1 Setting up the Mathematical Problem

1.1 Answer to Question 0

C(O’IA ®(x,1)=f(x)

B(2,1)
AP=0
®(0,y)=0 ®(2,y)=0
o
0(0,0) ®(x,0)=0 A(20)
Figure 1.1:
0*’d 9%
W + 8—y2 =0 (1.1)

®(0,y) =0 and P(2,y)=0 for0<y<1
O(2,0)=0 and P(x,1)= f(x) for0<ax <2



2 Obtaining the Exact Solution

2.1 Answer for Question 1(i)

> f(x):=piecewise(x>0 and x<=3/4, 200*x/3, x>3/4 and x<=5/4, 50,

x>5/4 and x<=3/2, 100*(3-2*x), x>3/2 and x<2,

200,

0);

3
50 3crp<?®
f(z) : 3 (2.1)
100(3 — 2z) 1<r<3
0 S<z<?2
> flodd] (x) :=piecewise(x>-2 and x<0, -subs(x=-x,f(x)), x>0 and x<2,
f(x));
0 —2<z< -3
3 5
—100(3 = 2z) —35 <z < -3
5 3
—50 —a<z<—3
200 3
0dd(T) = 2.2
fdd( ) 23&1_ 0< 2 S% ( )
50 S<r<t
1003 —2z) S<a<3
0 S<r<2

> plot(f[odd] (x), x=0..2);
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Figure 2.1: foq4(x)



2.2 Answer for Question 1(ii)

> alpha[n] :=simplify(csch(n*Pi*/2)*int (f (x)*sin(n*Pi*x/2),x=0..2));

_ 800sin (227) 4 3sin (227) — 3sin (247)
-3 sinh (22 ) n2r2

O,

(2.3)

2.3 Answer for Question 1(iii)

> alpha[1]:=evalf (subs(n=1,alphal[n]));

ap = 18.48

> alpha[2] :=evalf (subs(n=2,alphaln]));

ag = 0.9275

> alpha[3]:=evalf (subs(n=3,alphal[n]));
s = —0.1970

> alpha[4]:=evalf (subs(n=4,alphaln]));
ay = 0.01261

> alpha[5] :=evalf (subs(n=5,alphal[n]));

as = 0.0004956



2.4 Answer for Question 1(iv)

> Phi[N] (x,y) :=simplify(sum(alpha[n]*sin(n*Pi*x/2)*sinh(n*Pix*y/2),
n=1..N);

i (sin (227) + sin (%) — sin (237)) sin ("52) sinh (“5%)
800 = sinh (% )n?
CI)N(QC,y) = 7 =1 7_(_2 2

(2.4)
> plot3d(subs(N=1, Phi[N](x,y)), x=0..2, y=0..1));
> plot3d(subs(N=20, Phi[N](x,y)), x=0..2, y=0..1));
> plot3d(subs(N=50, Phi[N](x,y)), x=0..2, y=0..1));
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Figure 2.2: ®y(x,y) for N =1,20,50

Figure 2.2 shows ®n(z,y) for N = 1,20, 50. This shows that as N is increased,
the accuracy of approximation to the origional function is increased. However,
making N very large would require alot of time for computation, therefore N
was chosen to be 50 as figure 2.2(c) shows a good approximation to f(x), but
is small enough to allow for easy computation.



2.5 Answer for Question 1(v)

> contourplot (subs(N=50, Phi[N](x,y)), x=0..2, y=0..1, coloring=[blue,red],
contours=51) ;
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Figure 2.3:



2.6 Answer for Question 1(vi)

> T[50] (x,y) :=simplify (subs (N=50, Phil[N] (x,y)));

i (sin (387 +sin (327) — sin (327)) sin (222) sinh (22¥)
800 ;= sinh (&£ )n?
T50(£C,y) _ ? =1 7_[_2( 2 )

(2.5)
> T[50](1/2,1/2) :=evalf (subs(x=1/2, y=1/2, T[50](x,y)));

11
T —, = =12.
50 <272> 770

> T[50](1,1/4) :=evalf (subs(x=1, y=1/4, T[50] (x,y)));

1
Tso (1, Z) = 7.736

> T[50](1,1/2) :=evalf (subs(x=1, y=1/2, T[50](x,y)));

1
Tso <1, 5) = 17.083

> T[50](1,3/4) :=evalf(subs(x=1, y=3/4, T[50](x,y)));

7%0<1,%> = 30.379
> T[50] (1,1) :=evalf (subs(x=1, y=1, T[50](x,y)));
T50 (1,1) = 50.013

> T[50](3/2,1/2) :=evalf (subs(x=3/2, y=1/2, T[50](x,y)));

31
T —, — ] =8.440
50 (27 2)



2.7 Answer for Question 1(vii)

The centre of the plate is located at (1, %) The temperature at this point has
already been calculated in section 2.6 and is shown in equation 2.6.

k= 17.083 (2.6)

Using Maple to solve f(z) = k for = gives:

> solve(f(x)=k, x);
x = 0.2562, 1.4146

Since both of these occur on the top boundary (i.e. y = 1), the coordinates at
which the boundary of the plate is equal to k°C are (0.2562, 1) and (1.4146, 1).



