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Abstract. If frequent measurements ascertain whether a quantum system is still

in its initial state, transitions to other states are hindered and the quantum Zeno

effect takes place. However, in its broader formulation, the quantum Zeno effect

does not necessarily freeze everything. On the contrary, for frequent projections

onto a multidimensional subspace, the system can evolve away from its initial state,

although it remains in the subspace defined by the measurement. The continuing time

evolution within the projected “quantum Zeno subspace” is called “quantum Zeno

dynamics:” for instance, if the measurements ascertain whether a quantum particle

is in a given spatial region, the evolution is unitary and the generator of the Zeno

dynamics is the Hamiltonian with hard-wall (Dirichlet) boundary conditions. We

discuss the physical and mathematical aspects of this evolution, highlighting the open

mathematical problems. We then analyze some alternative strategies to obtain a Zeno

dynamics and show that they are physically equivalent.
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1. Introduction: philosophy, history and physics

Zeno was a sophist philosopher, and a native of Elea, in Southern Italy. The quantum

Zeno effect is named after him [117]. In this article we will discuss the physical and

mathematical aspects of this phenomenon and its dynamical features.

Zeno put forward some famous paradoxical arguments against motion. We shall

focus on one of these, according to which a sped arrow does not move, and analyze

under which conditions an evolving quantum state may not move. We will start by

framing Zeno’s arguments and their quantum mechanical counterparts in the proper

philosophical, historical, cultural and physical context. This is a technical article, that

will be (hopefully) read by physicists and mathematicians, yet we deem it appropriate

to start from a genuine humanistic perspective.

1.1. Historical and philosophical prelude

Zeno was born about 488 BC in Elea, a small town not far from Naples, in the

Mediterranean region called “Magna Graecia”. He was a prominent figure of the Eleatic

school of philosophy, founded by Parmenides, of whom he was the favorite disciple. They

believed that senses are deceptive and motion and change mere illusions: there is only

one Truth (“being”) that is static, does not change and cannot be decomposed into

parts or smaller entities. It is therefore indivisible and does not develop. This view

contrasted with the notion of reality of Pythagoras and Heraclitus, who believed in

a world of change and “becoming” and started revealing the power of thought and

mathematics, on which modern science stands [151, 152, 66].

Zeno’s arguments were subtle and profound and aimed at bringing to light some

paradoxical aspects of common sense and of the notion of a reality in continuous change.

Some of these arguments directly deal with motion and one in particular will concern

us here: a flying arrow is at rest. Indeed, at any given moment the arrow is in a portion

of space equal to its own length, and therefore is at rest at that moment. Therefore,

at every instant the arrow is motionless in a given position and the “sum” of these

positions of rest is not a motion. Notice that, according to the original sources [8], no

direct mention is made to the act of observation. Yet, implicitly, Zeno argued against

our sensorial (and therefore deceptive) perception of movement.

Parmenides and Zeno went to Athens to discuss their ideas with Plato and Aristotle.

We learn from Plato that at the time of that trip Zeno was about 40 years old,

Parmenides about 65 and the pupil put all his energy in defending the view of his

master. However, the two Eleatics were defeated (those were times when solidity of

argumentation made a difference in philosophical and political discussions). Although

many ancient writers refer to Zeno’s ideas, none of his writings survives, so that most of

what we know of him comes from what Aristotle wrote [8]. This is like learning about

a manuscript by reading a (negative) referee report, although an authoritative one. See

Figure 1.

Plato calls Zeno the inventor of dialectic: his arguments foreran the seemingly
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Figure 1. The School of Athens was painted by Raphael between 1509 and 1510 (in

the frescoed Room of the Signature, one of Raphael’s rooms, in the Vatican Museums).

All the protagonists of our story appear in this fresco. Parmenides is standing at the

center-left, in a yellow shirt. Heraclitus (portrayed with Michelangelo’s features) is

sitting at the center, his hand holding his head. Pythagoras, dressed in white and red,

writes in a book, at the front-left. Zeno is at the very left, with a white beard, partially

hidden by a putto (the baby holding a book): curiously, he looks older than his master

Parmenides (although, according to Plato [8], he was twenty-five years younger). Plato

and Aristotle are the dominant figures at the center of the painting and Raphael himself

is standing at the very right, looking at us; he is almost hidden by Sodoma. (Courtesy

Vatican Museums.)

paradoxical method of proof that is known nowadays as reductio ad absurdum. It is

therefore not surprising that Zeno is considered a precursor of sophism. The implication

of the word sophist has changed greatly over time, running from its original meaning.

