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Summary. Dynamical systems with two degrees of free-
dom can be reduced to the study of a two-dimensional
mapping. Here, we consider discrete mappings operating
only on integers. This allows an exact numerical study,
without round-off errors. Any point belongs to a finite
cycle. These mappings are strictly one-to-one.

We define, for comparison, a “random mapping” and
we give its principal properties. In some cases, these

properties are very similar to the observed properties
of definite mappings.

Key words: surface of section — plane area preserving
mapping — ergodic properties — numerical experiments —
dynamical systems

1. Introduction

Some problems of celestial mechanics are equivalent to
the study of a dynamical system with two degrees of
freedom for which the Hamiltonian does not depend on
the time. A method to study this problem is the method
of the “surface of section”. It consists essentially in
considering not a complete trajectory in the phase-space,
but only its successive intersections with a certain
“surface of section”. All the most interesting charac-
teristics of the trajectories of the dynamical problem
are reflected into equivalent properties of the sequence
of points thus obtained. This method has been intro-
duced by Poincaré (1892) and used afterwards by
Birkhoff (1917) for theoretical purposes. Then it has
been used in the numerical study of many different
problems (see for instance Hénon and Heiles, 1964).
Poincaré has shown that there is an area preserving
mapping T between these points:

Py, P,=T(P,),..., P, =T"(P,).

But it is in general impossible to write this mapping as

a function of the hamiltonian. We are obliged to choose

a particular mapping and we study the set of points

obtained by repeated applications of the mapping T.

For instance, let us consider the following mapping
Xy =X;+y;+1—cosy; mod2zn

T . (1)
Vir1=Y;—Asinx;, ; + 1 —cosx;,;) mod2n

—n<x<4+7nw —n<x<+T.

In the last section (V) we shall give the reasons for this
choice. The determinant of the jacobian matrix is equal

to 1. This mapping has two invariant points I, (x =0,
y=0) and I,(x = — /2, y=0). A is a positive parameter.
For A >4, I, and I, are unstable; for 1 <4, I, is stable
and I, is unstable (Rannou, 1972).

Figure 1 shows typical sets of points for some initial
conditions (x,,y,) and for A=1.30. 1000 points are
plotted for each of these five sequences. We can see
two regions in the plane. Round the invariant point I,
the points seem to lie on invariant curves (two sequences).
The curves are deforming and diluting (one sequence).
By degrees, they make an “ergodic” figure (two se-
quences). This figure is not symmetrical with respect
to the invariant point I, .

II. A Discrete Mapping T*

1. Motivations

a) In a numerical study a computer is used to calculate
the coordinates of the points by repeated applications
of a mapping T':

{xi+ 1=f(x:, )

2
Vir1=9(x; ) @

where f and g are real functions. We call this the
continuous case.

But the computer retains only a fixed number of digits
and makes round-off errors. Another computer will
not give the same results. In the “ergodic” part of the
plane after many applications of the mapping T, the
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Fig. 1. Five sets of point for A = 1.30, obtained by repeated applications of the mapping T [see Eq. (1)]

resulting error increases exponentially. We obtain
approximate values only. To avoid this, we shall try
to define a mapping which operates only on integers.
The computer will then give exact and reproducible
results. We call this the discrete case.

b) In fact, that is more or less what the computer does,
but in an uncontrolled way. To define a mapping in
the discrete case is equivalent to giving explicit rules
of round-off to the computer.

¢) The mathematical mapping T is a bijection. From
one point (x;, y;), we obtain by application of T only
one other point (x;,, y;+,) and conversely. But the

mapping studied on the computer gives sometimes the
same point for two different points because of the
round-off errors. It is possible to define a mapping
T* in the discrete case which is strictly one-to-one as
we shall see below.

d) In the continucus case, the number of points which
can be obtained by repeated applications of the map-
ping is generally infinite. We must choose arbitrarily the
total number of points plotted for each value of the
initial point. On the contrary in the discrete case, the
number of accessible points is finite. Any set of points
always goes back to the initial point.
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e) For the same reason in the discrete case, we can
explore all the accessible points, the only limitation
being computer storage.

f) In the discrete case, we can define rigorously a
“random mapping” and find its principal properties
(see Section III).

