysis] courses 
and a bunch of math courses, the best of which 
were taught by Andy Gleason.” Some twenty of 
these “junior mathematicians” were to become the 
professional leaders of the nation’s cryptanalytic 
effort in the 1960s and 1970s.

Most of Gleason’s applied work during this 
period remains classified. In his spare time he 
worked on Hilbert's Fifth Problem. He later said, 
“there wasn’t a single day that I didn’t think about 
it some of the time.… I made a real breakthrough 
on the problem around February of 1952” [AAR, 
p. 91]. R. A. Leibler drove Gleason to Princeton to 
present a talk on his new result at the Institute for 
Advanced Study. It was snowing hard. Going up 
Alexander Road they were nearly hit when their car 
slid through a red light. Leibler told us that Gleason 
came in dressed in his navy uniform. This caused 
some initial surprise, which soon turned to excite-
ment and enthusiasm. Gleason lectured all day.

After the Korean War, Gleason returned to the 
Harvard faculty but continued as an advisor to 
the nation’s intelligence and security programs 
for fifty years. He served on the NSA Scientific 
Advisory Board from the mid-1950s through the 
mid-1960s, where he helped shape the NSA’s re-
sponse to the evolving challenges of the cold war. 
He continued as an active recuiter for the NSA and 
for the Communications Research Division (CRD) 
of the Institute for Defense Analyses, often writing 
or calling the director to recommend a mathemati-
cian who might be particularly well suited for an 
appointment to the program. He participated in 
NSA summer research projects (SCAMP) and in the 
formative technical programs of the CRD. He was 
a member of the first CRD advisory committee in 
1959, then served from 1976 to 1979, from 1986 
to 1988, and again from 2004 to 2006.

L. P. Neuwirth, writing in 1992, recalled Glea-
son’s participation in the CRD programs:

He invariably had something useful 
to contribute, and the work of others 
benefited enormously, either directly or 
indirectly (sometimes with attribution, 
sometimes without) from his ideas. His 
contributions have in many cases been 
lasting, and were made in sufficient 
generality and depth that they still find 
application 45 years later. His name 
is associated with some of these no-
tions… the Gleason semigroup, Gleason 
weights, and the Gleason crutch.…[his] 
22 papers in cryptologic mathematics 
span the time period from 1945 to 
1980. Their content range is wide, and 
includes algebra, combinatorics, analy-
sis, statistics and computer science.

Gleason did pioneering work in computational 
algebra in response to the emerging need for good 

rethinking how to solve it from first principles. He 
says of himself, “I have always felt that it’s more 
crucial for me to come to grips on my terms with 
the most elementary aspects of a subject. I haven’t 
worried much about the advanced aspects” [AAR, 
p. 88]. He was particularly effective as a crypt-
analyst, because (in his own words) he “learned to 
do something that a lot of pure mathematicians 
don’t know how to do…how to do quick and dirty 
mathematics. It’s an interesting knack to be able 
to make a quick appraisal as to whether there is 
sufficient statistical strength in a situation so that 
hopefully you will be able to get an answer out of 
it” [AAR, p. 87].

Gleason’s insight into the mathematics underly-
ing cryptography was greater than that of most of 
his colleagues. Even during the war he prepared 
lectures and notes for them to help develop their 
understanding and working knowledge of the 
mathematical fundamentals. His OP-20-G lecture 
notes and exercises on probability and statistics 
were later gathered up and edited into a short 
textbook used for years in introductory courses at 
NSA and subsequently reprinted commercially [G]. 
We were amused to find that one of the exercises 
in the book is to estimate the number of taxicabs 
in a town, having seen a random selection of their 
license numbers.

Legend has it that, in general, the cryptanalysts 
in World War II did not think much of the math-
ematicians down the hall, who were always telling 
them what was wrong with their counts and sug-
gesting “proper” statistics, which in the end didn’t 
produce plain text. But Gleason was different. He 
was approachable. He listened carefully to their 
problems and ideas, and his advice was always 
useful.

After the war Gleason began his academic 
career at Harvard. He was reactivated in 1950, 
at the start of the Korean War, and served at the 
naval facility on Nebraska Avenue. Cryptographic 
systems had increased in complexity, incorporat-
ing digital technology that posed new challenges 
and dramatically increased the need for trained 
mathematicians. Many of Gleason’s colleagues at 
Nebraska Avenue went on to significant careers at 
the newly formed NSA and in emerging academic 
areas of mathematics and computer science. These 
included Marshall Hall, Joe Eachus, Dick Leibler, 
Oscar Rothaus, Howie Campaigne, Bill Blankinship, 
and Ned Neuburg. In the spring of 1951, Lt. Cmdr. 
Gleason, Lt. Cmdr. Hall, and Cmdr. Miller4 were 
sent to visit mathematics departments around the 
country to recruit mathematicians with advanced 
degrees. They found sixty to eighty. One of them, 
R. Highbarger, told us, “After a few weeks at train-
ing school we located in a basement room next to 
the kitchen grease pit at Arlington Hall Station.… 

4 We believe this was D. D. Miller, the semigroup theorist, 
who was also an alumnus of OP-20-G.
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pseudorandom number generators and efficient 
error correcting codes. In 1955 the Gleason-Marsh 
Theorem [GM]5 provided a method for generat-
ing irreducible polynomials of huge degree over 
GF(q). (For any d , one could generate irreducibles 
of degree q d  − 1. ) In 1961 in a 10-page typescript 
[G61] Gleason described algorithms he devised for 
factoring and irreducibility testing of univariate 
polynomials over GF(q ). Programs implement-
ing these ideas had many years of utility. We do 
not undertake to compare Gleason’s unpublished 
approach to other methods soon to follow: Ber-
lekamp (1967), Zassenhaus (1969), Cantor-Zassen-
haus (1981). For a recent historical survey of the 
field, see, for example, [VGG].

Neuwirth concluded:

This unfortunately restricted list of 
some of the ideas he had and some 
of the areas to which he contributed 
perhaps sheds a little light on his many 
contributions to a very much hidden 
science, and gives some understanding 
of the unusually high regard in which 
he is held by the intelligence commu-
nity …[GLIM, pp. 65–66].
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Richard Palais
Gleason’s Contribution to the Solution of 
Hilbert's Fifth Problem

What Is Hilbert's Fifth Problem?
Andy Gleason is probably best known for his work 
contributing to the solution of Hilbert’s Fifth Prob-
lem. We shall discuss this work below, but first we 
need to know just what the “Fifth Problem” is. In its 
original form it asked, roughly speaking, whether 
a continuous group action is analytic in suitable 
coordinates. But as we shall see, the meaning has 
changed over time.

As Hilbert stated it in his lecture delivered be-
fore the International Congress of Mathematicians 
in Paris in 1900 [Hi], the Fifth Problem is linked to 
Sophus Lie’s theory of transformation groups [L], 
i.e., Lie groups acting as groups of transformations 
on manifolds. The “groups” that Lie dealt with were 
really just neighborhoods of the identity in what 
we now call a Lie group, and his group actions 
were defined only locally, but we will ignore such 
local versus global considerations in what follows. 
However, it was crucial to the techniques that Lie 
used that his manifolds should be analytic and 
that both the group law and the functions defining 
the action of the group on the manifold should be 
analytic, that is, given by convergent power series. 
For Lie, who applied his theory to such things as 
studying the symmetries of differential equations, 
the analyticity assumptions were natural enough. 
But Hilbert wanted to use Lie’s theory as part of 
his logical foundations of geometry, and for this 
purpose Hilbert felt that analyticity was unnatural 
and perhaps superfluous. So Hilbert asked if analy-
ticity could be dropped in favor of mere continuity. 
More precisely, if one only assumed a priori that the 
group G  was a locally Euclidean topological group, 

5 A rediscovery of Theorem 1 in Ore, Contributions to 
the theory of finite fields, Trans. Amer. Math. Society 36 
(1934), 260.
6 A nine-volume anthology of technical papers, compiled 
at the end of the war, covering all of OP-20-G’s Enigma 
research activities. The volume titles are E-1, Click Process; 
E-2, Indicator Attacks; E-3, Statistical Studies; E-4, Wiring 
Recovery; E-5, Bomb Computation; E-6, Duenna; E-7, Mis-
cellaneous; E-8, Reports from England; and E-9, Bulldozer. 
Each bears a Radio Intelligence Publication (RIP) number. 
Volumes 1 through 8 are RIP numbers 603 through 610, 
and volume 9 is RIP 601. We will make available online 
articles from E-2, E-4, and E-9 written by Gleason and his 
colleagues.

Richard Palais is professor emeritus at Brandeis University 
and adjunct professor at the University of California at 
Irvine. His email address is palais@uci.edu.
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that the manifold M  was a topological manifold, 
and that the action of G  on M  was continuous, 
could one nevertheless always choose local coordi-
nates in G  and M  so that both the group operations 
and the action became analytic when expressed in 
these coordinates? We shall speak of the problem 
in this generality as the unrestricted Hilbert Fifth 
Problem. The restricted problem is the important 
special case in which G  =  M  and the action is left 
translation. Asking whether we can always find 
analytic coordinates in the restricted problem is 
clearly the same as asking whether a locally Euclid-
ean group is necessarily a Lie group.

Counterexamples
It turned out that there are many—and in fact 
many different kinds of—counterexamples to the 
unrestricted Hilbert Fifth Problem. Perhaps the 
first published counterexample, due to R. H. Bing 
[Bi], is an action of Z2  on S3  whose fixed-point set 
is the Alexander Horned Sphere Σ. Now Σ is not 
“tamely embedded” in S3 , meaning that there are 
points where it is impossible to choose coordinates 
so that locally Σ looks like the usual embedding 
of R2  in R3 . If the action were even differentiable 
in some suitable coordinates, then it is easy to see 
that the fixed-point set would in fact be tamely 
embedded. (For an even more bizarre type of 
counterexample, recall that in 1960 M. Kervaire 
[Kerv] constructed a topological manifold that did 
not admit any differentiable structure, providing 
what can be considered a counterexample even for 
the case when G  is the trivial group.)

One could make a case that these examples are 
“monsters” that could have been ruled out if Hil-
bert had phrased his statement of the Fifth Problem 
more carefully. But there is a more serious kind of 
counterexample that is so elementary that it makes 
one wonder how much thought Hilbert had given 
to the Fifth Problem before proposing it. Here is 
a particularly elementary example, due to Mont-
gomery and Zippin [MZ3], with G  =  R, the additive 
group of the real numbers, and M  = C, the complex 
plane. Let f  be a continuous real-valued function 
defined on the positive real axis, and define the 
action φ  :  R × C  →  C by φ(t , r e i θ )  :=  r e i (θ +f (r )t ) . 
(In words, φ is a one-parameter group of homeo-
morphisms of the plane that rotates each circle 
centered at the origin into itself, the circle of radius 
r  being rotated with angular velocity f (r ).) If we 
choose f (r ) to equal 1 for r  ≤  1 and 0 for r  ≥  2, 
the action is the standard one-parameter group 
of rotations of C inside the unit disk and is trivial 
outside the disk of radius 2, so by the Principle of 
Analytic Continuation, this action cannot be made 
analytic in any coordinate system. What is worse, 
we can choose f  to have these properties and also 
be smooth (meaning C ∞ ), so we see that even if we 
assume a priori that the action of a Lie Group on a 

manifold is smooth, it does not follow that it can 
be made analytic!

After these counterexamples to the unrestricted 
Hilbert Fifth Problem became known, a tacit under-
standing grew up to interpret “the Fifth Problem” 
as referring to the restricted version: Is every lo-
cally Euclidean group a Lie group? and we shall 
follow this convention below.

Early History of the Fifth Problem
It was fairly easy to settle the one-dimensional 
case. The only (paracompact) connected manifolds 
of dimension one are the real line, R, and the circle, 
S1 , and both of course are Lie groups. In 1909
L. E. J. Brouwer [Br] showed that a topological 
group that is homeomorphic to either of these is in 
fact isomorphic to it as a topological group. Using 
results from Brouwer’s paper, B. Kerékjártó [Kere] 
settled the two-dimensional case in 1931. There 
seems to have been little if any published work on 
the Fifth Problem between the papers of Brouwer 
and Kerékjártó, but that is not too surprising con-
sidering that much of the modern mathematical 
infrastructure required for a rigorous discussion of 
topological groups and the Fifth Problem became 
available only after a 1926 paper by O. Schreier 
[Sch]. The three-dimensional and four-dimensional 
cases of the Fifth Problem were settled much later, 
by Montgomery [M1] in 1948 and by Montgomery 
and Zippin [MZ1] in 1952.

The first major breakthrough in the general 
theory came in 1933, when J. von Neumann [VN], 
using the recently discovered Haar [Ha] measure, 
extended the Peter-Weyl Theorem [PW] to general 
compact groups and used it to settle the Fifth Prob-
lem in the affirmative for compact groups. We will 
sketch a proof of von Neumann’s theorem below. 
Several years later, building on von Neumann’s 
work, Pontryagin [Po] settled the abelian case, and 
Chevalley [Ch1] the solvable case.

The No Small Subgroups (NSS) Condition
The first time I encountered the phrase “group 
without small subgroups” I wondered what kind 
of subgroup a “small” one could possibly be. Of 
course, what the phrase means is a topological 
group without arbitrarily small subgroups, i.e., 

Excerpt from Gleason’s vacation journal, July 
1947, in which he mentions working on the 
“Hilbert fifth”.
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one having a neighborhood of the identity that 
includes no subgroup except the trivial group. We 
shall follow Kaplansky [Ka] and call this the NSS 
Condition and a group satisfying it an NSS group. 
Since NSS may seem a little contrived, here is a 
brief discussion of the “why and how” of its use 
in solving the Fifth Problem.