2.8 Answer for Question 1(viii)

> q[N] (%) :=simplify(subs(y=x/2, Phi[N](x,y)));

& (o (1) s (55) s () s (5) s (45)
800 27 sinh (%)n2

aN (‘T) = 3 7T2

(2.7)
> plot(subs(N=50, q[N](x,y)), x=0..2)
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Figure 2.4: gs0(x)



3 Obtaining a Numerical Solution

3.1 Answer for Question 2(i)

A ®(x,1)=f(x)

®(0,y)=0 ®(2,y)=0

®(x,0)=0 e
Figure 3.1:

The number of unknown variables in this problem is represented by the
number of internal grid points. Expressing this as a function of M (the number
of intervals along the y-axis) gives equation 3.1.
2M —1)(M —-1)

2M? —3M + 1 (3.1)



3.2 Answer for Question 2(ii)

The standard finite difference approximation to Laplace’s equation for ®(z,y)
is given in equation 3.2.

(I)i+1,j + (I)ifl,j + (I)i,j+1 + (I)i.,jfl - 4(1)1'_4' =0 (32)

3.2.1 Answer for Question 2(ii)(a)

A

Y,
Y,

Yo >
X, X, X, X, X,
Figure 3.2:

For j=1andi=1:
Do +Po1+ P12+ Prop—4P11=0
—4®q 1 + P = —33.3 (3.3)
For j =1 and i =2:
D31+ P11+ Poo+ Pyg—4Py1 =0
Q11 —4P2 ;1 + P31 = —50 (3.4)
For j =1 and i = 3:
Dy + P+ P30+ P3g—4P31 =0
Dy —4P31 =0 (3.5)
Matrix equation:
41 0] [®4] [-333
1 4 1] || =] 50 (3.6)
0 1 —4| |P31 0
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Figure 3.3:

3.2.2 Answer for Question 2(ii)(b)

For j =3 and i = 1:

For j =3 and i = 2:

For j =3 and i = 3:

For j =3 and i = 4:

For j =3 and i = 5:

For j =3 and i = 6:

Do3+Pog+ P g+ Pro—4P13=0

@172 — 4(13173 + (132,3 = —-16.7

D33+ P13+ Poy+ Popo—4Pr3=0

Poo+ P13 — 4P 3P33 = —33.3

Dy3+Pog+ P34+ P3o—4P33=0

P39+ Py 3 —4P3 3+ Py3 = —50

D53+ P33+ Pyg+ Pyo—40s3=0

Dy + P33 — 4Py 3P53 = —50

D3+ Py3+ P54+ P50 —4P53=0

D50+ Py3—4D5 3+ Pg 3 = —50

D73+ P53+ P g+ Pgo—4Ps3=0

11

(3.7)

(3.10)

(3.11)



Dp o+ P53 — 4P 3+ Pr3 =0 (3.12)
Forj=3andi="T:

@8,3 + @6,3 + (1)714 + (1)712 — 4@773 =0

D70+ Pg3 —4P73+ Pg3=0 (3.13)
Matrix equation:

D9

Dy o

D30
1 000000 -4 1 0 0 0 0 0] $4’2 [—16.7]
01000001—410000(I)“"*2 —33.3
001000001—41000(If**2 —50
0001000001—4100(1)7’2:—50
00001000001—410(1)1’3 —50
000001000001—41(1)2’3 0
0000O0OO0OD11T 0 0 0 0 0 1 -4 3,3 0
L 4| Pys L §

D53

D63

_¢7’3_
(3.14)
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3.3 Answer for Question 2(iii)

3.3.1 Answer for Question 2(iii)(a)

Equation 3.15 shows the initial estimate of temperature at ®; ;.

DDy
2

®) 1 =16.7

Dy =

Equation 3.16 shows the initial estimate of temperature at ®3 ;.

Dyo— Dy
2

Byq =25

Dy =

Equation 3.17 shows the initial estimate of temperature at ®3 ;.

B30 — D3
2

P31 =0

O3 =

3.3.2 Answer for Question 2(iii)(b)

The Gauss-Seidel iteration equations are:

P, +33.3

@k-‘rl _
1,1 4

L 4+ @k 450

(I)k-l—l _
2,1 4
k+1
: 2,1
(I)k+1 — 5
3,1 4

(3.15)

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

Using these equations convergence correct to 3 decimal places was achieved after

7 iterations as shown in table 1.

k] o®f, | 9, 5,
0 | 16.6667 | 25.0000 | 0.0000
1 | 14.5833 | 16.1458 | 4.0365
2 | 12.3698 | 16.6016 | 4.1504
3 | 12.4837 | 16.6585 | 4.1646
4| 12.4980 | 16.6656 | 4.1664
5 | 12.4997 | 16.6665 | 4.1666
6 | 12.5000 | 16.6667 | 4.1667
7 | 12.5000 | 16.6667 | 4.1667
8 | 12.5000 | 16.6667 | 4.1667

Table 1: Gauss-Seidel iterations

The temperatures at points (%, %), (1, %) and (%, %) are given by ®q 1, ®2
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and @3 1 respectively. The temperatures at points (1,1), (%, 0) are given by the

boundary conditions of the plate. Therefore the temperatures are as follows:

14



4 Comparison of the Exact Solution and the Nu-
merical Solution

4.1 Answer for Question 3
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