2. An Example

We shall show how to define a discrete mapping T*
derived from the continuous mapping T given by the
Eq. (1) (see Fig. 2). We divide the x axis between — =
and + 7 in m equal segments, m being an even number.

2 . .
We write x= Wna. We do the same thing with the
. 2
y axis between —=n and +7 with y=7nb. a and b

are integers on the nodes of the square lattice thus
defined. We call m the “discretisation”. We substitute

these x and y values in the expression of the mapping
T. We obtain:

mod m

)
Am{( . 2z 2n
by,=b;— o s1n7ai+1 +1— COS— ~G;4y mod m

2
a;.,=0a;+b; +1(1 — cos—ibi)
2 m

a; and b; are integers. We want a;,, and b;,, to be
also integers. Therefore we define our mapping T* by:

2
a;,,=a;+b;+ [ﬂ<1 — cos—mlb,-)] mod m

T+ 2n @
im( . 2m 2n
by, =b;— s sm?aiﬂ+1—cosgai+1
mod m
b}y
+—';‘— 43t
= b +C X
_m ofa mn
2 r2 °
m o
- 2 x

Fig. 2. Square lattice used to define a discrete mapping

where [ X] represents the integer nearest to X. If X is
exactly equal to ¢ + 0.5, ¢ being an integer, the computer
chooses [X]=c+1.

3. Some Properties of T*

a) The mapping T* is a one-to-one mapping of the
(a, b) space over itself. o

b) Because the number of accessible points is finite, a
set of points Py, P, = T*(P,), ..., P, = T*"(P,) is coming
back.

¢) A set of points cannot come back on another point
that on the initial point P,. One point can belong only
to one cycle.

d) All the points reached by repeated applications of
the mapping T* from an initial point P,, make a cycle.
It is clear that each point of a cycle can be the initial
point of that cycle.

e) The mapping T* has two invariant points I, (0, 0)
and L(—%, 0), if m is a multiple of 4. For 1 >4, other
invariant points can appear. These points can also be
considered as cycles of length 1.

The following figures show some examples. Figure 3
shows one cycle around the invariant point I, for
A=1.30 and m=400. It has roughly the shape of an
ellipse, with an appreciable thickness. Its length is
382 points.

Figure 4 shows a cycle of 100384 points for the same
mapping. The points seem to fill the plane in a random
way with the exception of an oval region around the
invariant point I,. That region is occupied by short
cycles of the kind shown by Fig. 3. Thus there are two
parts in the plane: a little region around the invariant
point (0,0) and the rest of the plane that seems to be
“ergodic”. For A = 10, the situatior is quite different.
Figure 5 shows a cycle of 104037 points. All these points
seem to be plotted in a random way in the entire plane.
This figure suggests that we should try to define and
study a “random mapping”.

II1. A Random Mapping

In the discrete case, the total number of accessible points
is M=m?, if m is the “discretisation”. A one-to-one
mapping can be considered as a permutation of these
M points. It is possible to make M! permutations of
M points, therefore there are M! possible mappings.
We define a random mapping I~ simply by attributing
the same probability 1/M! to each actual mapping.
This random mapping has the following properties:

1. the probability to obtain a cycle of given length n
from a given point A, is

P.=1/M.

Note that p, is independent of n.

2. the average length of the cycle originating at a given
+1

y

point is equal to
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Fig. 3. A cycle of 382 points obtained with T* for 4 =1.30 and m =400. It lies in the oval region shown in Fig. 4

3. the average number of cycles of all lengths is nearly
equal to log, M +y, where y is Euler’s constant.

