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1 Introduction

We will consider linear operators in complex Hilbert Spaces. To fix notation,
generally we will denote any Hilbert Space by H, possibly with a subindex. On
H, denote the inner product by (, ). For any operator T on H, by D(T ) we mean
the domain of T and by T ∗ the adjoint of T . We will always deal with operators
having dense domain, i.e. D(T ) = H. By σ(T ), we denote the spectrum of T .
For a detailed introduction of the above definitions and notations, one can refer
to The Schrödinger Equation by F.A. Berezin and M.A. Shubin. Now let us
give a useful definition of an eigenvalue of a self adjoint operator.

Definition 1.1 If T is a self-adjoint operator on H (i.e. T = T ∗), then f ∈ H
is an eigenvector of T with eigenvalue λ if and only if for any g ∈ D(T ), we
have (f, Tg) = λ(f, g).

Notice the advantage of this definition than the usual definition of eigenvalue. In
the above definition, f does not have to be in the domain of T . Any eigenvalue of
an operator T is always in the spectrum of T . Now let us show with an example
that an operator T can have an infinite spectrum while the set of eigenvalues of
T is empty.

Example 1.2 Let H = L2(R, dx), and let T be the operator of multiplication
by x in H. Then any λ ∈ R is in the spectrum of T , because the operator of
multiplication by 1

x−λ is an unbounded operator in H. But such a λ can not be
an eigenvalue, because if Tf = λf for some non-zero f ∈ H, f(x) · (x− λ) ≡ 0,
which means that f(x) = 0 almost everywhere, contradiction. So T has no
eigenvalue.

One can notice that from the above argument such an f is in fact the δ−function.
But we know that δ−function is not in L2(R, dx).
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We will show that for some special kind of operators, with some extension
H− ofH, we can find some elements inH− acting like eigenvectors of an operator
A ∈ H, namely Generalized Eigenvectors. For this we need to define Hilbert-
Schmidt operators and some properties of these operators in the next section.

2 Hilbert-Schmidt Operators

Definition 2.1 A bounded linear operator K : H1 → H2 is a Hilbert-Schmidt
operator if for an orthonormal basis {eα} of H1 the sum

∑
α ||Keα||2 is finite.

When this sum is finite, we define

||K||22 =
∑
α

||Keα||2

as the Hilbert-Schmidt norm of K.

Remark 2.2 1. If K is a Hilbert-Schmidt operator, ||K||2 is well defined.

2. If K is a Hilbert-Schmidt operator, K∗ is also Hilbert-Schmidt and ||K∗||2 =
||K||2.

3. For any Hilbert-Schmidt operator K, ||K|| ≤ ||K||2.

4. For any separable Hilbert Space, there exists a Hilbert-Schmidt operator
such that K = K∗ and ker K = 0.

Proof 2.3 1. Let {fα} be an orthonormal basis in H2. Then since ||Keα||2 =∑
β |(Keα, fβ)|2, we have

||K||22 =
∑
α

||Keα||2 =
∑
α,β

|(eα,K∗fβ)|2 =
∑

β

||K∗fβ ||2 = ||K∗||22

which proves that the HS-Norm is independent of basis in H1.

2. Given in (1).

3. Let a =
∑

α aαeα ∈ H1. Then

||Ka||2 = ||
∑
α

aαKeα||2 ≤

(∑
α

|aα|||Keα||

)2

≤
∑

β

|aβ |2 ·
∑
α

||Keα||2 = ||K||22||a||2,

i.e. ||Ka|| ≤ ||K||2||a|| which proves (3).

4. Let {ei} be an orthonormal basis of H, {λi} be an l2 sequence with all
λi > 0. Then for any a =

∑
i aiei ∈ H, define Ka =

∑
i λiaiei. One can

check that this operator K satisfies all the required properties.
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Next proposition describes the form of Hilbert-Schmidt operators between
two L2− spaces.

Proposition 2.4 An operator K : L2(M1, dµ1) → L2(M2, dµ2) is a Hilbert-
Schmidt operator if and only if there exists K(m2,m1) ∈ L2(M2×M1, dµ2×dµ1)
such that

Ka(m2) =
∫

M1

K(m2,m1) · a(m1)dµ1

where the function K(m2,m1) is uniquely defined except on a set of zero measure
(in dµ2 × dµ1) and

||K||22 =
∫ ∫

|K(m2,m1)|2dµ2dµ1.

Proof 2.5 Let H1 = L2(M1, dµ1) and H2 = L2(M2, dµ2) and let {eα(m1)} and
{fβ(m2)} be basis of H1 and H2 respectively.
Now first let us show that {eα(m1)fβ(m2)} constitute a complete orthonormal
system in L2(M2 ×M1); for this take any F ∈ L2(M2 ×M1), if∫ ∫

F (m2,m1)eα(m1)fβ(m2)dµ1dµ2 = 0

then by Fubini’s theorem for almost all m1,
∫

M2
F (m2,m1)fβ(m2)dµ2 = 0 so

for any m1, for almost all m2, F (m2,m1) = 0, i.e. F is almost everywhere 0,
so {eα(m1)fβ(m2)} is a basis for L2(M2 ×M1).

Now assume that K is a Hilbert-Schmidt Operator,

Ka = K

(∑
α

(a, eα)eα

)
=
∑
α,β

(a, eα)(Keα, fβ)fβ

and ||K||22 =
∑
α,β

|(Keα, fβ)|2 < +∞.