It turns out to be difficult to draw useful conclu-
sions about a topological group from the assump-
tion that it is locally Euclidean. So the strategy 
used for settling the Fifth Problem was to look for 
a more group-oriented “bridge condition” and use 
it in a two-pronged attack: on the one hand show 
that a topological group that satisfies this condi-
tion is a Lie group, and on the other show that a 
locally Euclidean group satisfies the condition. If 
these two propositions can be proved, then the 
positive solution of the Fifth Problem follows—and 
even a little more.

As you may have guessed, NSS turned out to be 
ideally suited to play the role of the bridge. In ret-
rospect this is not entirely surprising. A powerful 
but relatively elementary property of Lie groups is 
the existence of so-called canonical coordinates, or 
equivalently the fact that the exponential map is a 
diffeomorphism of a neighborhood of zero in the 
Lie algebra onto a neighborhood U  of the identity 
in the group (see below). Since a line through the 
origin in the Lie algebra maps to a one-parameter 
subgroup of the group, it follows that such a U  
contains no nontrivial subgroup and hence that 
Lie groups satisfy NSS.

Starting in the late 1940s Gleason [G1],1 Mont-
gomery [M2], and Iwasawa [I] made several solid 
advances related to the Fifth Problem. This led in 
1952 to a satisfying denouement to the story of 
the Fifth Problem, with Gleason and Montgomery-
Zippin carrying out the above two-pronged attack. 
First Gleason [G3] proved that a locally compact 
group satisfying NSS is a Lie group, and then im-
mediately afterwards Montgomery and Zippin 
[MZ1] used Gleason’s result to prove inductively 
that locally Euclidean groups of any dimension 
satisfy NSS. Their two papers appeared together in 
the same issue of the Annals of Mathematics, and 
at that point one knew that for locally compact 
topological groups:

Locally  Euclidean  ⇐ ⇒  NSS  ⇐ ⇒  Lie.

(Actually, the above is not quite the full story; Glea-
son assumed a weak form of finite dimensionality 
in his original argument that NSS implies Lie, but 
shortly thereafter Yamabe [Y2] showed that finite 
dimensionality was not needed in the proof.)

Cartan’s Theorem
Starting with von Neumann, all proofs of cases of 
the Fifth Problem, including Gleason’s, were ulti-
mately based on the following classic result that 
goes back to É. Cartan. (For a modern proof, see 
Chevalley [Ch2], page 130.)

Theorem (Cartan). If a locally compact group has 
a continuous, injective homomorphism into a Lie 
group and, in particular, if it has a faithful finite-
dimensional representation, then it is a Lie group.

Here is a quick sketch of how the proof of the 
Fifth Problem for a compact NSS group G  follows. 
Let H  denote the Hilbert space L2 (G ) of square-
integrable functions on G  with respect to Haar 
measure. Left translation induces an orthogonal 
representation of G  on H , the so-called regular 
representation, and, according to the Peter-Weyl 
Theorem, H  is the orthogonal direct sum of 
finite-dimensional subrepresentations, Hi , i.e., 
H  =  ⊕∞

 i =1 Hi . Define WN  :=  
⊕N
 i =1 Hi . We will show 

that for N  sufficiently large, the finite-dimensional 
representation of G  on WN  is faithful or, equiva-
lently, that for some N  the kernel KN  of the regu-
lar representation restricted to WN  is the trivial 
group {e }. Since the regular representation itself 
is clearly faithful, KN  is a decreasing sequence 
of compact subgroups of G  whose intersection 
is {e }. Thus if U  is an open neighborhood of e  
that contains no nontrivial subgroup, KN  \ U  is a 
decreasing sequence of compact sets with empty 
intersection and, by the definition of compact-
ness in terms of closed sets, some KN  \ U  must be 
empty. Hence KN  ⊆  U , and since KN  is a subgroup 
of G , KN  =  {e }.

Following in Gleason’s Footsteps
Andy Gleason put lots of remarks and clues in 
his papers about his motivations and trains of 
thought, and it is an enjoyable exercise to read 
these chronologically and use them to guess how 
he developed his strategy for attacking the Fifth 
Problem.

Let’s start with a Lie group G , and let g denote 
its Lie algebra. There are (at least !) three equivalent 
ways to think of an element of the vector space g. 
First as a vector v  in T Ge , the tangent space to G  
at e; second as the left-invariant vector field X  on 
G  obtained by left translating v  over the group; 
and third as the one-parameter subgroup φ of 
G  obtained as the integral curve of X  starting at 
the identity. The exponential map exp  :  g  →  G  is 
defined by exp(v )  =  φ(1). It follows immediately 
from this definition that exp(0)  =  e  and that the 
differential of exp at 0 is the identity map of T Ge, 
so by the inverse function theorem, exp maps a 
neighborhood of 0 in g diffeomorphically onto a 
neighborhood of e  in G . Such a chart for G  is called 
a canonical coordinate system (of the first kind).

1 As far as I can tell, this 1949 paper was the first journal 
article to define the NSS condition. But there is clear evi-
dence (see journal entry, above) that Gleason was already 
preoccupied with the Fifth Problem in mid-1947.
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Now, suppose we somehow “lost” the differen-
tiable structure of G  but retained our knowledge 
of G  as a topological group. Is there some way we 
could use the latter knowledge to recover the dif-
ferentiable structure? That is, can we reconstruct g 
and the exponential map? If so, then we are clearly 
close to a solution of the Fifth Problem. Let’s listen 
in as Andy ponders this question.

“Well, if I think of g as 
being the one-parameter 
groups, that’s a group theo-
retic concept. Let’s see—is 
there some way I can invert 
exp? That is, given g  in G  
close to e , can I find the one-
parameter group φ such 
that φ(1)  =  exp(φ)  =  g ? 
Now I know square roots 
are unique near e  and in 
fact φ(1/2) is the square 
root of g . By induction, I 
can find φ(1/2n ) by start-
ing with g  and taking the 
square root n  times. And 
once I have φ(1/2n ) , by 
simply taking its m -th 
power I can find φ(m /2n ) 
for all m . So, if I know how 
to take square roots near 
e , then I can compute φ 
at all the dyadic rationals 
m /2n , and since they are 
dense in R, I can extend φ by continuity to find it 
on all of R!”

This was the stated motivation for Gleason’s 
paper “Square roots in locally Euclidean groups” 
[G1], and in it he goes on to take the first step and 
show that in any NSS locally Euclidean group G , 
there are neighborhoods U  and V  of the identity 
such that every element in U  has a unique square 
root in V . Almost immediately after this article 
appeared, in a paper called “On a theorem of 
Gleason”, Chevalley [Ch3] went on to complete the 
program Andy outlined. That is, Chevalley used 
Gleason’s existence of unique square roots to con-
struct a neighborhood U  of the identity in G  and a 
continuous mapping (g , t )  �  φg (t ) of U  × R into G  
such that each φg  is a one-parameter subgroup of 
G , φg (t )  ∈  U  for |t |  ≤  1, and φg (1)  =  g .

In his key 1952 Annals paper “Groups without 
small subgroups” [G3], Gleason decided not to 
follow up this approach to the solution of the 
Fifth Problem and instead used a variant of von 
Neumann’s method. His approach was based on 
the construction of one-parameter subgroups, 
but these were used as a tool to find a certain 
finite-dimensional invariant linear subspace Z  of 
the regular representation of G  on which G  acted 
faithfully and appealed to Cartan’s Theorem to 
complete the proof. The construction of Z  is a 

technical tour de force, but it is too complicated 
to outline here, and we refer instead to the original 
paper [G2] or the review by Iwasawa.

Andy Gleason as Mentor
Looking back at how it happened, it seems almost 
accidental that I became Andy Gleason’s first Ph.D. 

student—and David Hilbert 
was partly responsible.

As an undergraduate at 
Harvard I had developed 
a very close mentoring 
relationship with George 
Mackey, then a resident 
tutor in my dorm, Kirkland 
House. We had meals to-
gether several times each 
week, and I took many of 
his courses. So, when I re-
turned in 1953 as a gradu-
ate student, it was natural 
for me to ask Mackey to be 
my thesis advisor. When he 
inquired what I would like 
to work on for my thesis 
research, my first sugges-
tion turned out to be some-
thing he had thought about 
himself, and he was able to 
convince me quickly that 
it was unsuitably difficult 
for a thesis topic. A few 

days later I came back and told him I would like to 
work on reformulating the classical Lie theory of 
germs of Lie groups acting locally on manifolds as 
a rigorous modern theory of full Lie groups acting 
globally. Fine, he said, but then explained that the 
local expert on such matters was a brilliant young 
former Junior Fellow named Andy Gleason who 
had just joined the Harvard math department. 
Only a year before he had played a major role in 
solving Hilbert's Fifth Problem, which was closely 
related to what I wanted to work on, so he would 
be an ideal person to direct my research.

I felt a little unhappy at being cast off like that 
by Mackey, but of course I knew perfectly well who 
Gleason was and I had to admit that George had 
a point. Andy was already famous for being able 
to think complicated problems through to a solu-
tion incredibly fast. “Johnny” von Neumann had a 
similar reputation, and since this was the year that 
High Noon came out, I recall jokes about having a 
mathematical shootout—Andy vs. Johnny solving 
math problems with blazing speed at the OK Cor-
ral. In any case, it was with considerable trepida-
tion that I went to see Andy for the first time.

Totally unnecessary! In our sessions together 
I never felt put down. It is true that occasionally 
when I was telling him about some progress I 
had made since our previous discussion, partway 

Andy with George Mackey (2000). Although 
Andy never earned a Ph.D., he thought 

of George as his mentor and advisor and 
lists himself as George’s student on the 

Mathematics Genealogy Project website. 
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through my explanation Andy would see the crux 
of what I had done and say something like, “Oh! 
I see. Very nice! and then…,” and in a matter of 
minutes he would reconstruct (often with improve-
ments) what had taken me hours to figure out. But 
it never felt like he was acting superior. On the 
contrary, he always made me feel that we were col-
leagues, collaborating to discover the way forward. 
It was just that when he saw his way to a solution 
of one problem, he liked to work quickly through 
it and then go on to the next problem. Working 
together with such a mathematical powerhouse 
put pressure on me to perform at top level—and 
it was sure a good way to learn humility!

My apprenticeship wasn’t over when my thesis 
was done. I remember that shortly after I had fin-
ished, Andy said to me, “You know, some of the 
ideas in your thesis are related to some ideas I had 
a few years back. Let me tell you about them, and 
perhaps we can write a joint paper.” The ideas in 
that paper were in large part his, but on the other 
hand, I did most of the writing, and in the process 
of correcting my attempts he taught me a lot about 
how to write a good journal article.

But it was only years later that I fully appreci-
ated just how much I had taken away from those 
years working under Andy. I was very fortunate 
to have many excellent students do their gradu-
ate research with me over the years, and often as 
I worked together with them I could see myself 
behaving in some way that I had learned to ad-
mire from my own experience working together 
with Andy.

Let me finish with one more anecdote. It con-
cerns my favorite of all Andy’s theorems, his ele-
gant classification of the measures on the lattice 
of subspaces of a Hilbert space. Andy was writing 
up his results during the 1955–56 academic year, 
as I was writing up my thesis, and he gave me a 
draft copy of his paper to read. I found the result 
fascinating, and even contributed a minor improve-
ment to the proof, as Andy was kind enough to 
footnote in the published article. When I arrived 
at the University of Chicago for my first position 
the next year, Andy’s paper was not yet published, 
but word of it had gotten around, and there was a 
lot of interest in hearing the details. So when I let 
on that I was familiar with the proof, Kaplansky 
asked me to give a talk on it in his analysis seminar. 
I’ll never forget walking into the room where I was 
to lecture and seeing Ed Spanier, Marshall Stone, 
Saunders Mac Lane, André Weil, Kaplansky, and 
Chern all looking up at me. It was pretty intimidat-
ing, and I was suitably nervous! But the paper was 
so elegant and clear that it was an absolute breeze 
to lecture on it, so all went well, and this “inaugural 
lecture” helped me get off to a good start in my 
academic career.
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John Wermer
Gleason’s Work on Banach Algebras

Introduction
I first came to know Andy Gleason in the early 
1950s. I found him friendly, natural, and interest-
ing. Of course, I knew that his work had recently 
led to the solution of Hilbert’s Fifth Problem. One 
thing that impressed me strongly about Andy was 
that he understood, in detail, every colloquium 
we attended independently of the subject matter.

A link between the Gleason and Wermer families 
at that time was Philip, Jean and Andy’s Siamese 
cat. I was a visitor at Harvard in 1959–60, and Andy 
was going abroad for that year. We rented their 
apartment. They asked us to take care of Philip for 
the year, which my two boys and my wife, Chris-
tine, and I were happy to do. When spring 1960 
came and we knew we should soon have to sur-
render Philip, it turned out that the Gleasons would 
not be able to keep him and asked us whether we 
would take him along to Providence. We accepted 
with a whoop and a holler. We called him Philip 
Gleason, and he became a much-valued member 
of our household. Philip often disappeared for 
days, but always returned, thinner and wiser, and 
definitely had more than nine lives.

A mathematical link between Andy and me 
came out of the former Soviet Union. Gelfand and 
Silov had recently started a study of commutative 
Banach algebras and their maximal ideal spaces, 
and this theory was intimately related to the theory 
of holomorphic functions. This area aroused the 
strong interest of a group of young American 
mathematicians. Andy Gleason was a prominent 
member of this group and made fundamental 
contributions to this field of study.

Let A be a commutative semisimple Banach 
algebra with unit, and let M be the space of all 
maximal ideals of A. Gelfand [1] showed that M 
can be endowed with a topology which makes it 
a compact Hausdorff space such that there is an 
isomorphism : f  � →  ̂ f  which maps A to a subalgebra 
of the algebra of all continuous functions on M. 
Silov [2] then showed that there exists a minimal 
closed subset  ̌ S  of M such that to every f  in A and 
each point m  in M we have the inequality

 ̌ S  is called the Silov boundary of M.