Initially, it was a highly complimentary term, referred to someone who conveyed

knowledge and wisdom (“sophia”) to his disciples. Eventually, by the time of Plato and

Aristotle, the word had taken on negative connotations, usually referring to someone

who used the arts of debate and rhetoric in order to deceive, or to support fallacious

reasoning. In some modern Indo-European languages, words that have the same root as

“sophisticator” have acquired a very negative meaning. In the Webster’s dictionary one

finds that “echoes of Sophism survive today in the language theory of Jacques Derrida

and other postmodern rhetoricians who teach that language ought to be deconstructed
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in order to unpack the intentions of “sophisticated” communicators.” Contemporary

physics has sometimes, righteously, a difficult relationship with postmodern philosophy

[167, 180].

Yet this inherited negative attitude does not render justice to Zeno, whose

paradoxes have inspired philosophers for over two millennia, challenged mathematicians

for a few hundred years, and puzzled physicists for the last 30 years. Many great

thinkers looked for a way out of the paradoxes. Kant, Hume, Hegel and many others

proposed solutions to Zeno’s paradoxes, pondering over the meaning of space, time

and our forms of perception. Although these solutions were ultimately not accepted by

modern mathematics and science, they helped shaping our modern concepts and rigorous

definitions: our ideas of space, time, motion, infinite, infinitesimal, line, point, derivative

and measure would not be the same without Zeno’s input. After two thousand years

of continual refutation, his arguments made the foundation of modern mathematics.

Rigorous definitions are unavoidable if one wants to rely on a logically consistent

mathematical scheme and does not want to fall into contradictions.

It is probably fairly accurate to say that Zeno’s problems stem from human efforts to

comprehend the infinite. Nowadays it is common to hear, in mathematics and physics

circles, that Zeno’s arguments are based on false assumptions and that no Zeno-like

paradoxes are present within modern mathematics. We venture to disagree, not on the

conclusions, but on the premises: modern mathematics was created in order to avoid

those questions that Zeno posed, in exactly the same way as modern set theory carefully

avoids the use of Russell’s set of sets. Sped arrows move, runners catch tortoises, one

can pass an infinite number of points in a finite time and our concepts of infinitesimal,

finite and infinite have been adapted to our need to arrive at a consistent description of

motion [156]. Clearly, no subsequent logically consistent system could afford to ignore

Zeno’s paradoxes, but of course it would have been impracticable to accept passively a

doctrine like that of Elea. When we describe the motion of a ball in terms of Newton’s

law or the evolution of a wave function in terms of Schrödinger’s equation, we stand on

the shoulders of thinkers who solved seemingly irreconcilable contradictions.

1.2. The quantum Zeno effect

The afore-mentioned Zeno’s paradox will be the object of the present investigation: A

sped arrow will never reach its target, because when we look at the arrow, we see that

it occupies a portion of space equal to its own size. At any given moment the arrow

is therefore immobile, and by summing up many such “immobilities” it is impossible,

according to Zeno, to obtain motion. It is amusing that quantum mechanical systems,

when observed, behave in a way that is reminiscent of this paradox.

Frequent measurement slow the evolution of a quantum system, hindering

transitions to states different from the initial one. This phenomenon, known as the

quantum Zeno effect (QZE) [117, 179, 18, 87], is a consequence of general features of

the Schrödinger equation, that yield quadratic behavior of the survival probability at
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short times [124, 70, 44].

Von Neumann [179] was the first to understand the far-reaching outcomes of the

short-time evolution and bring to light the essentials of the Zeno phenomenon. However,

he was focusing on quantum thermodynamics and his conclusions were forgotten for 35

years, when Beskow and Nilsson in a brilliant article [18] argued that frequent position

measurements, implicitly carried out by a bubble chamber on an unstable particle,

could prevent its decay. These ideas were corroborated by Khalfin [87], 10 years after

his seminal work on the long-time features of quantum evolutions [85, 86], and were

finally put on firm mathematical ground by Friedman [58].

At the same time, there was a widespread mathematical interest on the convergence

of the Trotter-Kato product formula [173, 174, 82, 69]. Mathematicians focused on the

limit of product formulas when the potential is singular or the Hamiltonian unbounded

[23, 65, 59, 63, 31, 64, 157, 158, 159, 110, 32, 33]. These limits and their properties are

indeed of great importance in the study of quantum dynamical semigroups and may

contain the germs of irreversibility. Their relevance is therefore twofold, as they have

remarkable consequences both in mathematical physics and operator theory.