Then define K(m2,m1) =
∑

α,β(Keα, fβ)eα(m1)fβ(m2). Then clearly
K(m2,m1) ∈ L2(M2xM1), and ||K||22 = ||K(m2,m1)||L2(M2xM1). Conversely if
Ka(m2) =

∫
M1

K(m2,m1)a(m1)dµ1, then

K(m2,m1) =
∑
α,β

cαβfβ(m2)eα(m1),

then since
∑

α,β |cαβ |2 < +∞ and Keα =
∑

β cαβfβ, we get ||K||22 =
∑

α,β |cαβ |2
which proves that K is a Hilbert-Schmidt Operator.

3 Hilbert-Schmidt Riggings

Let K : H → H be a Hilbert-Schmidt Operator such that kerK = ker K∗ = 0.
Then define H+ = KH, i.e. H+ is the image of the operator K. Then define
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||.||+ on H+. So if Kf = u, ||u||+ = ||K−1u|| = ||f ||. Then H+ is Banach Space
in ||.||+−norm. Now define H− := {Continuous, anti-linear functionals onH+}.
So if α ∈ H−, then α satisfies the following:

• |α(u)| ≤ Cα||u||+, ∀u ∈ H+(continuity).

• α(λ1u + λ2v) = λ1α(u) + λ2α(v)(anti− linearity.

From now on for α ∈ H− and u ∈ H+ by (α, u) we will mean α(u). Note that
for any f ∈ H, we can define a continuous anti-linear functional corresponding
to f as lf (u) = (f, u) which implies that H ⊂ H− and note that |lf (u)| ≤
||f || · ||u|| ≤ C · ||u||+. Then setting (u, α) := (α, u) gives an extension of the
inner product on H. So we get a triple of spaces

H+ ⊂ H ⊂ H−,

which is called a Hilbert-Schmidt Rigging.

Proposition 3.1 H− is obtained from H by taking the completion with respect
to norm defined by

(f, g)− = (K∗f,K∗g), f, g ∈ H.

Proof 3.2 We need to show that ||h||− = ||K∗h|| ∀h ∈ H and H is dense in
H− in the topology of H−. To show this; letting Kf = h+,

||h||− = sup
||h+||+=1

|(h, h+)| = sup
||f ||=1

|(h, Kf)| = sup
||f ||=1

|(K∗h, f)| = ||K∗h||.

To show denseness of H in H−, extend K∗ : H− → H as an isometry, i.e.
∀h1, h2 ∈ H, (K∗h1,K

∗h2)− = (h1, h2). If H is not dense in H−, there exists
a non-zero h ∈ H− such that (h, f)− = 0 ∀f ∈ H. Let K∗h = h1 ∈ H, then
(K∗h, K∗f) = (h, f)− = 0 so (h1,K

∗f) = (Kh1, f) = 0 ∀f ∈ H then Kh1 = 0,
contradictng the fact that K is injective.

4 Generalized Eigenfunctions

Definition 4.1 Let M be a measure space, A a self-adjoint operator and φ(m) :
M → H− a vector valued function taking values in H−, rigging of a Hilbert Space
H. Then φ(m) is called a complete system of generalized eigenvectors of A if;

1. ∀h+ ∈ H+, the function m 7→ (h+, φ(m)) is in L2(M,dµ).

2. We can extend the map h+ 7→ (h+, φ(.)) to a unitary operator U : H →
L2(M,dµ).

3. There exists a real valued function a = a(m) that is measurable and almost
everywhere finite on M and is such that A = U−1âU where â is the
multiplication operator by he function a = a(m) in L2(M,dµ).
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Now we can state the main theorem;

Theorem 4.2 let H be a Hilbert Space. Given a self-adjoint operator A in
H and a Hilbert − Schmidt rigging of H, there exists a complete system of
generalized eigenfunctions of A.

Proof 4.3 Using spectral theorem we can think of A as the multiplication op-
erator by a(m) in L2(M,dµ). Again using the same theorem we can think of
H as L2(M,dµ). Let K be the Hilbert-Schmidt operator used in constructing
the Hilbert-Schmidt rigging of H or equivalently of L2(M,dµ). Now taking as
H = L2(M,dµ) and A = a(m), since K is a Hilbert-Schmidt operator on an L2

space, by proposition 2.4 there exists K(m1,m2) ∈ L2(M × M,dµ × dµ) such
that for any f ∈ L2(M,dµ), Kf(m) =

∫
M
K(m,m1)f(m1)dµ(m1).

Now we will take the δ−function at m as the functional φ(m) on H+.
Define φ(m) := δλ(m) = δ(m− λ), the delta function at m, so

(f, φ(m)) = f(m), f ∈ H+.

Then assuming Kg = f for some g ∈ H,

(f, φ(m)) = (Kg, φ(m)) =
∫

M

K(m,m1)g(m1)dµ(m1).

Now φ(m) is defined for almost all m, since;

||φ(m)||2− = sup
||g||=1,g∈H

|(Kg, φ(m)|2 = sup
||g||=1

(∫
M

K(m,m1)g(m1)dµ(m1)
)2

≤
∫

M

|K(m,m1)|2 dµ(m1) < +∞

for almost all m, where the last inequality follows from Fubini’s theorem.
Now taking g = K(m,m1)

||K|| , we have φ(m) ≥
∫

M
|K(m,m1)|2 dµ(m1) which implies

that
||φ(m)||2− =

∫
M

(K(m,m1))
2
dµ(m1).

so φ(m) is defined for almost all m.

Example 4.4 Returning back to example 1.2, for the multiplication operator
by x on L2(R.dx), applying the construction given in the above proof one can
see that φ(m) = δ(m) and what is more we have the following equality:

(xf(x), φ(λ)) = λ (f(x), φ(λ))

which means that δ(λ) is a (generalized) eigenfuntion of the multiplication op-
erator corresponding to eigenvalue λ for any λ ∈ R.
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