The star example of all this is given by the “disk 
algebra” A, consisting of all continuous functions 
on the unit circle Γ  which admit analytic continu-
ation to the open unit disk. We take ||f ||  =  m a x|f | 
taken over Γ  for f  in A. Here M can be identified 
with the closed unit disk Δ, and  ̌ S  becomes the to-
pological boundary of Δ. For f  in A,  ̂ f  is the analytic 
continuation of f  to the interior of Δ.

Another key example is provided by the bidisk 
algebra A2  which consists of all functions con-
tinuous on the closed bidisk Δ2  in C2  which are 
holomorphic on the interior of Δ2 . The maximal 
ideal space of M can be identified with Δ2 ; the Silov 
boundary is not the topological boundary of Δ2, 
but instead the torus T 2  :  |z |  =  1, |w |  =  1.

Classical function theory gives us, in the case of 
the disk algebra, not only the maximum principle 
(1) but also the local maximum principle:

It is a fundamental fact, proved by Rossi in [3], 
that the analogue of (2) holds in general. We have

Theorem 1. (Loc a l  M a xi m u m  M od u l u s  P r  i n c i p l e)

Gleason and Fred, Philip’s successor in the 
Gleason household.
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For every f in A, if z0 lies in the open unit disk and
U is a compact neighborhood of z0 contained in
intΔ then

(2) |f (z0)| ≤max
z∈∂U

|f (z)|.

Fix a point m in M\Š and fix a compact neighbor-
hood U of m in M\Š. Then we have for each f in
A
(3) |f̌ (m)| ≤max

u∈∂U
|f̌ (u)|.

(1) |f̂ (m)| ≤max
s∈Š

|f̂ (s)|.



NOVEMBER 2009  NOTICES OF THE AMS   1249

This result suggests that for an arbitrary A, 
where M\ ̌ Š is nonempty, we should look for some 
kind of analytic structure in M\Š. In the 1950s 
Gleason set out to find such analytic structure. 
He focused on a class of Banach algebras he called 
“function algebras”.

Let X  be a compact Hausdorff space. The 
algebra C (X ) of all continuous complex-valued 
functions on X, with ||f ||  =  m a x|f | over X , is a 
Banach algebra. A closed subalgebra A of C (X ) 
which separates the points of X  and contains the 
unit is called a “function algebra” on X. It inherits 
its norm from C (X ).

Let M be the maximal ideal space of A. Then X  
is embedded in the compact space M as a closed 
subset, and each f  in A has  ̂ f  as a continuous 
extension to M.

Parts
Let A be a function algebra on the space X , with 
maximal ideal space M. Fix a point m  in M. The 
map: f  � →  ̂ f (m ) is a bounded linear functional on A. 
We use this map to embed M into A� , the dual 
space of A. M then lies in the unit ball of A� .

Hence, if m  and m ′  are two points in M , 
||m − m ′ || ≤ 2. Gleason [4] defined a relation on the 
points of M by writing : m • m ′  if ||m − m ′ ||  <  2. 
He proved:

Proposition. The relation “bullet” is an equiva-
lence relation on M. 

Note: At first sight, this proposition is counter-
intuitive, since m • m ′  and m ′  • m ′′  are equivalent 
to ||m − m ′ ||  <  2 and ||m ′  − m ′′ ||  <  2. The triangle 
inequality for the norm yields ||m − m ′′ ||  <  4, 
whereas we need ||m − m ′′ ||  <  2.

For each A the space M splits into equivalence 
classes under •. Gleason called these equivalence 
classes the “parts” of M.

Observe what these parts look like when A is the 
bidisk algebra A2 . Here M is the closed unit bidisk 
Δ2  :  |z | ≤ 1, |w | ≤ 1. Some calculation gives the fol-
lowing: the interior of Δ2 , |z | < 1, |w | < 1, is a single 
part. Each of the disks (e i t , w )|0  ≤  t  ≤  2π , |w |  <  1, 
(z , e i s ), |z |  <  1, 0  ≤  s  ≤  2π  is a part of M. Finally, 
each point (exp(it), exp(is)), s,t real, is a one-point 
part lying on the torus |z |  =  1, |w |  =  1. Thus M 
splits into the pieces: one analytic piece of complex 
dimension 2, two families of analytic pieces of 
complex dimension 1, and uncountably many one-
point parts on the Silov boundary of the algebra.

In complete generality, Andy’s hopes that for 
each function algebra the parts of M would pro-
vide analytic structure of the complement of the 
Silov boundary were not fully realized. Stolzen-
berg, in [6], gave an example of a function algebra 
A such that the complement of the Silov boundary 
of A in M is nonempty but contains no analytic 
structure. However, an important class of Banach 
algebras, the so-called “Dirichlet algebras”, and 

their generalizations behaved as Andy had hoped. 
We turn to these algebras in the next section.

Dirichlet Algebras
Let X  be a compact Hausdorff space and let A be 
a function algebra on X . In [4], Gleason made the 
following definition: A is a Dirichlet algebra on X 
if R e (A), the space of real parts of the functions 
in A, is uniformly dense in the space CR (X ) of all 
real continuous functions on X .

The name “Dirichlet” was chosen by Gleason 
because in the case when A is the disk algebra A, 
this density condition is satisfied and has as a con-
sequence the solvability of the Dirichlet problem 
for harmonic functions on the unit disk.

He stated, “It appears that this class of algebras 
is of considerable importance and is amenable to 
analysis.” This opinion was born out by develop-
ments.

A typical Dirichlet algebra is the disk algebra A 
on the circle Γ . By looking at A we are led to the 
basic properties of arbitrary Dirichlet algebras. A 
has the following properties:

(i) For each point z  in Δ, there exists a unique 
probability measure μz  on Γ  such that for all f  in A

f (z )  =  ∫ π −π  f (e xp (i t ))d μz ,
(ii) μz  =  1 2π pz d t ,
where pz  is the Poisson kernel at z unless 

|z |  =  1, and then μz  is the point mass at z .
He proved in [4]:

Theorem 2. Let A be a Dirichlet algebra on the 
space X , and let M be its maximal ideal space.

(i') Fix m  in M. There exists a unique probability 
measure μm  on X  such that

 ̂ f (m )  =  ∫X  f d μm  , for all f  in A.

(ii') Fix points m  and  m ′  in M. Then m  and  m ′ lie 
in the same part of M if and only if the measures 
μm and μm ′    are mutually absolutely continuous. 
In this case, the corresponding Radon-Nikodym 
derivative is bounded above and below on X .

Note: For m  in M, μm  is called “the representing 
measure for m ”.

It turned out that when A is a Dirichlet algebra 
with maximal ideal space M, then each part of M is 
either a single point or an analytic disk. Explicitly, 
it is proved in Wermer [7]:

Theorem 3. Let A be a Dirichlet algebra with 
maximal ideal space M. Let ∏  be a part of M. Then 
either ∏  consists of a single point or there exists a 
continuous one-one map τ  of the open unit disk onto 
Π  such that for each f  in A the composition  ̂ f  ◦ τ  
is holomorphic on the unit disk.
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Examples
The following are three examples of Dirichlet 

algebras.
Example 1: Let K  be a compact set in the com-

plex plane C  with connected complement, and let 
X  be the boundary of K . The uniform closure P (X ) 
of polynomials on X  is a Dirichlet algebra on X .

Example 2: Fix α  >  0. Aα  denotes the space of 
all continuous functions f  on the torus T 2  consist-
ing of all points (e i θ , e i φ ) in C 2  such that f  has the 
Fourier expansion on T 2 :∑

n+mα≥0

cnmeinθeimφ

These algebras are studied by Helson and 
Lowdenslager in [9] and by Arens and Singer in 
[10]. Each Aα  is a Dirichlet algebra on T 2 .

Example 3: Let γ  be an arc on the Riemann 
sphere S . Let B (γ ) denote the algebra of all con-
tinuous functions on γ  which have a continuous 
extension to the full sphere S  which is holomor-
phic on S  outside of γ . For a certain class of arcs, 
studied by Browder and Wermer in [8], B (γ ) is a 
Dirichlet algebra on γ .

It turned out that substantial portions of the 
theory of Hardy spaces H p  on the unit disk have 
natural generalizations when the disk algebra is 
replaced by an arbitrary Dirichlet algebra.This was 
pointed out by Bochner in [11] in a slightly differ-
ent context. It was carried out in [9] for Example 
2, and in an abstract context by various authors. 
(See Gamelin [15].)

Further, Hoffman in [12] introduced a general-
ization of Dirichlet algebras, called “logmodular 
algebras”, to which the theory of Dirichlet algebras 
has a natural extension. In particular, parts of the 
maximal ideal space of such an algebra are either 
points or disks.

Let H ∞  denote the algebra of all bounded ana-
lytic functions on the unit disk, with ||f ||  =  s u p |f |, 
taken over the unit disk. Then H ∞  is a Banach 
algebra. Let X  denote the Silov boundary of this 
algebra. The restriction of H ∞  to X  is a function 
algebra on X . This restriction is not a Dirichlet 
algebra on X , but it is a log-modular algebra on X . 
By what was said above, the parts of the maximal 
ideal space of H ∞ are points or analytic disks.

Let M  be the maximal ideal space of H ∞ , taken 
with the Gelfand topology. M  is compact and 
contains the open unit disk D  as a subset. Len-
nart Carleson proved in 1962 the so-called Corona 
Theorem, which implies that D  is dense in M . The 
question had arisen earlier as to the (possible) 
analytic structure in the complement M \D .

Partial results on this question were obtained 
in 1957 by a group of people talking at a con-
ference, and this result was published under 
the pseudonym “I. J. Schark”1 in the paper [16].

Hoffman and Gleason were prominent participants 
in this enterprise.

Gleason’s Problem
Let A be a function algebra and M be its maximal 
ideal space. Fix a point m0  in M. As a subset of 
A, m0  is the set of f  such that  ̂ f (m0 )  =  0. We ask: 
when does m0  have a neighborhood in M which 
carries structure of a complex-analytic variety? By 
this we mean the following: there exists a polydisk 
Δn  in Cn  and an analytic variety V  in Δn , and there 
exists a homeomorphism τ  of a neighborhood N  
of m0  on V  such that for all f  in A the composition 
of  ̂ f  with the inverse of τ  has an analytic extension 
from V  to Δn .

Gleason proved the following in [5]:

Theorem 4. Let A, M, m0  be as above. Assume that 
m0 , as an ideal in A, is finitely generated (in the 
sense of algebra). Then there exists a neighborhood 
N   of m0  which has the structure of a complex-
analytic variety.

This result leads naturally to the following ques-
tion, raised by Gleason:

Let D  be a bounded domain in Cn  and denote 
by A(D ) the algebra of continuous functions on 
the closure of D  which are analytic on D . Fix a 
point a  =  (a1 , . . . , an ) in D . Given f  in A(D ) with 
f (a )  =  0, do there exist functions g1 , . . . , gn  in 
A(D ) such that f (z )  =  ∑n

 j =1 (zj  − aj )gj (z ) for 
every z  in D ?

It is now known that the answer is yes if D  
is a strictly pseudo-convex domain in Cn . A his-
tory of the problem is given by Range in [14], 
Chapter VII, paragraph 4.
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Joel Spencer
Andrew Gleason’s Discrete Mathematics

Ramsey Theory

Six points are in general position in 
space (no three in a line, no four in a 
plane). The fifteen line segments join-
ing them in pairs are drawn, and then 
painted, some segments red, some blue. 
Prove that some triangle has all its sides 
the same color.

—William Lowell Putnam Competition, 1953
([3], page 38)

Andrew Gleason’s fascination with combina-
torial puzzles, his computational skills, and his 
algebraic insights often led to interesting deep 
results in discrete mathematics. We sample some 
of them here.

The Putnam problem quoted above introduces 
Ramsey theory, where Gleason made one of his 
first contributions. Ramsey theory starts with 
the fact that for any k1 , . . . , kr  there is a least
n  =  R (k1 , . . . , kr ) such that when each of the 

(
n
 2 
)

line segments joining n  points in pairs is painted 
with one of r  colors, then for some 1  ≤  i  ≤  r  there 
are ki  points with all segments between them given 
color i . R  is generally called the Ramsey function 
and the n  =  R (k1 , . . . , kr ) are called Ramsey num-
bers. Solving the Putnam problem above proves 
R (3, 3)  ≤  6. The arguments for the existence of 
R (k, l ) had been given by Ramsey and, indepen-
dently, by Erdős and Szekeres in the early 1930s 
(see [4] for general reference). Ramsey theory 
fascinated Gleason.

In 1955 Gleason and coauthor R. E. Green-
wood [1] calculated some small Ramsey numbers. 
They found R (3, 3)  =  6, R (3, 4)  =  9, R (3, 5)  =  14, 
R (4, 4) = 18, and R (3, 3, 3) = 17. The lower bounds 
sometimes called for ingenious algebraic construc-
tions to provide counterexamples. For instance, to 
show R (3, 3, 3)  >  16 they consider the 16 points 

as G F (16). Let H  ⊂  G F (16)∗  consist of the non-
zero cubes. Then they color the edge between 
α , β  ∈  G F (16) by the coset of G F (16)∗ /H  contain-
ing α − β. Despite great efforts and high speed 
computers, only a few other values are known 
today. Even the value of R (5, 5) seems out of reach.

As a graduate student at Harvard in the late 
1960s I chose to write a thesis partially on Ramsey 
numbers. Gleason told me he had spent a great 
deal of time looking for other exact values. Since 
I knew of his legendary calculating powers, I took 
this as sage advice to restrict my attention to their 
asymptotics.