Finally, these ideas were gathered by Baidyanaith Misra and George Sudarshan in

their pioneering article [117], that introduced, among other things, the classical allusion

to the Eleatic philosopher. The paper by Misra ad Sudarshan is also amusing in its

own right: it blends rigorous mathematics with subtle and often ironical remarks about

philosophy and cats. Since then, the QZE received constant attention by theorists, who

explored different facets of the phenomenon.

The Zeno problem was considered an academic one until 1988, when Cook

[26] proposed a test with oscillating systems, rather than on bona fide unstable

ones. This was a concrete idea, that revived the subject and led to the celebrated

experimental test by Itano et al a few years later [76]. The discussion that followed

[145, 144, 77, 146, 75, 57, 139, 1, 138, 162, 14, 12, 88, 160, 112, 161, 101, 36, 71, 183]

provided insight and new ideas, eventually leading to new experimental tests. The QZE

was successfully checked in a variety of different situations, on experiments involving

photon polarization [93], nuclear spin isomers [122], individual ions [10, 172, 188, 9],

optical pumping [118], NMR [189], Bose-Einstein condensates [168] and new experiments

are in preparation with neutron spin [79, 148] and superconducting qubits [80, 178]. One

should also emphasize that the first experiments were not free from interpretational

problems. Some of these were successfully solved (e.g., the issue of the so-called

“repopulation” of the initial state [126] was first avoided in [10]), but some authors

(sensibly) argued that the QZE had not been successfully demonstrated on bona

fide unstable systems, as in the seminal proposals. Indeed, all the above mentioned

experiments deal with finite (oscillating) systems, whose Poincaré time is finite. The

analysis of the evolution at short times becomes more complicated when one considers

unstable systems [111, 13, 41, 104, 81, 42, 3]: in such a case, novel and somewhat

unexpected phenomena come to light. There were also noteworthy early attempts at

interpreting preexisting experimental data on unstable particle decay [175]. However,
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only two experiments have been successfully performed so far on unstable systems,

both by Mark Raizen’s group. In the first one [186] the presence of the short-time

non-exponential region was brought to light, while in the second one [53] the quantum

Zeno effect and its inverse were demonstrated. It is worth emphasizing that recent

experimental demonstrations of the QZE are driven by interest in fundamental physics,

but also by practical applications, such as efficient preservation of spin polarization in

gases [122, 123], dosage reduction in neutron tomography [35] and control of decoherence

in quantum computing [55, 49, 154, 72]. The last ten years have witnessed a number

of very interesting ideas on the quantum Zeno effect as well as on possible applications

[19, 24, 193, 12, 74, 194, 36, 40, 114, 115, 91, 2, 27, 107, 97, 171, 62, 108]. Some recent

proposals, aimed at countering the detrimental effects of decoherence, deal with closely

related quantum dynamics, in which the quantum measurements are frequent but not

infinitely frequent [127, 128, 187, 25, 113, 190, 140, 116, 129]. The whole field is very

active.

1.3. Quantum Zeno dynamics and quantum Zeno subspaces

Although all the afore-mentioned experiments invigorated studies on this issue, they

essentially deal with one-dimensional projections (and therefore with what we might call

one-dimensional Zeno effect): the system is forced to remain in its initial state. However,

the QZE does not necessarily freeze everything. On the contrary, for a projection onto a

multidimensional subspace, the system can evolve away from its initial state, although it

remains in the subspace defined by the “measurement.” This continuing time evolution

within the projected “Zeno subspace” we call quantum Zeno dynamics and is the central

topic of this paper. It is often overlooked, although it is readily understandable in terms

of the seminal theorem by Misra and Sudarshan [117]. One PACS number is now devoted

to the quantum Zeno dynamics. Interestingly, less than one decade ago, an anonymous

referee asked that the expression “quantum Zeno dynamics” be removed from the title

of one of our articles. Times change, PACS numbers too.

We shall also discuss an interesting idea that has been repeatedly put forward in

the mathematical and physical literature: Zeno dynamics yields ordinary constraints.

In particular, suppose a system has Hamiltonian H and the (frequent) measurement

is checking that the system is within a particular spatial region. Then the Zeno

dynamics that results is governed by the same Hamiltonian, but with Dirichlet boundary

conditions on the boundary of the spatial region associated with the projection.

