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1 Introduction

We will consider linear operators in complex Hilbert Spaces. To fix notation,
generally we will denote any Hilbert Space by H, possibly with a subindex. On
'H, denote the inner product by (,). For any operator T on H, by D(T) we mean
the domain of T and by T™ the adjoint of T. We will always deal with operators
having dense domain, i.e. D(T) = H. By o(T), we denote the spectrum of T'.
For a detailed introduction of the above definitions and notations, one can refer
to The Schrodinger Equation by F.A. Berezin and M.A. Shubin. Now let us
give a useful definition of an eigenvalue of a self adjoint operator.

Definition 1.1 If T is a self-adjoint operator on H (i.e. T =T%), then f € H
is an eigenvector of T with eigenvalue A if and only if for any g € D(T), we

have (f,Tg) = A(f,9).

Notice the advantage of this definition than the usual definition of eigenvalue. In
the above definition, f does not have to be in the domain of T'. Any eigenvalue of
an operator T is always in the spectrum of 7. Now let us show with an example
that an operator 1" can have an infinite spectrum while the set of eigenvalues of
T is empty.

Example 1.2 Let H = L?(R,dx), and let T be the operator of multiplication
by x in H. Then any A € R is in the spectrum of T, because the operator of
multiplication by ﬁ s an unbounded operator in H. But such a A can not be
an eigenvalue, because if Tf = \f for some non-zero f € H, f(z)-(x — ) =0,
which means that f(x) = 0 almost everywhere, contradiction. So T has no
etgenvalue.

One can notice that from the above argument such an f is in fact the d —function.
But we know that §—function is not in L?(R, dz).



We will show that for some special kind of operators, with some extension
H_ of H, we can find some elements in H_ acting like eigenvectors of an operator
A € H, namely Generalized Eigenvectors. For this we need to define Hilbert-
Schmidt operators and some properties of these operators in the next section.

2 Hilbert-Schmidt Operators

Definition 2.1 A bounded linear operator K : Hy — Ho is a Hilbert-Schmidt
operator if for an orthonormal basis {eo} of Hi the sum Y., ||Ken||? is finite.
When this sum is finite, we define

K115 =) I1Keal?

as the Hilbert-Schmidt norm of K.

Remark 2.2 1. If K is a Hilbert-Schmidt operator, ||K||2 is well defined.

2. If K is a Hilbert-Schmidt operator, K* is also Hilbert-Schmidt and || K*||2 =
K2

3. For any Hilbert-Schmidt operator K, || K|| < || K]|z2-

4. For any separable Hilbert Space, there exists a Hilbert-Schmidt operator
such that K = K* and ker K = 0.

Proof 2.3 1. Let{f,} be an orthonormal basis in Hy. Then since || Key||* =
251 (Kea, f5)I?, we have

K15 =D 1Keal® =D lea, K* fo)I* = Y 11K foll* = [|K7]13
o o, 5

which proves that the HS-Norm is independent of basis in H;.
2. Given in (1).
3. Leta=7Y_ aneq € Hi. Then

2
1Kal? = | aakeal? < (Z |aa|||f<ea||>

<D lagl - Y [1Keal? = [|K][3]lal?,
el o

i.e. ||Kal| <||K]||2||al| which proves (3).

4. Let {e;} be an orthonormal basis of H, {\:i} be an la sequence with all
Xi > 0. Then for any a =, a;e; € H, define Ka =), \ija;e;. One can
check that this operator K satisfies all the required properties.



Next proposition describes the form of Hilbert-Schmidt operators between
two L?— spaces.

Proposition 2.4 An operator K : L?(My,du1) — L?(Ma,dus) is a Hilbert-
Schmidt operator if and only if there exists K(ma,my) € L?(Myx My, dpa X djiy)
such that
Ka(my) = K(mg, my) - a(my)duy
My

where the function K(ma, m1) is uniquely defined except on a set of zero measure
(in dug X dpy ) and

K2 = / / (g, ma) [2dpiads.

Proof 2.5 Let Hy = L*(My,du1) and Ha = L?(Ma,dps) and let {eqo(m1)} and
{fs(m2)} be basis of H1 and Ha respectively.

Now first let us show that {eq(ma)fa(mz)} constitute a complete orthonormal
system in L?(My x My); for this take any F € L?(My x My), if

//F(m27m1)mfﬁ(mz)dmduz =0

then by Fubini’s theorem for almost all m, fMQ F(mg,mq)fg(ma)dps = 0 so
for any mq, for almost all ma, F(mg,my) =0, i.e. F is almost everywhere 0,
50 {eq(mi1)fa(ma)} is a basis for L*(My x My).

Now assume that K is a Hilbert-Schmidt Operator,

Ka=K <Z(a7€a)ea> = Z(a?ea)(KeOé?fﬁ)fﬁ

[eY o,

and || K3 =) |(Kea, f5)I* < +oc.
e

Then define K(ma,m1) =3_, 5(Kea, fg)ea(mi)fz(mz). Then clearly
K(ma,my) € L*(MaaMy), and ||K|3 = ||K(ma2, m1)||2(Mpwnsy)- Conversely if
Ka(mz) = [, K(ma,m1)a(mi)du, then

K(ma,m1) = capfa(ma)ea(mr),
o

then since 3, 5|capl® < +00 and Keq = 3 5 capfa, we get [|K||5 =3, 5lcapl?
which proves that K is a Hilbert-Schmidt Operator.