Coding Theory
Gleason’s research in discrete mathematics began 
not with Ramsey theory but with his cryptographic 
work during World War II [5]. That’s when he first 
collaborated with Greenwood. After the war he 
participated in the burgeoning development of 
coding theory. Although he published little, he had 
a significant influence on others.

Vera Pless (her [6] is a good general reference 
for coding theory) recalls “Gleason meetings” in 
the 1950s on error-correcting codes.

These monthly meetings were what I 
lived for. No matter what questions we 
asked him on any area of mathematics, 
Andy knew the answer. The numerical 
calculations he did in his head were 
amazing.

A binary code is a subset of {0, 1}n . The ele-
ments are called codewords. The weight of a 
codeword is the number of coordinates with value 
one. Gleason studied codes with an algebraic rep-
resentation.

To define a quadratic residue code, begin by 
identifying {0, 1}n  with Z2 [x]/(xn  − 1). Suppose 
n  is a prime congruent to ±1  mod  8. Let Q  be the 
quadratic residues of Z ∗ n  and set e (x)  =  ∑i ∈Q xi. 
Then let C  =  (1 + e (x)), the ideal generated by 
1 + e (x) in Z2 [x]/(xn  − 1). Then C  is a code of 
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dimension (n + 1)/2. These codes have proven 
particularly useful, in part because of their sym-
metries.

Let C  be the code of dimension n + 1 given by 
adding a parity bit. (That is, the first n  bits are in 
C, and the last is such that the weight is even.) A 
symmetry of C  is a permutation σ  ∈  Sn +1  of the 
coordinates for which σ (C )  =  C . The Gleason-
Prange Theorem [6] asserts that

Theorem 1. The Projective Simple Linear Group 
P S L2 (n ) is a subgroup of the group of symmetries 
of C .

A linear code is a C  ⊆  {0, 1}n  which is a sub-
space of {0, 1}n . For such C , C ⊥  is the usual (over 
Z2 ) orthogonal subspace. When C  has Ai  vectors 
of weight i, its weight enumerator is defined by

The Gleason polynomials are finite sets of poly-
nomials that generate all weight enumerators of 
a certain type.

Gleason found a particularly striking example 
for self-dual codes, those for which C  =  C ⊥ .
Theorem 2. If C  is self-dual, then WC  is generated by 
g1 (x, y )  =  x2  + y 2  and g2 (x, y )  =  x8  + 14x2 y 2  + y 8 .

There are deep connections to invariant theory 
here.

The weight enumerator of C  determines that 
of C ⊥ . The exact relationship was given by Jessie 
MacWilliams (1917–1990), one of Gleason’s most 
accomplished students, in her thesis.

Theorem 3. The MacWilliams Identity:

Gleason proved much more along these lines 
in [2]. Neil Sloane starts his paper on Gleason’s 
Theorem on Self-Dual Codes and Its Generalizations 
[8] with “One of the most remarkable theorems in 
coding theory is Gleason’s 1970 theorem about the 
weight enumerators of self-dual codes.”

The Putnam Exam
Gleason was the first three-time winner of the Put-
nam competition, finishing in the top five while at 
Yale in 1940, 1941, and 1942. He was disappointed 
in his first attempt, because he solved only thirteen 
of the fifteen problems.

For many years he selected one of the five 
finishers for the Putnam Fellowship at Harvard, a 
fellowship he was awarded and declined in 1940 
in order to remain at Yale. He wrote (with R. E. 
Greenwood and L. M. Kelly) a beautiful book [3] 
on the Putnam competition for the years 1938–64. 
For many problems his solutions (and there are 
often several) are splendid lectures in the varied 

subjects. Elwyn Berlekamp (also a Putnam winner) 
recalls discussions with him:

[Gleason] would usually offer two or 
three different solutions to the prob-
lem he wanted to talk about, whereas 
I rarely ever had more than one. He 
believed that Putnam problems encour-
aged very strong mastery of what he 
considered to be the fundamentals of 
mathematics.

Gleason was always eager to share his pas-
sion for mathematics in general and problems 
in particular. Bjorn Poonen (a multiple Putnam 
winner and the coauthor of a follow-up book on 
the Putnam competition 1985–2000 [7]) recalls his 
undergraduate days:

Andy struck me as someone genuinely 
interested in helping younger math-
ematicians develop. When I was an 
undergrad at Harvard, he volunteered 
an hour or two of his time each week 
for an informal meeting in his office 
with a group consisting of me and 
one or two other math undergrads to 
discuss whatever mathematics was on 
our minds.

Amen. As a graduate student I had the good for-
tune to be Andy Gleason’s teaching assistant. We 
would meet in the small preparation room before 
the classes. Andy would discuss the mathematics 
of the lecture he was about to give. He was at ease 
and spoke of the importance and the interrelation-
ships of the various theorems and proofs. My con-
tributions were minimal, but I listened with rapt 
attention. It was in those moments that I learned 
what being a mathematician was all about.
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Paul R. Chernoff
Andy Gleason and Quantum Mechanics

About Andy
I met Andy at the beginning of my second year at 
Harvard when I signed up for his graduate analy-
sis course. Andy briefly interviewed prospective 
students to see if they had enough background to 
benefit from this rather sophisticated course. I told 
Andy that I owned a number of advanced books 
which I hadn’t read.

The course was both a challenge and a plea-
sure. I can only echo what others have said about 
Andy’s luminous clarity and massive abstract 
power. But I must admit that the lectures, always 
exciting, weren’t absolutely perfect; in the course 
of a year Andy made one genuine blunder. As to 
his famous speed, John Schwarz, the well-known 
string theorist, once said after class that Andy had 
“the metabolism of a hummingbird”.

I was extremely lucky that Andy was affiliated 
with Lowell House, my undergraduate residence. 
Every week Andy came for lunch, where we sat 
around a large circular table. That’s how Andy and 
I became friends. Of course we discussed a lot of 
mathematics around that table, but lots of other 
things, including Andy’s “war stories”. I am not 
surprised that someone kept a great treasure: all 
of Andy’s napkin manuscripts.

Almost any mathematical problem could in-
trigue Andy. At one of the annual math department 
picnics, he had fun figuring out how to do cube 
roots on an abacus. But most important was his 
unpretentiousness, openness, and great interest in 
students. I suppose that all teachers are impatient 
at times; no doubt Andy was sorely tried on occa-
sion. But he rarely, if ever, showed it. The students 
in one of his classes gave him a framed copy of 
Picasso’s early painting Mother and Child. Perhaps 
they chose this gift to symbolize Andy’s nurturing 
of them. It’s regrettable that there are some teach-
ers for whom Guernica would be more appropriate.

Quantum Mechanics
In this section we set the stage for a discussion of 
Andy’s unique contribution to physics: his remark-
able paper “Measures on the closed subspaces of 
a Hilbert space” [G57]. It’s interesting in several 
ways: its history; its influence in mathematics; 
and especially its unexpected importance to the 

analysis of “hidden vari-
able” theories of quantum 
mechanics by the physicist 
John Bell.

In classical mechanics, 
the state of a particle of 
mass m  is given by its posi-
tion and momentum. The 
motion or dynamics of a 
set of particles with associ-
ated forces is determined 
by Newton’s second law of 
motion, a system of ordi-
nary differential equations. 
This yields a picture of the 
macroscopic world which 
matches our intuition. The 
ultramicroscopic world 
requires a quite different 
description. The state of a 
particle of mass m  in R3  is 
a complex valued function ψ  on R3 . Its momen-
tum is similarly described by the function φ, the 
Fourier transform of ψ, normalized by the pres-
ence in the exponent of the ratio  h m , where h is 
Planck’s constant. (Using standard properties of 
the Fourier transform, one can deduce Heisen-
berg’s uncertainty principle.) For n  particles, ψ  
is defined on R3n . This is a brilliant extrapolation 
of the initial ideas of DeBroglie. The Schrödinger 
equation determines the dynamics. If both ψ  and 
φ are largely concentrated around n  points in 
position and momentum space respectively, then 
the quantum state resembles a blurry picture of 
the classical state. The more massive the particles, 
the less the blurriness (protons versus baseballs).

The fundamental interpretation of the “wave 
function” ψ  is the work of Max Born.1 His paper 
analyzing collisions of particles ends with the 
conclusion that |ψ |2  should be interpreted as the 
probability distribution for the positions of the 
particles. Therefore the wave function must be 
a unit vector in L2. Thus did Hilbert space enter 
quantum mechanics.

Prior to Schrödinger’s wave mechanics, Heisen-
berg had begun to develop a theory in which ob-
servable quantities are represented by Hermitian-
symmetric infinite square arrays. He devised a 
“peculiar” law for multiplying two arrays by an 
ingenious use of the physical meaning of their 
entries. Born had learned matrix theory when 
he was a student and realized (after a week of 
“agony”) that Heisenberg’s recipe was just matrix 
multiplication. Hence the Heisenberg theory is 
called matrix mechanics. (Schrödinger showed that 
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matrix mechanics and wave mechanics are math-
ematically equivalent.) As in classical mechanics, 
the dynamics of a quantum system is determined 
from its energy H . Periodic orbits correspond to 
the eigenvalues of H , i.e., the discrete energy levels. 
The calculation of the eigenvalues is very difficult, 
save for a few simple systems. The energy levels 
for the hydrogen atom were ingeniously calculated 
by Wolfgang Pauli; his results agreed with Bohr’s 
calculations done at the very beginning of the “old” 
quantum theory.

Born was quite familiar with Hilbert’s theory 
of integral equations in L2 . Accordingly, he was 
able to interpret Heisenberg’s matrices as Her-
mitian symmetric kernels with respect to some 
orthonormal basis, which might just as well be 
regarded as the corresponding integral operators 
on L2 . Formally, every Hermitian matrix could be 
regarded as an integral operator, usually with a 
very singular kernel. (The most familiar example is 
the identity, with kernel the Dirac delta function.) 
In this way, Born initiated the standard picture of 
observables as Hermitian operators A on L2 . But 
at that time, the physicists did not grasp the im-
portant distinction between unbounded Hermitian 
operators and unbounded self-adjoint operators. 
That was greatly clarified by John von Neumann, 
major developer of the theory of unbounded self-
adjoint operators.

Having interpreted |ψ |2  as the probability dis-
tribution for the positions of particles, Born went 
on to devise what immediately became the stan-
dard interpretation of measurements in quantum 
mechanics: the probability that a measurement of 
a quantum system will yield a particular result.

Born’s line of thought was this. A state of a 
quantum system corresponds to a unit vector 
ψ  ∈  L2 . What are the possible values of a mea-
surement of the observable represented by the 
operator A, and what is the probability that a 
specific value is observed? Born dealt only with 
operators with a discrete spectrum, namely, the set 
of all its eigenvalues. For simplicity, assume that 
there are no multiple eigenvalues. Let φn  be the 
unit eigenvector with eigenvalue λn . These form 
an orthonormal basis of L2 . Expand ψ  as a series ∑
k ck φk . Since ||ψ ||2  =  1, we get 

∑
k |ck |2  =  1. 

Born’s insight was that any measurement must 
yield one of the eigenvalues λn  of A, and |cn |2  
is the probability that the result of the measure-
ment is λn  . This is known as Born’s rule. It follows 
that the expected value of a measurement of A is ∑
k |ck |2 λk . Note that this sum equals the inner product 

(Aψ , ψ ). This is the same as trace(P A), where P  is the
projection onto the one-dimensional subspace 
spanned by ψ . (To jump ahead, George Mackey 
wondered if Born’s rule might involve some arbi-
trary choices. Gleason ruled this out.)

John von Neumann was the creator of the ab-
stract theory of quantum mechanics. In his theory, 

a pure state is a unit vector in a Hilbert space H . 
Observables are self-adjoint operators, unbounded 
in general, whose spectrum may be any Borel 
subset of R. Von Neumann also developed the im-
portant concept of a mixed state. A mixed state D 
describes a situation in which there is not enough 
information to determine the pure state ψ  of the 
system. Usually physicists write D as a convex 
combination of orthogonal pure states, 

∑
k wk ψk . 

This notation is confusing; D is not a vector in H! 
It may be interpreted as a list of probabilities wk  
that the corresponding pure state is ψk . Associated 
with the state D there is a positive operator D  with 
trace 1, given by the formula

D  =  ∑k wk Pk 

where Pn  is the projection on the eigenspace of D  
corresponding to the eigenvalue wn . The expected 
value of an observable A is quite clearly

E (A)  =  ∑k wk (Aψk , ψk )  =  trace(D A).

This is von Neumann’s general Born rule.
The eigenvalues of a projection operator are 1 

and 0; those are the only values a measurement 
of the corresponding observable can yield. That 
is why Mackey calls a projection a question; the 
answer is always either 1 or 0: “yes” or “no”. The 
fundamental example is the following. Given a 
self-adjoint operator A, we will apply the spectral 
theorem. Let S  be any Borel subset of R and let 
PS  be the corresponding “spectral projection” of 
A. (If the set S  contains only some eigenvalues of 
A, then PS  is simply projection onto the subspace 
spanned by the corresponding eigenvectors.) Now 
suppose the state of the system is the mixed state 
D. From the general Born rule, the probability that 
a measurement of A lies in S  is the expected value 
of PS , namely, trace(D PS ). That is the obvious gen-
eralization of Born’s formula for the probability 
that a measurement of A is a particular eigenvalue 
of A or a set of isolated eigenvalues.

