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Fig. 11.4 (a) Translations in the Euclidean plane represented by oriented line
scgments. The double-arrowed segment represents the composition of the other
two, by the triangle law. (b) For rotations in Euclidean 3-space, the segments are
now great-circle arcs drawn on the unit sphere, each representing a rotation
through rwice the angle measured by the arc (about an axis perpendicular to its
plane). To see why this works, reflect the triangle made by the arcs, in each vertex
in turn. The first rotation takes triangle 1 into triangle 2, the second takes triangle
2 into triangle 3, and the composition takes triangle 1 into triangle 3. (c) The
quaternionic relation ij = k (in the form i( —j) = —k), as a special case. The
rotations are each through =, but represented by the half-angle %.

We can examine this in the particular situation that we considered
above, and try to illustrate the quaternionic relation ij = k. The rotations
described by i, j, and k are each through an angle n. Thus, we use arc-
lengths that are just half this angle, namely im, in order to depict the
‘triangle law’. This is fully illustrated in Fig. 11.4c (in the form
i( — j) = —k, for clarity). We can also see the relation i2 = —1 as illustrated
by the fact that a great circle arc, of length =, stretching from a point on
the sphere to its antipodal point (depicting ‘1) is essentially different
from an arc of zero length or of length 2, despite the fact that each
represents a rotation of the sphere that restores it to its original position,
The ‘vector arc’ description correctly represents the rotations of a ‘spinor-
ial object’.

11.5 Clifford algebras

To proceed to higher dimensions and to the idea of a Clifford algebra, we:
must consider what the analogue of a ‘rotation about an axis’ must be. In #
dimensions, the basic such rotation has an ‘axis’ which is an (n—2)e
dimensional space, rather than just the 1-dimensional line-axis that we
get for ordinary 3-dimensional rotations. But apart from this, a rotation
about an (n — 2)-dimensional axis is similar to the familiar case of an

Hypercomplex numbers §11.5

ordinary 3-dimensional rotation about a 1-dimensional axis in that the
rotation is completely determined by the direction of this axis and by the
amount of the angle of the rotation. Again we have spinorial objects with
the property that, if such an object is continuously rotated through the
angle 2m, then it is not restored to its original state but to what we consider
to be the ‘negative’ of that state. A rotation through 4z always does restore
such an object to its original state.

There is, however, a ‘new ingredient’, alluded to above: that in dimen-
sion higher than 3, it is not true that the composition of basic rotations
about (n — 2)-dimensional axes will always again be a rotation about an
(n — 2)-dimensional axis. In these higher dimensions, general (compos-
itions of) rotations cannot be so simply described. Such a (generalized)
rotation may have an ‘axis’ (i.e. a space that is left undisturbed by the
rotational motion) whose dimension can take a variety of different values.
Thus, for a Clifford algebra in n dimensions, we need a hierarchy
of different kinds of entity to represent such different kinds of rotation.
In fact, it turns out to be better to start with something that is even
more elementary than a rotation through w, namely a reflection in an
(n — 1)-dimensional (hyper)plane. A composition of two such reflections
(with respect to two such planes that are perpendicular) provides a
rotation through n, giving these previously basic n-rotations as ‘second-
ary’ entities, the primary entities being the reflections.[!1:6]

We label these basic reflections y,, ¥,, ¥3, ..., ¥,, where y, reverses
the rth coordinate axis, while leaving all the others alone. For the
appropriate type of ‘spinorial object’, reflecting it twice in the same dir-
ection gives the negative of the object, so we have n quaternion-like
relations,

Y=l B=-l, Bl .., 7i=-1

satisfied by these primary reflections. The secondary entities, representing
our original n-rotations, are products of pairs of distinct 3’s, and these
products have anticommutation properties (rather like quaternions):

Q\ﬁu\n = |Q\&Q\E @ wm QV

In the particular case of three dimensions (# = 3), we can define the three
different ‘second-order’ quantities

i=v7 i=7rv. k=v71,

48 (11.6] Find the geometrical nature of the transformation, in Euclidean 3-space, which is the
composition of two reflections in planes that are not perpendicular,
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and it is readily checked that these three quantities i, j, and k satisfy the j
quaternion algebra laws (Hamilton’s ‘Brougham Bridge’ equations).'!.7 4
The general element of the Clifford algebra for an n-dimensional spaceis 4

a sum of real-number multiples (i.e. a linear combination) of products of
sets of distinct 9’s. The first-order (‘primary’) entities are the n different
individual quantities 7,- The second-order (‘secondary’) entities are the
Mi: — 1) independent products Y,Y, (With p<ygq); there are
n(n—1)(n—2) independent third-order entities YpY,Y, (with
p<qg<r), Mﬂmim — 1}(n —2)(n — 3) independent fourth-order entities,
etc., and finally the single nth-order entity y,v,v;--- ¥,. Taking all 4
these, together with the &sm._m zeroth-order entity 1, we get
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entities in all,l' ¥l and the general element of the Clifford algebra is a linear
combination of these. Thus the elements of a Clifford algebra constitute a
2"-dimensional algebra over the reals, in the sense described in §11.1. They
form a ring with identity but, unlike quaternions, they do not form a
division ring.