The proofs are not difficult. They will not be given
here (see Rannou, 1972).

IV. Numerical Results

We have considered two cases:

for A=1.30 I,(0,0) is an invariant stable point and
L(—%,0) is an invariant unstable point
if m is multiple of 4.

for A=10 I, and I, are invariant unstable points.

1. Chart of Initial Points

Arbitrarily, we have chosen to explore the accessible
points from bottom to top, and from the left to the
right. The coordinates of the initial point of the first
cycle are (a=1—1%, b=1—1%). Any point that is found
in this exploration and does not belong to a cycle
already obtained, is the initial point of a new cycle.
These points are plotted on the Fig. 6 for A=1.30 and
m=2800. We see that they fill two different regions
near the invariant point I;, and at the bottom of the
plane. This clearly corresponds to the two regions
already found (Fig. 3 and 4). In the case 1= 10, we find
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Fig. 4. A cycle of 100384 points obtained with the discrete mapping T* [see Eq. (4)] for 1= 1.30 and m =400

only an “ergodic” region and the initial points are all
at the bottom of the plane.

2. Total Number of Cycles

A=1.30.

The observed total number of cycles is larger than the
number calculated for a random mapping, because of
the stability of the invariant point I;. Around this point,
there are short cycles. But with the help of charts of the
kind shown by Fig. 6, we can easily discriminate cycles
belonging to the ergodic region to the small “stable”

region around I,, and count them separately. The result
is shown in the last two columns of Table 1.

In the ergodic region, the number of cycles is close to
log,m? +y.

We can neglect the non ergodic region which has a
small area. In the short cycles region, the number of
cycles is larger and approximately proportional to m.

A=10.

For A =10, the total number of cycles is very similar
to that of a random mapping, as shown by the following
table.
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Fig. 5. A cycle of 104037 points obtained with T* for 1 =10 and m =400

Table 1. Table 2.
Total number of cycles m Total number of cycles
Discretisation Random mapping Numerical experiments Random Numerical
m “Ergodic”  Short cycles mapping experiments
region region
300 11.9 8 33 300 11.98 11
400 12.4 9 48 400 12.56 12
500 129 12 59 500 13.01 11
600 134 12 60 600 13.37 20
700 13.6 14 67 700 13.68 13
800 13.8 10 88 800 13.95 12
Total number of cycles for A =1.30 and different values of the dis- Total number of cycles for A=10. and different values of the dis-
cretisation m cretisation m.
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Fig. 6. Chart of the initial points for A= 1.30 and m =800

3. Longest Cycle and Average Length

The length of the longest cycle is between 65% and 85%
of the accessible points. It lies always in the “ergodic”
region. For example, 4 is 10, m is 800. The longest cycle
has 435570 points and represents 68.05% of the acces-
sible points. Table 3 shows that the average length
obtained by numerical experiments is similar to that
calculated with a random mapping for 4 =10. It is the
average length of the cycle from a given initial point
ie. Zn*/M where M =m? and n represents the length
of a cycle.

Table 3

Discretisation Average length

m Random Numerical
mapping experiments

300 45000 49540

400 80000 77663

500 125000 187508

600 180000 190215

700 245000 162770

800 320000 355709

Average length for 1= 10. Comparison between a random mapping
and numerical experiments on T*.
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For m=700 and 1= 10., the results are not very similar
because there are two longest cycles that are symmetrical
with respect to the invariant point I;.

4. Cumulation Distribution of Cycles

We compute the number of points that belong to cycles
of length less than, or equal to n, as a function of n,
which we call f(n). The greatest value of n is m?, the
total number of accessible points.

In the case of a random mapping 7, the average number
of cycles containing n points is 1/n. Thus the average
number of points belonging to cycles of n points is 1,
and the average number of points belonging to cycles
of length less than or equal to n is f(n) =n (see Rannou,
1972).