Quite generally, consider a positive operator D  
with trace(D )  =  1. The nonnegative real-valued 
function μ (P )  =  trace(D P ) is a countably additive 
probability measure on the lattice of projections on 
H . This means that if {Pn } is a countable family 
of mutually orthogonal projections,

Also μ (I )  =  1. Mackey asked whether every such 
measure on the projections is of this form, i.e., 
corresponds to a state D . We already mentioned 
Mackey’s interest in Born’s rule. A positive answer 
to Mackey’s question would show that the Born 
rule follows from his rather simple axioms for 
quantum mechanics [M57], [M63], and thus, given 

μ(
∑
n
Pn) =

∑
n
μ(Pn).
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these weak postulates, Born’s rule is not ad hoc 
but inevitable.

Gleason’s Theorem
Mackey didn’t try very hard to solve his problem 
for the excellent reason that he had no idea how 
to attack it. But he discussed it with a number of 
experts, including Irving Segal, who mentioned 
Mackey’s problem in a graduate class at Chicago 
around 1949 or 1950. Among the students was 
Dick Kadison, who realized that there are coun-
terexamples when H  is two-dimensional. The 
higher-dimensional case remained open.

There matters stood for some years. Then 
Gleason entered the story. In 1956 he sat in on 
Mackey’s graduate course on quantum mechanics 
at Harvard. To Mackey’s surprise, Andy was seized 
by the problem “with intense ferocity”. Moreover, 
Kadison was visiting MIT at the time, and his 
interest in Mackey’s problem was rekindled. He 
quickly perceived that there were many “forced 
inter-relations” entailed by the intertwining of the 
great circles on the sphere and in principle a lot 
could be deduced from an analysis of these rela-
tions, though the problem still looked quite tough. 
He mentioned his observation to Andy, who found 
it a useful hint. (But Kadison informed me that his 
observation did not involve anything like Andy’s 
key “frame function” idea.)

Theorem 1 (Gleason’s theorem). Let H   be a sepa-
rable Hilbert space of dimension greater than 2. Let 
μ  be a countably additive probability measure on 
the projections of H  . Then there is a unique non-
negative self-adjoint operator D , with trace(D )  =  1, 
such that, for every projection P ,

μ (P )  =  trace(D P ).

The proof has three parts. First, using countable 
additivity and induction, it is easy to reduce the 
case of any separable real Hilbert space of dimen-
sion greater than 2 to the 3-dimensional case. (The 
complex case follows from the real case.)

Next, consider a vector x on the unit sphere. Let 
Px  be the one-dimensional subspace containing x, 
and define f (x)  =  μ (Px ). This function is called 
a frame function. The additivity of the measure 
μ  implies that for any three mutually orthogonal 
unit vectors,

f (x) + f (y ) + f (z )  =  1.

The proof comes down to showing that the 
frame function f  is quadratic and therefore is of 
the form f (x)  =  trace(D Px ), where D  is as in the 
statement of the theorem. Gleason begins his anal-
ysis by showing that a continuous frame function 
is quadratic via a nice piece of harmonic analysis 
on the sphere. The centerpiece of the paper is the 
proof that f  is continuous. Andy told me that this 
took him most of the summer. It demonstrates 

his powerful geometric insight. However, despite 
Andy’s talent for exposition, much effort is needed 
to really understand his argument.

Quite a few people have worked on simplifying 
the proof. The paper by Cooke, Keane, and Moran 
[CKM] is interesting, well written, and leads the 
reader up a gentle slope to Gleason’s theorem. The 
authors use an important idea of Piron [Pi]. (The 
CKM argument is “elementary” because it does not 
use harmonic analysis.)

Generalizations of Gleason’s Theorem
In his paper Andy asked if there were analogues 
of his theorem for countably additive probability 
measures on the projections of von Neumann alge-
bras other than the algebra of bounded operators 
on separable Hilbert spaces.

A von Neumann algebra, or W ∗  algebra, is an 
algebra A of bounded operators on a Hilbert space 
H , closed with respect to the adjoint operation. 
Most importantly, A is closed in the weak opera-
tor topology. The latter is defined as follows: a net 
of bounded operators {ai } converges weakly to b  
provided that, for all vectors x, y  ∈  H,

A state of a von Neumann algebra A is a positive 
linear functional φ  :  A  →  C with φ(I )  =  1. This 
means that φ(x)  ≥  0 if x  ≥  0 and also ||φ||  =  1. 
The state φ is normal provided that if ai  is an in-
creasing net of operators that converges weakly to 
a , then φ(ai ) converges to φ(a). The normal states 
on B (H) are precisely those of the form trace(D x), 
where D  is a positive operator with trace 1.

Let P (A) be the lattice of orthogonal projec-
tions in A. Then the formula

μ (P )  =  φ(P )
defines a finitely additive probability measure on 
P (A). If φ is normal, the measure μ  is countably 
additive.

The converse for countably additive measures 
is due to A. Paszkiewicz [P]. See E. Christensen [C] 
and F. J. Yeadon [Y1], [Y2] for finitely additive mea-
sures. Maeda has a careful, thorough presentation 
of the latter in [M].

It is not surprising that the arguments use the 
finite-dimensional case of Gleason’s theorem. A 
truly easy consequence of Gleason’s theorem is 
that μ  is a uniformly continuous function on the 
lattice of projections P , equipped with the opera-
tor norm.

A great deal of work has been done on Gleason 
measures which are unbounded or complex valued. 
A good reference is [D]. Bunce and Wright [BW] 
have studied Gleason measures defined on the 
lattice of projections of a von Neumann algebra 
with values in a Banach space. They prove the 
analogue of the results above. A simple example 

lim
n→∞

(anx,y) = (bx,y).
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Solovay also proves a beautiful formula giving a 
canonical representation of a Gleason measure 
μ as an integral over the set T   of positive trace-
class operators A of trace 1: there is a measure ν 
defined on all subsets of T   such that, for all P  ,

μ(P) =
∫
T

trace (AP)dν(A)

Moreover, there is a unique “pure, separated” 
measure ν  such that the formula above holds. 
These two technical terms mean that ν  is similar 
to the sort of measure that occurs in spectral 
multiplicity theory for self-adjoint operators. The 
reader may enjoy proving this formula when H  
is finite-dimensional; this simple case sheds some 
light on the general case.

Hidden Variables and the Work of John Bell
The major scientific impact of Gleason’s theorem 
is not in mathematics but in physics, where it has 
played an important role in the analysis of the 
basis of quantum mechanics. A major question 
is whether probabilistic quantum mechanics can 
be understood as a phenomenological theory ob-
tained by averaging over variables from a deeper 
nonprobabilistic theory. The theory of heat exem-
plifies what is wanted. Heat is now understood as 
due to the collisions of atoms and molecules. In 
this way one can understand thermodynamics as 
a phenomenological theory derived by averages 
over “hidden variables” associated with the deeper 
particle theory; hence the term “statistical mechan-
ics”. Einstein sought an analogous relation between 
quantum mechanics and—what? He is supposed 
to have said that he had given one hundred times 
more thought to quantum theory than to relativity.

The fourth chapter of John von Neumann’s 
great book [VN] is devoted to his famous analysis 
of the hidden variable question. His conclusion 
was that no such theory could exist. He writes, 
“The present system of quantum mechanics would 
have to be objectively false, in order that another 
description of the elementary processes than the 
statistical one may be possible.” That seemed to 
settle the question. Most physicists weren’t much 
interested in the first place when exciting new 
discoveries were almost showering down.

But in 1952 there was a surprise. Contrary to 
von Neumann, David Bohm exhibited a hidden 
variable theory by constructing a system of equa-
tions with both waves and particles which exactly 
reproduced quantum mechanics. But Einstein re-
jected this theory as “too easy”, because it lacked 
the insight Einstein was seeking. Worse yet, it had 
the feature Einstein most disliked. Einstein had no 
problem understanding that there can easily be 
correlations between the behavior of two distant 
systems, A and B . If there is a correlation due 
to interaction when the systems are close, it can 
certainly be maintained when they fly apart. His 
objection to standard quantum mechanics was that 

is Paszkiewicz’s theorem for complex-valued mea-
sures, which had been established only for positive 
real-valued measures.

Nonseparable Hilbert Spaces
Gleason’s theorem is true only for separable 
Hilbert spaces. Robert Solovay has completely 
analyzed the nonseparable case. (Unpublished. 
However, [SO] is an extended abstract.) I consider 
Solovay’s work to be the most original extension 
of Gleason’s theorem.

Definitions. A Gleason measure on a Hilbert space 
H   is a countably additive probability measure 
on the lattice of projections of H  . We say that a 
Gleason measure μ  is standard provided there is 
a positive trace-class operator D  with trace 1 such 
that μ (P )  =trace(D P ). Otherwise, μ  is exotic.

Definition. A set X  is gigantic if there is a con-
tinuous probability measure ρ   defined on all the 
subsets of X. Continuity means that every point 
has measure 0.

A countable set is not gigantic. Indeed, gigan-
tic sets are very, very large. Also, in standard set 
theoretic terminology, a gigantic cardinal is called 
a measurable cardinal.

Gleason’s theorem states that every Gleason 
measure on a separable Hilbert space is standard. 
But suppose H  is a nonseparable Hilbert space 
with a gigantic orthonormal basis {ei  :  i  ∈  I }. Let ρ  
be the associated measure on I . Then the formula

μ(P) =
∫
I
(Pei , ei) dρ(i)

defines an exotic Gleason measure, because 
μ (Q )  =  0 for every projection Q  with finite-
dimensional range.

On the other hand, it can be shown that if H  is 
any Hilbert space of nongigantic dimension greater 
than 2, then every Gleason measure on H  is stan-
dard. Solovay presents a proof. (A consequence is 
that an exotic Gleason measure exists if and only 
if a measurable cardinal exists.)

If I  is any set, gigantic or not, and ρ  is any prob-
ability measure, continuous or not, defined on all 
the subsets of I , then the formula above defines 
a Gleason measure. Solovay’s main theorem says 
that every Gleason measure is of this form.

Theorem 2 (Solovay). Let H   be a nonseparable 
Hilbert space, and let μ  be a Gleason measure on 
H  . Then there is an orthonormal basis {ei  :  i  ∈  I }of 
H   and a probability measure ρ  on the subsets of I 
such that μ  is given by the formula above.

Observe that Gleason’s theorem is analogous; ρ  
is a discrete probability measure on the integers; 
the numbers ρ (n ) are the eigenvalues, repeated 
according to multiplicity, of the operator D .
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The gist of von Neu-
mann’s proof is an argument 
that dispersion-free states 
do not exist. Here a state D 
is dispersion-free provided 
E (A2 )  =  E (A)2  for any ob-
servable A. In other words, 
every observation of A has 
the value E (A) , its mean 
value. Quantum mechanics is 
supposedly obtained by av-
eraging over such states. The 
frame functions considered 
by Bell correspond precisely 
to dispersion-free states. But 
these frame functions are not 

continuous. Gleason’s theorem 
implies that no such frame 
functions exist. Therefore 

there are no dispersion-free states. But Gleason’s 
theorem uses Mackey’s postulate of additivity of 
expectations for commuting projections. Bell’s 
argument based on Gleason’s theorem avoids the 
unjustified assumption of additivity of expectation 
values for noncommuting operators.

Bell writes: “That so much follows from such 
apparently innocent assumptions leads one to 
question their innocence.” He points out that if P, 
Q , and R  are projections with P  and Q  orthogo-
nal to R but not to each other, we might be able 
to measure R  and P,  or R and Q , but not neces-
sarily both, because P  and Q  do not commute. 
Concretely, the two sets of measurements may 
well require different experimental arrangements. 
(This point was often made by Niels Bohr.) Bell 
expresses this fundamental fact emphatically: 
“The danger in fact was not in the explicit but in 
the implicit assumptions. It was tacitly assumed 
that measurement of an observable must yield the 
same value independently of what other measure-
ments are made simultaneously.” In other words, 
the measurement may depend on its context. This 
amounts to saying that Gleason’s frame functions 
may not be well defined from the point of view 
of actual experiments. Accordingly, one should 
examine Mackey’s apparently plausible derivation 
that projection-valued measures truly provide part 
of a valid axiomatization of quantum mechanics.

Finally, a few words about the famous “Bell’s 
Inequality”.

The second chapter of Bell’s book is a reprint 
of [B64] (actually written after [B66]). In this very 
important paper, Bell derives a specific inequality 
satisfied by certain “local” hidden variable theory 
for nonrelativistic quantum mechanics. (“Locality” 
excludes “weird” correlations of measurements of 
widely separated systems.) There are many simi-
lar but more general inequalities. Moreover, the 
study of the “entanglement” of separated quantum 

in some cases a measurement 
of system A instantly deter-
mines the result of a related 
measurement of system B . 
Einstein dubbed this “weird 
action at a distance.” Bohm’s 
model has this objectionable 
property.

In fact, soon after its 
publication, von Neumann’s 
argument was demolished 
by Grete Hermann [J74], 
a young student of Emmy
Noether. Her point was that 
in quantum mechanics the 
expectation of the sum of 
two observables A and B  is 
the sum of the expectations: 
E (A + B )  =  E (A) + E (B ), even 
if A and B  don’t commute. This is a “miracle” 
because the eigenvalues of A + B  have no relation 
to those of A and B  unless A and B  commute. It 
is true only because of the special formula for ex-
pectations in quantum mechanics. It is not a “law 
of thought”. Yet von Neumann postulated that 
additivity of expected values must hold for all un-
derlying hidden variable theories. That is the fatal 
mistake in von Neumann’s argument. However, 
although Heisenberg immediately understood 
Hermann’s argument when she spoke with him, 
her work was published in an obscure journal and 
was forgotten for decades.

The outstanding Irish physicist John Bell was 
extremely interested in the hidden variable prob-
lem. Early on he discovered a simple example of 
a hidden variable theory for a two-dimensional 
quantum system; it’s in chapter 1 of [B], which is 
a reprint of [B66]. This is another counterexample 
for von Neumann’s “impossibility” theorem. (Bell 
did a great deal of important “respectable” physics. 
He said that he studied the philosophy of physics 
only on Saturdays. An interesting essay on Bell is 
in Bernstein’s book [BE].)

