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The development of the method of exhaustion beyond the point to which Archimedes

carried it had to wait nearly eighteen centuries until the use of algebraic symbols and

techniques  a standard part of mathematics. The elementary algebra that is familiar

to most high-school students today was completely unknown in Archimedes’ time, and it

would have been next to impossible to extend his method to  general  of regions

without some  way of expressing rather lengthy calculations in a compact and

simplified form.

A slow but revolutionary change in the development of mathematical notations began

in the 16th Century A.D. The cumbersome system of Roman numerals was gradually 

 by the Hindu-Arabie characters used today, the symbols + and  were introduced

for the first time, and the advantages of the  notation began to be recognized.

 this  period, the brilliant successes of the Italian mathematicians Tartaglia,

FIGURE 1.2 The method of exhaustion applied to a semicircular region.

 and Ferrari in  algebraic solutions of cubic and quartic equations 

lated a great  of  in mathematics and  the growth and acceptance of a

new and superior algebraic language. With the widespread introduction of well-chosen

algebraic symbols,  was revived in the  method of exhaustion and a large

number of fragmentary results were discovered in the 16th Century by  pioneers as

Cavalieri, Toricelli, Roberval,  Pascal, and Wallis.

Gradually the method of exhaustion was transformed into the subject now called integral

calculus, a new and powerful discipline with a large variety of applications, not only to

geometrical problems  with  and volumes but also to problems in other

sciences. This  of mathematics, which retained some of the original features of the

method of exhaustion, received its biggest impetus in the 17th Century, largely due to the

efforts of Isaac Newton (1642-1727) and Gottfried Leibniz  and its 

ment  well into the 19th Century before the subject was put on a firm mathematical

basis by  men as Augustin-Louis Cauchy (1789-1857) and Bernhard Riemann (1826-

1866). Further refinements and extensions of the theory are still being carried  in

contemporary mathematics.

I l . 3 The method of exhaustion for the  of a parabolic segment

Before we proceed to a systematic treatment of integral calculus, it  be instructive

to apply the method of exhaustion directly to  of the  figures treated by 

 himself. The region in question is shown in Figure 1.3 and  be described as

follows: If we  an arbitrary point on the base of this figure and  its distance

from 0 by  then the vertical distance from this point to the  is  In particular, if

the length of the base itself is b, the altitude of the figure is The vertical distance from

x to the  is called the “ordinate” at x. The  itself is an example of what is known
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as a parabola. The region bounded by it and the two line segments is called a parabolic
segment.

This figure  be  in a rectangle of base b and altitude as shown in Figure 1.3.

Examination of the figure suggests that the  of the parabolic segment is less than half

the  of the rectangle. Archimedes made the surprising discovery that the  of the

parabolic segment is exactly that of the rectangle; that is to  A = where

A  the  of the parabolic segment. We shall show presently how to arrive at this

result.

It should be pointed  that the parabolic segment in Figure 1.3 is not shown exactly as

Archimedes drew it and the details that follow are not exactly the  as those used by him.
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FIGURE 1.5 Calculation of the  of a parabolic segment.
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Nevertheless, the essential ideas are those of Archimedes; what is presented here is the

method of exhaustion in modern notation.

The method is simply this: We  the figure into a number of strips and obtain two

approximations to the region,  from below and  from above, by using two sets of

rectangles as illustrated in Figure 1.4. (We use rectangles rather than arbitrary polygons to

simplify the computations.) The  of the parabolic segment is larger than the total 

of the inner rectangles but smaller than that of the  rectangles.

If  strip is further subdivided to obtain a new approximation with a larger number

of strips, the total  of the inner rectangles increases, whereas the total  of the 

rectangles decreases. Archimedes realized that an approximation to the  within 

desired degree of accuracy  be obtained by simply taking enough strips.

Let us carry  the  computations that are required in this case. For the sake of

 we subdivide the base into n parts,  of length (see Figure 1.5). The

points of subdivision correspond to the following values of x:

(n nb

n n n n n

A typical point of subdivision corresponds to x = where k takes the successive values

k = 0,  3, . . . , n. At  point we  the  rectangle of altitude 

as illustrated in Figure 1.5. The  of this rectangle is the  of its base and altitude

and is equal to

Let us  by  the sum of the  of  the  rectangles. Then  the 

rectangle has we obtain the formula

 +  +  + . +

In the  way we obtain a formula for the sum  of  the inner rectangles:

 +  +  +  + (n  .

This brings us to a  important stage in the calculation. Notice that the 

plying in Equation (1.1) is the sum of the squares of the first n integers:

 +  +  .  + 

[The corresponding  in Equation (1.2) is similar  that the sum has only n 1

terms.] For a large value of n, the  of this sum by direct addition of its terms is

tedious and Fortunately there is an interesting identity which makes it possible
.

to  this sum in a simpler way, namely,
,

 +  + 
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This identity is valid for every integer  1 and  be proved as follows: Start with the

formula (k + = + + 3k + 1 and rewrite it in the form

 + 3k + 1  + 

n  1, we get n  1 formulas

 + 1) + 1 =  (n 

When we add these formulas,  the terms on the right  two and we obtain

 +  + + (n  +  +  . . . + (n  +  1) = 

The second sum on the left is the sum of terms in an arithmetic progression and it simplifies

to  1). Therefore this last equation gives us

to both members, we obtain (1.3).

For our purposes, we do not need the exact expressions given in the right-hand members

of (1.3) and (1.4).  we need are the two inequalities

+  1)” <  <  +  + . . . + 

which are valid for every integer n  1. These inequalities  de deduced easily as 

 of (1.3) and  or they  be proved directly by induction. (A  by

induction is given in Section 14.1.)

If we multiply both inequalities in (1.5) by n and make use of (1.1) and  we obtain

for every n. The inequalities in (1.6)  us that is a number which lies between  and

 for every  We  now prove that is the number which has this property. In

other words, we  that if A is  number which satisfies the inequalities

( 1 . 7 )  A 

for every positive integer n, then A = It is because of this  that Archimedes

concluded that the  of the parabolic segment is 