Figure 7 shows with logarithmic scales, the theoretical
function f(n) and the observed function. The two func-
tions are quite similar. There A is 10 and m is 800. Thus,
we see that the properties of the mapping T* given by
Eq. (4) are very similar to those of a random mapping.
The total number of cycles is small. The detailed distribu-
tion of cycle lengths is in agreement with the theory.

V. Remarks on the Choice of a Discrete Mapping
The mapping given by Eq. (4) that we have studied

derives from the mapping introduced by Taylor (1969):.

T, {xi+1 =X;+Y; mod2n )

0 Vi+1 =Yi—Asin(x; +y;) mod2zn

—n<x<+4+nT —-nT<y<+m.

In fact, our work on discrete mappings started with the
form (5) (Rannou, 1972). Later, however, it became

F. Rannou

clear that this mapping has hidden symmetries and
degeneracies which produce particular properties, and
therefore is not a typical representative of mappings at
large. This will be explained in the present section. The
mapping T, was therefore replaced by the more compli-
cated mapping T [Eq. (1)], in which the symmetries
are eliminated, and which appears to be free from
degeneracy. We proceed now to the study of T,. The
determinant of the Jacobian matrix is equal to 1. This
mapping has two invariant points I;(x =0, y=0) and
I,(x=+m,y=0). Ais a positive parameter. For 1>4,
I, and I, are unstable; for A<4, I, is stable and I, is
unstable.

1. Description

In Fig. 8, we have plotted nine sets of points, for 1 = 1.30.
We can compare this figure with Fig. 1. We see three
regions in the plane. The invariant curve region round
the invariant point I, is larger on Fig. 8, and the curves
are symmetrical with respect of the point I,. The ergodic
region is smaller on Fig. 8 and between these two
regions, we see cycles that are deformed and they are
diluting to make by degrees, the “ergodic” region.
Now, we define the discrete mapping T in the same
way as above (see Section III).

a;+1=a;+b; modm
x4 (6)

im . 2m
bi+1=bi_ 2—nsm7(ai+bi) mOdm

a; and b, are again integers.

Figure 9 shows two cycles for A=1.30 and m=_800.
One cycle is made of “islands”. It has 6180 points and
it is the longest cycle. In the middle, there is a cycle
that resembles an ellipse with knots around the in-
variant point I;.

Figure 10 shows one cycle for A=1.30 and m=700.
The length of this cycle is 3878 points. This set of points
fills up a large part of the plane but the density of points
is much less than on Fig. 4.

Figure 11 shows again one cycle for A =10. and m = 700.
This cycle is constituted by 3218 points. These points
seem to fill the plane in a quasi random way, but also
here, the density of points is much less than on Fig. 5.

2. The Mapping T§ is Very Different from a Random
Mapping

Indeed, in the two cases A=1.30 and A= 10, we find
too many cycles and only comparatively short cycles.
The Table 4 shows the results for 4 = 10.

The mapping T¢ is very different from a random
mapping. This fact was very puzzling to us for a while,
until we found the explanation which is as follows.
The mapping T, is the product of two plane area-
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Fig. 8. Typical sets of points for nine initial conditions (x,, yo) and for 4 =1.30 obtained by repeated applications of the mapping T, [see Eq. (5)].
Each set has 1000 points

Table 4

m Total number of cycles Length
Random  Numerical Random  Numerical experi-
mapping experiments mapping ments.

average Longest cycle.

300 11.98 592 45000 1394

400 12.56 768 80000 2058

500 13.01 986 125000 3932

600 13.37 1164 180000 2400

700 13.68 1364 245000 3218

800 13.95 1566 320000 3954

This table represents the results of T¢ for 4 = 10. and different values
of the discretisation m.

preserving mappings:
R s
P, Q; > Py
(i y) Kiv1>¥) Kiw 1 Vie )

R{x:=x+y s{x:=x .
y=y y=y—Aisinx.