When Bell learned of Gleason’s theorem he per-
ceived that in Hilbert spaces of dimension greater 
than 2, it “apparently” establishes von Neumann’s 
“no hidden variables” result without the objection-
able assumptions about noncommuting operators. 
Bell is reported to have said that he must either 
find an “intelligible” proof of Gleason’s theorem 
or else quit the field. Fortunately Bell did devise 
a straightforward proof of a very special case: 
nonexistence of frame functions taking only the 
values 0 and 1. Such frame functions correspond to 
projections. This case sufficed for Bell’s purposes 
[B66]. See the first chapter of [B].2

2 Kochen and Specker [KS] proved a deeper theorem. But 
Si Kochen informed me that they didn’t know of Gleason’s 
theorem until they had almost completed their work.

At the International Conference on 
the Teaching of Mathematics, Samos 
(home of Pythagoras), 1998.
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having an anagram competition with Andy Glea-
son? That’s like arm wrestling with Gargantua.”) 
Anyhow, I figured out ROAST MULES, and I was 
proud to come up with I AM A WONDER AT TAN-
GLES, which is an anagram of ANDREW MATTAI 
GLEASON. Unfortunately, it should be MATTEI. But 
I didn’t have the chutzpah to ask Andy to change 
the spelling of his middle name.

I am grateful for very interesting correspon-
dence and conversations with the late Andy 
Gleason and George Mackey, together with Dick 
Kadison, Si Kochen, and Bob Solovay.
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systems has opened a new field of mathematical 
research.

Starting in 1969, difficult experimental work 
began, using variants of Bell’s inequality, to test if 
very delicate predictions of quantum mechanics 
are correct. Of course, quantum mechanics has 
given superb explanations of all sorts of phenom-
ena, but these experiments waterboard quantum 
mechanics. Many experiments have been done; so 
far there is no convincing evidence that quantum 
mechanics is incorrect. In addition, experiments 
have been done which suggest that influence from 
one system to the other propagates enormously 
faster than light. These experiments point toward 
instantaneous transfer of information.

Bell’s papers on quantum philosophy have been 
collected in his book Speakable and Unspeakable 
in Quantum Mechanics [B]. The first paper [B66] 
discusses Gleason’s theorem and the second “Bell’s 
inequality”. The entire book is a pleasure to read.3

Anagrams
Among his many talents, Andy was a master of 
anagrams. His fragmentary 1947 diary records a 
family visit during Harvard’s spring break:

March 30. …We played anagrams after 
supper and I won largely through the 
charity of the opposition.

April 1. …Played a game of anagrams 
with Mother and won.

April 2. …Mother beat me tonight at 
anagrams.

So we know a little about where he honed that 
talent.

Many years ago Andy and I had a little anagram 
“contest” by mail. (Dick Kadison said then, “You’re 

3 The Amer. Math. Monthly published a nice elementary 
mathematical exposition of Bell’s inequality [McA].

Gleason in Egypt in 2001.

http://math.berkeley.edu/~solovay/Preprints/Gleason_abstract.pdf
http://math.berkeley.edu/~solovay/Preprints/Gleason_abstract.pdf
http://math.berkeley.edu/~solovay/Preprints/Gleason_abstract.pdf
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Within the profession Andy served in many 
ways. He was president of the American Math-
ematical Society in 1981 and 1982. At the Math-
ematical Association of America he served on the 
committee on the Putnam Prize Competition (he 
placed in the top five three years in a row during 
his years as an undergraduate) and the Science 
Policy Committee. In 1996 the MAA honored him 
with its Yueh-Gin Gung and Dr. Charles Y. Hu 
Award for Distinguished Service [Gung].

Andy chaired the committee in charge of the 
1986 International Congress of Mathematicians in 
Berkeley, California. Hope Daly, the staff person 
from the AMS who handled the operation, says of 
him, “He was wonderful, a great leader. He quickly 
understood problems when they arose and had 
immediate answers. And he was really wonderful 
to work with, humble, pleasant.” She offers as an 
example of the many ways in which he could help 
his action on the morning of the meeting when he 
saw the staff making direction signs for the some-
what confusing Berkeley campus to replace those 
the students had taken down the night before. 
Asking what needed to be done, he was told the 
signs had to be tacked up. So he took a stack and 
a hammer and went out and did just that. After 
the successful congress he edited the proceedings; 
see [ICM].

He was a master of exposition for audiences at 
any level. His 1962 Earle Raymond Hedrick Lec-
tures for the MAA on “The Coordinate Problem” 
addressed the need for good names. The abstract1 
reads:

In the study of mathematical struc-
tures, especially when computations 
are to be made, it is important to have 
a system for naming all of the elements. 
Moreover, it is essential that the names 
be so chosen that the structural rela-
tions between the various elements can 
be expressed by relations between their 
names. When the structure has cardinal 
ℵ0  it is natural to take integers or finite 
sequences of integers as names. When 
the cardinal is c , it is appropriate to 
take real numbers or sequences of real 
numbers as names. Most mathemati-
cal systems are described initially in 
terms of purely synthetic ideas with no 
reference to the real number system. 
Theorems concerning the existence of 
analytic representations for different 
types of structures [are] discussed.

He also wrote for the general reader. In Science 
in 1964 he explained the relationship between 

Mathematical Foundations of Quantum Mechanics, 
Princeton Univ. Press, 1954.
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Lida Barrett
Andy Gleason and the Mathematics 
Profession
I knew and respected Andy Gleason as a mathema-
tician for most of my career and most of his. His 
contributions to mathematics are well known and 
worthy of respect, but his overall contribution to 
the mathematics profession goes far beyond the 
mathematics he did, the courses he taught, the 
students he influenced, his role on the Harvard 
campus, and his extensive commitment to math-
ematics education. For many years Andy was the 
consummate person to call upon to represent the 
profession in a variety of settings. His credentials 
were impeccable: a Yale graduate, a Harvard pro-
fessor with a chair in mathematicks (with a “ck”) 
and natural philosophy. What better person to 
send to Washington to testify before a congres-
sional committee or to add to the Mathematical 
Science Education Board of the National Academy 
of Sciences or to have as a spokesperson at the 
Council of Scientific Society Presidents? Not only 
did he have the credentials, but when he spoke, he 
had something to say: thoughtful, well conceived, 
suitable to the audience, comprehensive, to the 
point, and, most likely, brief. His manner was gra-
cious and his demeanor modest. Raoul Bott said 
it well at Andy’s retirement party:

The straightness Andy brings to his 
mathematics he extends to all that 
have dealings with him. In these many 
years together I have never heard a 
word that seemed false in what he had 
to say. Nor have I seen him hesitate to 
take on any task, however onerous, for 
the welfare of the Department or the 
University. Needless to say, the rest 
of us are masters of this art. For, of 
course, the best way to avoid a chore is 
to be out of earshot when it is assigned. 
Hungarians imbibe this principle with 
their mother’s milk, but Andy, for all 
his brilliance, never seems to have 
learned it [GLIM].

1 We have been unable to locate a copy of the text of the 
lectures.

Lida Barrett is a former president of the Mathematical 
Association of America. Her email address is lidak@
bellsouth.net.
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3–11, 1986), American Mathematical Society, Provi-
dence, RI, 1987.

Deborah Hughes Hallett 
(with T. Christine Stevens, 
Jeff Tecosky-Feldman, and 
Thomas Tucker)
Andy Gleason: Teacher
Andy Gleason was a teacher in the widest possible 
sense of the word: he taught us mathematics, he 
taught us how to think, and he taught us how to 
treat others.

From Andy I learned the importance of a teacher 
seeing mathematics through both a mathemati-
cian’s and a student’s eyes. Andy’s mathematical 
breadth is legendary; his curiosity and empathy 
about the views of students, be they first-graders 
or graduate students, were equally remarkable. I 
vividly remember his concern in the early years 
of the AIDS epidemic that an example about the 
prevalence of HIV infections would upset students. 
Equally vivid in my memory is Andy’s delight when 
his approach to the definite integral and his insight 
into student understanding came together to pro-
duce a much better way to teach integration. This 
was one of dozens of occasions when Andy made 
those around him rethink familiar topics from a 
fresh viewpoint. New ideas about teaching bubbled 
out of Andy’s mind continuously; he was equally 
quick to recognize them in others. When one of 
his former Ph.D. students, Peter Taylor, sent Andy 
some calculus problems, Andy gleefully suggested 
that we try them. He regarded teaching mathemat-
ics—like doing mathematics—as both important 
and also genuinely fun.

In the Classroom and as an Advisor
At Harvard Andy regularly taught at every level. He 
never shied away from large, multisection courses 
with their associated administrative burden. He 
was always ready to step forward into the un-
charted territory of a new course in real analysis, 

topology and differential equations [DE]. His first 
paragraph sets the tone for that hard task:

It is notoriously difficult to convey 
the proper impression of the fron-
tiers of mathematics to nonspecial-
ists. Ultimately the difficulty stems 
from the fact that mathematics is an 
easier subject than the other sciences. 
Consequently, many of the important 
primary problems of the subject—that 
is, problems which can be understood 
by an intelligent outsider—have either 
been solved or carried to a point where 
an indirect approach is clearly required. 
The great bulk of pure mathematical 
research is concerned with secondary, 
tertiary, or higher-order problems, the 
very statement of which can hardly be 
understood until one has mastered a 
great deal of technical mathematics. 

In spite of these formidable difficulties, he con-
cludes his introduction:

I should like to give you a brief look 
at one of the most famous problems 
of mathematics, the n -body problem, 
to sketch how some important prob-
lems of topology are related to it, and 
finally to tell you about two important 
recent discoveries in topology whose 
significance is only beginning to be 
appreciated.

Needless to say, he succeeds.
The other essays in this collection detail the 

depth and significance of his work in mathematics 
and mathematics education. Here I have sought to 
acknowledge how he has contributed both to our 
profession and far beyond it, to the understanding 
of the role of mathematics in today’s world.

On a personal note, I found Andy the source 
of extraordinarily useful nonmathematical in-
formation. I have capitalized personally on his 
knowledge of interesting books, speeches, and 
other activities nationwide, and the latest scoop 
on restaurants and auto mechanics in the Cam-
bridge area. It was fun, rewarding, and challenging 
to work with him. I will miss his presence in the 
mathematics community.
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could understand, and that is exactly 
what Andy gave me. He helped salvage 
my mathematical career.

Andy’s work in Math 112 led to his only solo 
text in mathematics, Fundamentals of Abstract 
Analysis.1 In his review of the book, Dieudonné 
captures the essence of Andy’s pedagogy:2

Every working mathematician of course 
knows the difference between a lifeless 
chain of formalized propositions and 
the “feeling” one has (or tries to get) of 
a mathematical theory, and will prob-
ably agree that helping the student to 
reach that “inside” view is the ultimate 
goal of mathematical education; but he 
will usually give up any attempt at suc-
cessfully doing this except through oral 
teaching. The originality of the author 
is that he has tried to attain that goal in 
a textbook, and in the reviewer’s opin-
ion, he has succeeded remarkably well 
in this all but impossible task.

Over the course of his teaching career, Andy 
wrote hundreds of pages of lecture notes for his 
students, reworking them afresh each year. Some 
were handwritten on spirit duplicator sheets; some 
were typeset using macros he developed under 
an early version of Unix. More than lecture notes, 
these were complete with hand-drawn figures 
and exercises. His efforts in course development 
in the early 1970s included two complete unpub-
lished texts. The first was for a new full-year inte-
grated linear algebra/multivariable calculus course 
(Math 21) , the second for the history-based general 
education course Natural Sciences 1a: Introduction 
to Calculus.

Andy combined his interest in education, math-
ematics, and history in his design for Natural Sci-
ences 1a. Nothing like a standard treatment of the 
material, this course took a historical approach 
to the development of the basic ideas of calculus, 
beginning with an explication of Archimedes’ The 
Sand Reckoner and culminating with a derivation 
of Kepler’s laws of planetary motion from New-
ton’s physical laws.

Natural Sciences 1a was intended for the non-
specialist student with an interest in the history of 
ideas. Andy wanted the students to grapple with 
issues like irrationality and continuity. Many of 
his assignments asked students for nontechnical 
essays in which they explored the mathematics 
through personal contemplation. Students signing 
up for this course seeking an easy way to satisfy 

calculus, quantitative reasoning, or the history of 
mathematics.

Christine Stevens, one of Andy’s doctoral stu-
dents, writes:

I first encountered Andy in the fall of 
1971, when I enrolled in his course 
on The Structure of Locally Compact 
Topological Groups (Math 232). It goes 
without saying that the course was a 
model of lucid exposition, but I also re-
member Andy’s enthusiastic and often 
witty responses to students’ questions. 
Indeed, some of them are recorded in 
the margins of my notebook, alongside 
some rather deep mathematics. I also 
recall the cheerful energy with which 
he lectured one cold winter day when 
the heating system in Sever Hall had 
given out.

I eventually wrote my dissertation on an 
issue that Andy had mentioned in that 
course. We mapped out an approach 
in which the first step involved prov-
ing something that he deemed “almost 
certainly true.” When he commenced 
one of our subsequent appointments 
by asking me how things were going, I 
replied, “not too well.” I explained that I 
had proved that the statement that was 
“almost certainly true” was equivalent 
to something that we had agreed was 
probably false. To be honest, I was 
kind of down in the dumps about the 
situation. Andy’s response was immedi-
ate and encouraging. Without missing 
a beat, he replied, “Well, that’s not a 
problem. Just change the hypotheses!”