3 Hilbert-Schmidt Riggings

Let K : ' H — H be a Hilbert-Schmidt Operator such that ker K = ker K* = 0.
Then define Hy = K'H, i.e. Hy is the image of the operator K. Then define



|||+ on Hy. Soif Kf =u, ||u|ls = ||K " ul|| = ||f]|. Then H is Banach Space
in ||.||+ —norm. Now define H_ := {Continuous, anti-linear functionals onH }.
So if & € H_, then « satisfies the following:

o |a(u)| < Cyllull+, Yu € Hy(continuity).
o a(Mu+ Av) = Aa(u) + Aaa(v)(anti — linearity.

From now on for o« € H_ and u € H4 by (o, u) we will mean a(u). Note that
for any f € H, we can define a continuous anti-linear functional corresponding
to f as ly(u) = (f,u) which implies that H C H_ and note that |l;(u)| <

[I£1] - Nlul] < C - |ull+. Then setting (u,«) := (a,u) gives an extension of the
inner product on H. So we get a triple of spaces

Hi CHCH-,

which is called a Hilbert-Schmidt Rigging.

Proposition 3.1 H_ is obtained from H by taking the completion with respect
to norm defined by

(f,9)- = (K" f,K"g), f,geH.

Proof 3.2 We need to show that ||h]|—- = ||[K*h|| Yh € H and H is dense in
H_ in the topology of H_. To show this; letting K f = h,

Ihll- = sup [(h,hy)l = sup |(h,Kf)|= sup [(K"h,[f)]=|K"h].
1R =1 1£11=1 1£11=1

To show denseness of H in H_, extend K* : H_ — H as an isometry, i.e.
Vhi,he € H, (K*hy, K*he)_ = (h1,h2). If H is not dense in H_, there exists
a non-zero h € H_ such that (h,f)- = 0Vf € H. Let K*h = hy € H, then
(K*h,K*f) = (h, f)— =0 s0 (hh, K*f) = (Kh1,f) =0VYf € H then Khy =0,
contradictng the fact that K is injective.

4 Generalized Eigenfunctions

Definition 4.1 Let M be a measure space, A a self-adjoint operator and ¢(m) :
M — H_ avector valued function taking values in H_, rigging of a Hilbert Space
H. Then ¢(m) is called a complete system of generalized eigenvectors of A if;

1. Vhy € Hy, the function m — (hy, ¢(m)) is in L*(M,dpu).

2. We can extend the map hy — (hy,é(.)) to a unitary operator U : H —
L2(M, dp).

3. There exists a real valued function a = a(m) that is measurable and almost
everywhere finite on M and is such that A = U~'aU where a is the
multiplication operator by he function a = a(m) in L*(M,du).



Now we can state the main theorem;

Theorem 4.2 let 'H be a Hilbert Space. Given a self-adjoint operator A in
‘H and a Hilbert — Schmidt rigging of ‘H, there exists a complete system of
generalized eigenfunctions of A.

Proof 4.3 Using spectral theorem we can think of A as the multiplication op-
erator by a(m) in L*(M,du). Again using the same theorem we can think of
H as L*(M,du). Let K be the Hilbert-Schmidt operator used in constructing
the Hilbert-Schmidt rigging of H or equivalently of L*(M,du). Now taking as
H = L*(M,dp) and A = a(m), since K is a Hilbert-Schmidt operator on an L?
space, by proposition 2.4 there exists K(myi,ma) € L?*(M x M,du x du) such
that for any f € L*(M,du), K f(m) = [,, K(m,mq) f(m1)dp(my).

Now we will take the §—function at m as the functional ¢p(m) on Hy.

Define ¢(m) := dx(m) = 6(m — X), the delta function at m, so

(f,¢(m)) = f(m), feH.
Then assuming Kg = f for some g € H,
(F,6(m)) = (K, 0(m)) = [ Kmma)g(ms)dutm).
M
Now ¢(m) is defined for almost all m, since;

lo(m)l2 =  sup (memﬁzym(Afmmmmmmwmm)

llgll=1,9€H llgll=1

< [ Vetm,mo)P? duma) < +oc
M

for almost all m, where the last inequality follows from Fubini’s theorem.
K(m,m1)

Now taking g = =g, we have p(m) > [,, IK(m, ma)|? dp(my) which implies
that

o2 = [ (Ctm,m)? dutm).
M
so ¢(m) is defined for almost all m.

Example 4.4 Returning back to example 1.2, for the multiplication operator
by x on L*(R.dx), applying the construction given in the above proof one can
see that ¢(m) = 6(m) and what is more we have the following equality:

(@ f(2), p(N) = A (f(2), 6(N))

which means that 6(X\) is a (generalized) eigenfuntion of the multiplication op-
erator corresponding to eigenvalue \ for any A € R.