On Fig. 12, we see that to any set of points obtained
by alternating applications of the mappings R and S,
there corresponds another set of points that is symmetri-
cal with respect to the x axis and described in the
opposite direction.

™
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Fig. 9. Two sets of points obtained with the discrete mapping T [see Eq. (6)] for A = 1.30 and m =800

A similar symmetry exists with respect to the y axis.
A complete analysis reveals the existence of seven
cases of symmetry; they are schematically represented
on Fig. 13.

In the case of the mapping T} we write similarly:

a=a+b a=a
R{b'=b S{ [Am w } ®)
b=b— |—sin—a
2n m

and the same symmetries exist. Because of these, the
mapping TF is degenerate and its properties are dif-
ferent from those of a random mapping. In particular

the cycles tend to close back much earlier. A full analysis,
taking the symmetries into account but assuming
randomness otherwise, gives results in very good
agreement with the observed properties (Rannou, 1972);
for instance the predicted total number of cycles for
m =700 is 1330 (against 1364 observed) and the predicted
length of the longest cycle is 3383 (against 3218 ob-
served).

In order to get rid of the symmetries, we note that (7)
can be generalized to

xX'=x4+f() x'=x
R{y’ =y S{y' =y+g(x). ©)
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Fig. 10. A cycle obtained with T for A = 1.30 and m = 700. The length of this cycle is 3878 points

The symmetries of T;, result from the fact that f and g
are added functions: f(—y)=— f(»); g(—x)= —g(x).
We therefore modify the mapping T, by adding even
terms that destroy the symmetries. These functions
should be periodic with period 2z. Also it is convenient
to leave the point I(0, 0) invariant. These considerations
led us to the mapping T given by Eq. (1).

VI. Conclusions

1. The figures obtained by repeated applications of a
discrete mapping are generally similar to those obtained

from a continuous mapping, or from the solution of
the differential equations representing a mechanical

- system. See for instance Fig. 8 and 9. For Fig. 9 the

discretisation is high (m =800). But similar results are
also found for a rough discretisation (m=200). This
encourages the view that conventional computer studies
are not seriously affected by round-off errors, since m
is then typically of the order of 108.

2. In the discrete case, the total number of accessible
points is finite and equal to m2. This has allowed us
to define and study new quantities such as the total
number of cycles or the length of a cycle.
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! y
+ 3
3. When A >4, i.e. when the two invariant points are
a4 unstabl;, the figures suggest a quasi-random bel!aviour.
st R Accordingly, we have defined a “random mapping” for
P go which some simple properties have been found. The
P Ra observgd propertiqs agree remarkably wellh with thp
o 1 +1 'z X theoretical properties of the random mapping. Parti-
g cularly the total number of cycles and the average
R length of a cycle are very similar to those of a random
Q; p=—P; mapping (Section IV).
Qi'ov‘l R d s
S Pi+1
R+2
Fig. 12. Symmetry of the mapping T, with respect to the x axis
-3
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Q; |Piyq Pil1
Q iy —- it —
] ) X - 1Q;
Q; §P) |x 1 Ix x f G e | P % | |9 il
of 1 o | 0 0 0 0
Pj<|-‘l
= =1 % sin x. = L= ==y, X;= 3
Y; 0 yj..2 Asin x;,q y -ixiggitng x;=0 X; 2] ]
y y
I a | Pl
Symmetries with Pjsn Symmetries with it i
respect of the X respect of the X
x axis 0 y axis 0
Q
H
yj=1'r+32-)\sin %41 Xl=:“m12—yj

Fig. 13. The seven cases of symmetry of the mapping T,

4. This study has shown, one the other hand, that one
must be cautious in the choice of a representative
mapping: certain symmetries can make the mapping
degenerate (Section V).

5. In the discrete case, it is possible to study the “ergodic”
part of the plane in a better way than with a continuous
mapping. Figures 4 and 5 show that the points of one
cycle in this region are distributed in a random way.
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