Courses, Books, and Classroom Notes
In 1964 Andy instituted a new course at Harvard, 
Math 112, to provide math majors a transition 
from the three-year calculus sequence to Math 212, 
the graduate course in real analysis. It functioned 
as an introduction to the spirit of abstract math-
ematics: first-order logic, the development of the 
real numbers from Peano’s axioms, countability 
and cardinality. This was the first of the “bridge” 
courses now ubiquitous for math majors, only 
twenty years before its time. Tom Tucker recalls:

I was a student in that first Math 112, 
and it was my first experience with 
Andy. He chided me that the course 
might be too elementary for me, since 
most students from Math 55 went 
straight on to Math 212. But I had taken 
Math 55 as my first course at Harvard 
and was still in shock. I needed some 
encouragement, something I really 

1 Gleason, A. M., Fundamentals of Abstract Analysis, pub-
lished first by Addison Wesley, then by A K Peters (1991).
2 Math Reviews: MR0202509 (34 #2378).
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a requirement got a lot more than they bargained 
for.

Educational Philosophy
Andy was always interested in how people learn. 
He really wanted to know what goes on in stu-
dents’ brains when they think about mathematics: 
the semantics, the grammar, the denotations and 
connotations, the cognition. His concern extended 
from teaching analysis to Harvard undergraduates 
to teaching arithmetic to grade school students. It 
was all important to him.

His educational philosophy combined the prag-
matic and the radical. He could be a stickler about 
precision, insisting always on “the function f ”, 
rather than “the function f (x)”, but the reasons 
were always cognitive—students often confuse 
the function with its formula. On the other hand, 
he did not insist on formality. He had no problem 
describing the continuity of the function f  at x  =  a  
as “you can make f (x) as close as you want to f (a ) 
by making x close enough to a .” The physicist 
Richard Feynman once criticized mathematicians 
for “preferring precision to clarity.” Andy always 
preferred clarity.

Andy’s inquiries about learning mathematics 
sometimes led to radical positions. In his article3 
“Delay the teaching of arithmetic” he suggested 
that the usual algorithms of arithmetic not be 
taught until grade 6. He cited work4 of Benezet on 
just such an experiment in the Manchester, NH, 
schools in the 1930s. The students not taught 
the algorithms learned them perfectly well in 
seventh grade, but their problem-solving ability, 
their willingness to “take responsibility for their 
answers,” was dramatically better than the control 
group’s. In his paper Andy recalls his own child-
hood math classes requiring four calculations 
for each day: a sum of seven 6-digit numbers, a 
subtraction of two 7-digit numbers, a product of 
a 6-digit number by a 3-digit number, and a long 
division of a 6-digit number by a 3-digit number; 
answers were graded right or wrong and 75% was 
passing. Andy estimates the number of individual 
operations for each problem and concludes that a 
student getting each operation correct with 99.5% 
probability would still average only 73, failing. As 
Andy remarked once on long division, getting even 
one problem correct out of ten indicates sufficient 
understanding of the algorithm.

Andy was acutely aware of the importance 
of students’ attitudes toward mathematics, as 
evidenced by his remarks5 in the 1980s to the 
National Academy of Sciences:

Andy’s Students (Thesis titles and year of degree)
Bolker, Ethan David
Functions resembling quotients of measures (1965).
Bredon, Glen Eugene 
Some theorems on transformation groups (1958).
Brown, Julia May Nowlin 
Homologies and elations of finite projective planes (1970). 
Cohen, Daniel Isaac Aryeh 
Small rings in critical maps (1975).
Cohn, Donald L 
Topics in liftings and stochastic processes (1975).
Getchell, Charles Lawrence 
Construction of rings in modular-lattices (1973).
Grabiner, Sandy 
Radical Banach algebras and formal power series (1967).
Hales, Raleigh Stanton, Jr. 
Numerical invariants and gamma products of graphs (1970).
Kennison, John Frederick 
Natural functors in topology and generalizations (1963).
Krause, Ralph Mack 
Minimal metric spaces (1959).
Kronstadt, Eric Paul 
Interpolating sequences in polydisks (1973).
MacWilliams, Florence Jessie 
Combinatorial problems of elementary abelian groups (1962).
Marcus, Daniel Alan 
Direct decompositions of commutative monoids (1972).
Monash, Curt Alfred 
Stochastic games: the minmax theorem (1979).
Oberg, Robert Joseph 
Functional differential equations with general perturbation of 
argument (1969).
Palais, Richard Sheldon 
A global formulation of the Lie theory of transformation groups 
(1956).
Phelps, Mason Miller 
The closed subalgebras of a commutative algebra over the real 
numbers (1958).
Puckette, Miller Smith 
Shannon entropy and the central limit theorem (1986).
Ragozin, David Lawrence 
Approximation theory on compact manifolds and Lie groups, with 
applications to harmonic analysis (1967).
Rochberg, Richard Howard 
Properties of isometries and almost isometries of some function 
algebras (1970). 
Sidney, Stuart Jay 
Powers of maximal ideals in function algebras (1966).
Spencer, Joel Harold 
Probabilistic methods in combinatorial theory (1970).
Stevens, Terrie Christine 
Weakened topologies for Lie groups (1979).
Stromquist, Walter Rees 
Some aspects of the four-color problem (1975).
Taylor, Peter Drummond 
The structure space of a Choquet simplex (1969).
Turyn, Richard Joseph 
Character sums and difference sets (1964).
Wang, Helen Pi 
Function-algebra extensions and analytic structures (1973).
Yale, Paul Blodgett 
A characterization of congruence groups in geometries of the 
Euclidean type (1959).

3 http://www.inference.phy.cam.ac.uk/sanjoy/
benezet/gleason.pdf.
4Benezet Centre, http://www.inference.phy.cam.
ac.uk/sanjoy/benezet/.
5 From unpublished notes in Gleason’s files.

http://www.inference.phy.cam.ac.uk/sanjoy/benezet/gleason.pdf
http://www.inference.phy.cam.ac.uk/sanjoy/benezet/gleason.pdf
http://www.inference.phy.cam.ac.uk/sanjoy/benezet/
http://www.inference.phy.cam.ac.uk/sanjoy/benezet/
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Theorem. Although the proposed curriculum 
would appear to be far too sophisticated by today’s 
standards, the space race loomed large in the pub-
lic mind and the need for highly trained scientists, 
mathematicians, and engineers became a national 
crusade. The SMSG program begun in 1959 was 
aimed at all students and was roundly criticized 
at the time as being inappropriate for average 
students and teachers. The Cambridge Conference 
appeared to be an attempt to woo research math-
ematicians to school reform through consideration 
of an “honors” track for the most able students. 
In that context, some critics complained the pro-
posed curriculum was “timid”!

In 1985–89, Andy helped establish the Math-
ematical Sciences Education Board to coordinate 
educational activities for all the mathematical 
professional organizations; his citation for the 
MAA Distinguished Service Award recognized the 
importance of this contribution. From the 1980s 
until his death, Andy was influential in calculus 
reform and the subsequent rethinking of other 
introductory college courses.

That a mathematician of Andy’s stature would 
take the time to think deeply about the school cur-
riculum made such work legitimate.

Quantitative Reasoning (QR)
In the late 1970s Harvard College undertook a 
sweeping reorganization of the General Education 
requirements. The new core curriculum replaced 
existing departmental offerings with specially 
designed courses in a broad variety of areas of 
discourse. It was hard to see how mathematics fit 
in the new core. Given his extensive contact with 
curricular projects and his interest in education, 
Andy was a natural choice to lead an investigation 
into what a mathematics requirement might be and 
how it was to be implemented.

Rather than drawing up a checklist of what 
kinds of mathematics a Harvard graduate should 
know, Andy instead started with the idea that at 
the very least, the core requirement in mathemat-
ics should prepare students for the kinds of math-
ematical, statistical, and quantitative ideas they’d 
be confronting in their other core courses. Working 
with faculty who were developing those courses, 
Andy quickly realized that the skills students 
required had more to do with the presentation, 
analysis, and interpretation of data than with any 
particular body of mathematics, such as calculus. 
Thus, the core Quantitative Reasoning Require-
ment, or QRR, was born.

So, long before quantitative literacy became a 
well-defined area of study with its own curriculum 
and textbooks, Andy and Professor Fred Mosteller 
of the Harvard statistics department developed a 
small set of objectives for the QRR. These included 
understanding discrete data and simple statis-
tics, distributions and histograms, and simple

Right now there is debate apparently 
existing as to how mathematics should 
react to the existence of calculators and 
computers in the public schools. What 
should be the effect on the curricu-
lum?…and so on. Now the unfortunate 
point of that is that there is even a 
very serious debate as to whether there 
should be an impact on the curriculum. 
That is what I regard as absolutely ri-
diculous. Let me just point out that… in 
this country there are probably 100,000 
fifth grade children right now learning 
to do long division problems. In that 
100,000 you will find very few who are 
not thoroughly aware that for a very 
small sum of money (like $10) they 
can buy a calculator which can do the 
problems better than they can ever 
hope to do them. It’s not just a ques-
tion of doing them just a little better. 
They do them faster, better, more ac-
curately than any human being can ever 
expect to do them and this is not lost 
on those fifth graders. It is an insult to 
their intelligence to tell them that they 
should be spending their time doing 
this. We are demonstrating that we do 
not respect them when we ask them to 
do this. We can only expect that they 
will not respect us when we do that.

About ten years ago Andy gave a talk at the Joint 
Mathematics Meetings in which he described how 
he had, some years previously, spent a summer 
teaching arithmetic to young children. His goal 
had been to find out how much they could figure 
out for themselves, given appropriate activities 
and the right guidance. At the end of his talk, 
someone asked Andy whether he had ever worried 
that teaching math to little kids wasn’t how faculty 
at research institutions should be spending their 
time. Christine Stevens remembers Andy’s quick 
and decisive response: “No, I didn’t think about 
that at all. I had a ball!”

Education at a National Level
Andy led in promoting the involvement of research 
mathematicians in issues of teaching and learning.

He was deeply involved with the reform of the 
U.S. mathematics K–12 curriculum in the post-
Sputnik era. He chaired the first advisory com-
mittee for the School Mathematics Study Group 
(SMSG), the group responsible for “the new math”. 
He was a codirector with Ted Martin of the 1963 
Cambridge Conference on School Mathematics. 
The report of that conference proposed an ambi-
tious curriculum for college-bound students that 
culminated in a full-blown course in multivariable 
calculus in n -dimensions including the Inverse 
Function Theorem, differential forms, and Stokes’ 
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calculus curriculum shaped many of our discus-
sions, and his vision inspired many of our innova-
tions. Andy hated to write—he saw the limitations 
of any exposition—so we quickly learned that the 
best way to get his ideas on paper was for one of us 
to write a first draft. This drew him in immediately 
as he reshaped, rephrased, and in essence rewrote 
the piece. That Andy could do this for twenty years 
without denting an ego is a testament to his skill 
as a teacher. Who else could say, as I responded 
to a flood of red ink by asking whether I’d made a 
mistake, “Oh no, much worse than that” and have it 
come across as a warm invitation to discussion? We 
all remember Andy remarking, “That’s an interest-
ing question!” and knowing that we were about to 
see in an utterly new light something we’d always 
thought we understood.

The 1988 NSF proposal led to a planning grant 
in 1989. The founding members of the consortium 
met for the first time in Andy’s office. Faculty 
from very different schools discovered to their 
surprise that students’ difficulties were similar in 
the Ivy League and in community colleges. A mul-
tiyear proposal followed, with features now com-
monplace in federally funded proposals but then 
unusual. Andy was skeptical about some of these 
and suggested we remove the section on dissemi-
nation—after all, he pointed out, we didn’t know 
whether what we’d write would be any good. When 
the proposal went to the NSF for feedback before 
the final submission, I got a call from the program 
director, Louise Raphael, asking about the missing 
section on dissemination. When I explained, Lou-
ise, who knew how things worked in DC, responded 
by saying I should tell Andy “not to be a mathema-
tician.” We then understood our mandate from the 
NSF to disseminate the discussion of the teaching 
of calculus to as many departments and faculty 
as possible. Over the next decade we gave more 
than one hundred workshops for college faculty 
and high school teachers, in which Andy played a 
full part—presenting, answering questions, and 
listening to concerns.

The debate about calculus benefitted enor-
mously from Andy’s participation. He became a 
father figure for calculus reform in general and 
the NSF-supported project at Harvard in particular. 
His goal was never reform per se; it was to discuss 
openly and seriously all aspects of mathematics 
learning and teaching. In 1997 Hyman Bass wrote6

 “It is the creation of this substantial community of 
professional mathematician-educators that is the 
most significant (and perhaps least anticipated) 
product of the calculus reform movement. This is 
an achievement of which our community can be 
justly proud and which deserves to be nurtured 
and enhanced.”

hypothesis testing. There was no reliance on high 
school algebra or other mathematics that students 
had seen before, since high schools had not yet 
begun offering an Advanced Placement Statistics 
course. So the requirement leveled the playing 
field—both math majors and history majors would 
have to learn something new to satisfy the QRR.

Andy also thought about implementing the 
QRR—how to help 1,600 first-year students meet 
the requirement without mounting an effort as 
large, and costly, as freshman writing. He decided 
that the ideas students were being asked to mas-
ter, while novel, were not very hard and that most 
students could learn them on their own, given 
the appropriate materials. For the small number 
of students who couldn’t learn from self-study 
materials, there would be a semester-long course.