One reason that Clifford algebras are important is for their role in
defining spinors. In physics, spinors made their appearance in Dirac’s
famous equation for the electron (Dirac 1928), the electron’s state being
a spinor quantity (see Chapter 24). A spinor may be thought of as an
object upon which the elements of the Clifford algebra act as operators,
such as with the basic reflections and rotations of a ‘spinorial object’ that
we have been considering. The very notion of a ‘spinorial object’ is
somewhat confusing and non-intuitive, and some people prefer to resort
to a purely (Clifford-) algebraic!! approach to their study. This certainly
has its advantages, especially for a general and rigorous n-dimensional
discussion; but I feel that it is important also not to lose sight of the
geometry, and I have tried to emphasize this aspect of things here.

* Inndimensions,'? the full space of spinors (sometimes called spin-space) is
2"/2-dimensional if n is even, and 2*~D/2_dimensional if 7 is odd. When n i’
even, the space of spinors splits into two independent spaces (sometimes
called the spaces of ‘reduced spinors’ or ‘half-spinors’), each of which §
2(n-2/2_dimensional; that is, each element of the full space is the sum of t
elements—one from each of the two reduced spaces. A reflection in the (i

n-dimensional space converts one of these reduced spin-spaces into the ot
The elements of one reduced spin-space have a certain ‘chirality’
‘handedness’; those of the other have the opposite chirality. This appears.

4 (11.7] Show this,
A3 [11.8] Explain ull this counting,-
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to have deep importance in physics, where I here refer to the spinors for
ordinary 4-dimensional spacetime. The two reduced spin-spaces are each
2-dimensional, one referring to right-handed entities and the other to left-
handed ones. It seems that Nature assigns a different role to each of these
two reduced spin-spaces, and it is through this fact that physical processes
that are reflection non-invariant can emerge. It was, indeed, one of the
most striking (and some would say ‘shocking’) unprecedented discoveries
of 20th-century physics (theoretically predicted by Chen Ning Yang and
Tsung Dao Lee, and experimentally confirmed by Chien-Shiung Wu and
her group, in 1957) that there are actually fundamental processes in
Nature which do not occur in their mirror-reflected form. I shall be
returning to these foundational issues later (§§25.3,4, §32.2, §§33.4,7,11,14).

Spinors also have an important technical mathematical value in
various different contexts!3 (see §§22.8-11, §§23.4,5, §§24.6,7, §§32.3,4,
§§33.4,6,8,11), and they can be of practical use in certain types of compu-
tation. Because of the ‘exponential’ relation between the dimension of the
spin-space (2"/2, etc.) and the dimension # of the original space, it is not
surprising that spinors are better practical tools when n is reasonably
small. For ordinary 4-dimensional spacetime, for_example, each reduced
spin-space has dimension only 2, whereas for modern 11-dimensional
‘M-theory’ (see §31.14), the spin-space has 32 dimensions.

11.6 Grassmann algebras

Finally, let me turn to Grassmann algebra. From the point of view of the
above discussion, we may think of Grassmann algebra as a kind of
degenerate case of Clifford algebra, where we have basic anticommuting
generating elements 1, 5, 93 ,..., N, similar to the ¥;, ¥5, ¥3 ,---, ¥,
of the Clifford algebra, but where each 7, squares to zero, rather than to
the —1 that we have in the Clifford case:

SWHP SWHP cees smﬂo.

The anticommutation law
MMy = Mgy

holds as before, except that the Grassmann algebra is now more ‘system-
atic’ than the Clifford algebra, because we do not have to specify ‘p # ¢’ in
this equation. The case n,7, = —n,7, simply re-expresses SW =0.
Indeed, Grassmann algebras are more primitive and universal than
Clifford algebras, as they depend only upon a minimal amount of
local structure. Basically, the point is that the Clifford algebra needs
to ‘know’ what ‘perpendicular’ means, so that ordinary rotations can be