So, in the summer of 1979, Andy gathered a 
team of about a dozen undergraduates (“the Core 
corps”) who wrote self-study materials and gath-
ered newspaper articles for practice problems. 
These were published as manuals and supplied 
to all entering students. Andy invited the student 
authors to his home in Maine that summer, which 
was typical of his friendliness and openness. Jeff 
Tecosky-Feldman, then the student leader of the 
Core corps, helped organize the trip to Maine. He 
recalls:

The other students were buzzing with 
the rumor that Andy had been involved 
in cracking the Japanese code in World 
War II, but were too timid to ask him 
about it themselves, so they put me up 
to it. When I asked Andy, his response 
was typical: “It would not be entirely in-
correct to say so”, and he left it at that.

Calculus
In January 1986 Andy participated in the Tulane 
Conference that proposed the “Lean and Lively” 
calculus curriculum. October 1987 saw Andy on 
the program at the “Calculus for a New Century” 
conference; in January 1988 the idea for the Cal-
culus Consortium based at Harvard took shape.

Andy’s role in the Calculus Consortium was 
without fanfare and without equal. He started by 
gently turning down my request that he be the PI 
on our first NSF proposal and, after a thirty-second 
silence that seemed to me interminable, suggested 
we be co-PIs. He then helped build one of the coun-
try’s first multi-institution collaborative groups. 
Now commonplace, such arrangements were at 
the time viewed with some skepticism at the NSF, 
whose program officers wondered whether such 
a large group could get anything done.

Throughout his time with the consortium, An-
dy’s words, in a voice that was never raised, were 
the keel that kept us on course. His view of the 
importance (or lack of it) of various topics in the 

6 Bass, H., Mathematicians as Educators, Notices of the 
AMS, January 1997.
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years that Professor Andrew Gleason served as 
its chair, from 1993 to 1996. The society gathers 
researchers from all fields: from astrophysics, 
classics, economics, and others, clear through 
to zoology. Fellows at the society spend three 
years free from any requirement or examination, 
pursuing, and I now quote from the vows that all 
new Fellows take: “a fragment of the truth, which 
from the separate approaches every true scholar 
is striving to descry.” On Monday nights in aca-
demic term-time, Junior Fellows converse with a 
dozen or so Senior Fellows, professors who not 
only elect Junior Fellows but also engage them 
in mind-opening conversations over suppers in a 
dining hall furnished to nourish these exchanges. 
Professor Gleason, who had himself been a Junior 
Fellow, officiated when I took my vows at the so-
ciety, and as chair he presided over Monday night 
dinners during my three years in his fellowship. 
This is how I knew him, and my fondness for him 
grew exponentially with each passing season at 
the society.

The first time I beheld Professor Gleason, here 
was the situation: It was a Monday morning at the 
so-called Yellow House, at 78 Mount Auburn Street 
here in Cambridge, the society’s administrative 
base camp. I was surely extremely nervous, because 
I was to be interviewed that very afternoon by the 
full assemblage of Senior Fellows, a terrifying pros-
pect—each Senior Fellow was an academic star in 
his respective field, and many were reputed to be 
intimidating. A Junior Fellow had been assigned 
the task of showing me about the building. At one 
point, noisily chattering, we made our way down a 
corridor, where an office door was opened widely. 
We paused there to look through the doorway. 
Inside the room, there was a man leaning back 
on his chair before an empty desk. His head was 

Andy—reasoned, calm, soft-spoken, a gentle-
man in every sense of the word—was dedicated 
to this community throughout his life.

Outside the Classroom
Andy had an extraordinary range of knowledge. 
He talked about baseball scores, horsemanship,7 
Chinese food in San Francisco, and the architecture 
of New York with the same insight he talked about 
mathematics. He was fascinated by every detail of 
the world around him. He persuaded a camera-
man to show him the inside of the video camera 
when we were supposed to be videotaping. When 
we were “bumped” to first-class on a plane, Andy 
was much less interested in the preflight drink 
service than in listening to the pilots’ radio chat-
ter so that he could calculate the amount of fuel 
being loaded onto the plane. To the end of his life, 
Andy investigated the world with a newcomer’s 
unjaded curiosity.

Andy inspired rather than taught many of us. 
His transparent honesty and humility were so 
striking that they were impossible to ignore. For 
example, before publishing my first textbook, I 
asked him how authors got started, since pub-
lishers wanted established names. Andy replied 
matter-of-factly, “Most people never do,” returning 
to me the responsibility to achieve this.

Andy’s moral influence was enormous. Always 
above the fray and without a mean bone in his 
body, Andy commanded respect without raising 
his voice. His moral standards were high—very 
high—making those around him aspire to his toler-
ance, understanding, and civility. Andy’s presence 
alone forged cooperation.

In his commentary on the first book of Euclid’s 
Elements, Proclus described Plato as having “…
aroused a sense of wonder for mathematics 
amongst students.” These same words character-
ize Andy. Through the courses he taught and the 
lectures that he gave for teachers, Andy inspired 
thousands of students with his sense of the won-
der and excitement of mathematics. Through him, 
many learned to see the world through a math-
ematical lens.

Leslie Dunton-Downer
Andrew Gleason—a Remembrance. 
Remarks Delivered at the Memorial Service, 
Memorial Church, Harvard University, 
November 14, 2008
I was a Junior Fellow in Comparative Literature 
at the Harvard Society of Fellows during the final 

7 Andy’s daughters are accomplished equestrians.

Leslie Dunton-Downer is a writer. She thanks Jean Berko 
Gleason, Diana Morse, Martha Eddison, and Melissa 
Franklin for their help in preparing this remembrance.

Gleason on a horse farm, with the inevitable clipboard under 
his arm.
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And the glow of this grass.

The last time that I saw Andrew Gleason was 
at the annual dinner held by the society in May 
of this year. The gathering took place at the Fogg 
Museum, a few meters to the east of here. On that 
occasion, many Junior Fellows from Professor 
Gleason’s time as chair gathered to catch up with 
one another and with him. He had led us through 
our fellowship years with a light touch, a seem-
ingly invisible touch. He always encouraged each 
fellow to wrestle with those daunting “fragments 
of truth” on his or her own terms, come what may. 
It had only been with hindsight, after leaving the 
society, that many of us came to appreciate the 
subtle qualities of his leadership, how he shaped 
our lives, both inwardly and in action, even as he 
had often seemed chiefly to be deciphering the 
world, working things out in his head.

Stephen Hawking published this observation 
twenty years ago, by chance on the eve of Professor 
Gleason’s becoming chair at the society: “We do 
not know what is happening at the moment farther 
away in the universe: the light that we see from 
distant galaxies left them millions of years ago, 
and in the case of the most distant object that we 
have seen, the light left some eight thousand mil-
lion years ago. Thus, when we look at the universe, 
we are seeing it as it was in the past.”

Perhaps we are only now beginning to see An-
drew Gleason. Those of us who had the privilege 
to know him will cherish the light that he casts 
out to us, even in his absence—perhaps all the 
more forcefully because of his absence or, rather, 
because he has now become a beautiful part of the 
beauty that he once admired.

References
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Jean Berko Gleason
A Life Well Lived
I would like to begin these remarks by thanking 
everyone on behalf of our family—myself and our 
daughters, Katherine, Pam, and Cynthia—for the 
outpouring of hundreds of messages that we have 
received about Andy and your friendship with him. 
A number of themes stood out in these messages: 
you often talked of his brilliance, his kindness, 
his sense of humor, his generosity, fairness, and 
welcoming spirit. Newcomers to the Society of Fel-
lows or to the mathematics department at Harvard 
were not only made to feel at home, but they had 

tilted skyward, and his eyes focused on a point that 
appeared to be on the ceiling, but may have been 
further off. We stood there for an awkward few 
beats. I believe that we were together unsure if the 
man was about to greet us or if we ought to take 
the initiative to greet him. But he remained still, 
absorbed in his own world. The Junior Fellow and 
I shrugged at each other and continued on our way 
until we reached a common room out of earshot. 
I turned to her, made a quizzical face, and asked, 
“What was that man doing?” “Math,” she said.

I had never before seen a real mathematician 
in the act of doing math. I was mystified by the 
absence of any tools in his office. Wouldn’t he 
require a calculator or a slide rule or something 
to inspire himself to be mathematical—maybe a 
chessboard or a Rubik’s Cube? At the very least, 
what about a pencil and paper? She shook her 
head: “That mathematician is Andrew Gleason. He 
works in his head.”

Professor Gleason was, I think by disposition, 
a decipherer. He had deciphered codes and math-
ematical problems and as a hobby took delight in 
deciphering the movements of celestial bodies. On 
Monday nights Professor Gleason sat at the head 
of a horseshoe-shaped table in the society’s dining 
room. Like all chairs at the society, he would guide 
his flocks of Junior Fellows in his own way, leav-
ing his own signature on the institution. He was 
not a garrulous chair—“Oscar Wildean” is not the 
first adjectival phrase that comes leaping to mind 
to describe his conversational style—but he could 
become animated suddenly, and with deep sincer-
ity, when conversation turned to subjects close to 
his heart: astronomy, classical music, and, among 
so many others, of course, math.

Much of the time he would listen or observe with 
his extraordinary Gleasonian powers of concentra-
tion. Many of us wondered what he was thinking 
on those occasions when he was so sharply present 
yet enigmatically silent. Perhaps he was decipher-
ing us. He never made a single judgmental remark; 
his leadership was delicate, trusting, and sure-
footed. He put out a strong aura of principled tran-
quility, as if his Junior Fellows’ paths, and indeed 
the paths of all people and objects and ideas in his 
midst, no matter how rough, were part of a larger 
pattern that would eventually become clearer to 
him. I found a poem that captures this Professor 
Gleason, the one whom I and others came to know 
in a quiet way and to love with great respect, a man 
whose presence we now begin to sense expanding 
through all that he discerned. He seems to be pres-
ent in these lines by Robinson Jeffers:

I admired the beauty
While I was human, now I am part of the beauty.
I wander in the air,
Being mostly gas and water, and flow in the ocean;
Touch you and Asia
At the same moment; have a hand in the sunrises

Jean Berko Gleason is professor emerita of psychology at 
Boston University. Her email address is gleason@bu.edu.
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first woman to come ashore at Plymouth Rock. But 
perhaps you did not know that Andy was also just 
a little bit Italian. His middle name, Mattei, came 
from his grandfather, Andrew Mattei, an Italian-
Swiss winemaker who came to Fresno, California, 
and established vineyards, where he prospered 
and produced prizewinning wine. Andrew Mattei’s 
daughter, Theodolinda Mattei, went to Mills Col-
lege in California and on graduation did what all 
wealthy, well-bred young women of the day did: 
she embarked on the grand tour, a trip around 
the world via steamship, with, of course, a chap-
erone. On board ship Theodolinda met a dashing 
young botanist on his way to collect exotic plant 
specimens. This quickly became a classic ship-
board romance and led to the marriage in 1915 
of Theodolinda Mattei and Henry Allan Gleason, 
who was to become not only Andrew’s father but 
a famous botanist, chief curator of the New York 
Botanical Garden, and early taxonomist and ecolo-
gist whose work is still cited—he wrote the classic 
works on the plants of North America. Andy had 
an older brother, Henry Allan Gleason Jr.; Andy’s 
older sister, Anne, is one of the smartest people I 
have ever met.

We were married on January 26, 1959. This 
was actually the day of the final examination in 
the course Andy was teaching. So he gave out the 
blue books at 2:15 and came here to the Appleton 
Chapel of The Memorial Church to get married at 
3 p.m. We took a wedding trip to New Orleans, and 
he did not bring the exams. Over the next forty-
nine years we raised our three talented daughters, 
bought a house in Cambridge and a wonderful 
house on a lake in Maine, and traveled all over the 
world, sometimes to see some of Andy’s favorite 
things, which included total eclipses of the sun, 
most recently in 2006 sailing off the coast of 
Turkey. We were both teaching, of course, and 
maintaining our own careers, but we managed to 
have a lot of fun too. During those forty-nine years 
Andy maintained the calm spirit he was known for 
and really never raised his voice in anger. He had 
a great sense of humor and was extraordinarily 
generous, giving away surprisingly large sums of 
money, often to his favorite schools: Harvard and 
his alma mater, Yale.

Because mathematics was truly his calling, Andy 
never stopped doing mathematics. He carried a 
clipboard with him even around the house and 
filled sheets of paper with ideas and mysterious (to 
me) numbers. When he was in the hospital during 
his last weeks, visitors found him thinking deeply 
about new problems. He was an eminent math-
ematician. He was also a good man, and he led a 
good life. We are sorry it did not last a little longer.

Note: Unless otherwise indicated, all photo-
graphs and other images in this article are courtesy 
of Jean Berko Gleason.

rigorous intellectual discussions with Andy in 
which they found that their views and opinions 
were both challenged and respected. An hour’s 
talk left you with weeks of things to think about.

Others will speak about Andrew Gleason’s last-
ing contributions to science and to education. I 
would like to tell you a little bit about him as a 
person. I met Andy Gleason by accident over fifty 
years ago. I was a graduate student at Radcliffe 
College and he was a young Harvard professor, 
luckily not in my field, which is psycholinguistics. 
But I had friends in the Harvard mathematics de-
partment who were giving a party. When they told 
me that the famous Tom Lehrer was going to be 
at the party and that he might also play the piano 
and sing, I decided to go. Tom did sing, but I never 
got across the crowded room to meet him. Instead 
I met this slim young fellow who invited me out 
to dinner. So that was the beginning of our rela-
tionship, which soon led to a marriage that lasted 
forty-nine years. Since Andy was not the type of 
person to talk about himself very much, I’d like 
to tell you a few things about his origins that you 
may not know.

You may think of Andy as quintessentially 
New England, white Anglo-Saxon Protestant—the 
blue eyes, the pale skin, the disinterest in worldly 
goods. It is mostly true: his father was a member 
of the Mayflower Society. Andy was a direct descen-
dent of four people who came on the Mayflower, 
including Mary Chilton, who by tradition was the 

Andy and Jean in 1958.
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