No experiments have been performed so far in order to check the multidimensional

Zeno effect and the Zeno dynamics. However, these ideas might lead to remarkable

applications, e.g. in the control of decoherence. For this reason, we shall explicitly look

at some simple finite-dimensional examples of Zeno dynamics, in order to show how to

freeze the dynamics of the simplest multidimensional system: a qubit.
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1.4. Outline

This review article is organized as follows. We take a physicist’s approach in Secs. 2-4,

where the QZE is introduced and discussed without spelling out implicit hypotheses and

with no rigor in the derivations. The mathematics behind the QZE is discussed in Secs.

5-12. We focus here on the state of the art and explain what are the main mathematical

difficulties and open problems. We finally turn to the practical applications of the QZE

in Secs. 13-14: we show that it can be used in order to control the quantum dynamics

and give three alternative (but physically equivalent) derivations of the Zeno subspaces.

We conclude with an outlook in Sec. 15.

The path we will choose to describe the QZE will depend on our taste, for both its

physical and mathematical aspects. A physically oriented reader can skip Secs. 5-12.

A mathematically oriented reader can instead skip Secs. 13-14. However, we believe

that a thorough comprehension of the Zeno phenomena, its implications and potential

applications, can only be gained by combining physical and mathematical insight.

2. One-dimensional case

2.1. Fundamentals

Let a quantum system be prepared, at time t = 0, in the pure state |ψ0〉, a normalized

vector in the Hilbert space H. The system evolves under the action of the total

Hamiltonian H . The quantities

A(t) = 〈ψ0|ψt〉 = 〈ψ0|e−iHt|ψ0〉, (1)

p(t) = |A(t)|2 = |〈ψ0|e−iHt|ψ0〉|2, (2)

are called survival amplitude and probability, respectively, and represent the amplitude

and probability that the quantum system is found in the initial state |ψ0〉 at time t. An

elementary expansion at short times yields a quadratic behavior

p(t) = 1 − t2/τ 2
Z + . . . , τ−2

Z ≡ 〈ψ0|H2|ψ0〉 − 〈ψ0|H|ψ0〉2, (3)

where τZ is the “Zeno time,” a (sometimes very inaccurate) quantitative estimate of the

duration of the short-time quadratic behavior. Notice that if one decomposes the total

Hamiltonian into a free and an interaction part

H = H0 +Hint,

H0 = PHP +QHQ, Hint = PHQ+QHP, (4)

where P = |ψ0〉 〈ψ0| and Q = 1 − P , the initial state is an eigenstate of the free

Hamiltonian, that is also completely off-diagonal with respect to the interaction

H0 |ψ0〉 = ω0 |ψ0〉 , 〈ψ0|Hint |ψ0〉 = 0. (5)

The Zeno time reads then

τ−2
Z = 〈ψ0|H2

int|ψ0〉 (6)
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and depends only on the square of the interaction Hamiltonian. While the Fermi golden

rule [50, 51, 52] “picks” only the on-shell contribution of the interaction, the Zeno

time “explores” (in agreement with the time-energy uncertainty relation) all possible

intermediate states, by virtue of the completeness relation

〈ψ0|H2
int|ψ0〉 = 〈ψ0|HintQHint|ψ0〉 =

∑

n 6=0

〈ψ0|Hint|n〉〈n|Hint|ψ0〉, (7)

where |n〉 (with |0〉 = |ψ0〉) is an eigenbasis of the free Hamiltonian H0. The

decomposition (4) is at the heart of the Lippmann-Schwinger equation [153] and plays

an important role in quantum field theory.

Let us now carry out N measurements at time intervals τ = t/N , in order to

check whether the system is still in its initial state. If every time the measurement

has a positive outcome and the system is found in its initial state, the wave function

“collapses” and the evolution starts anew from |ψ0〉. The survival probability after the

N measurements reads

p(N)(t) = p(τ)N = p(t/N)N

N large∼
[
1 − (t/NτZ)2

]N ∼ exp(−t2/Nτ 2
Z)

N→∞−→ 1, (8)

where t = Nτ(< ∞) is the total duration of the experiment. The Zeno evolution

is pictorially represented in Fig. 2. The N → ∞ limit was originally named limit of

“continuous observation” by Misra and Sudarshan and regarded as a paradoxical results:

infinitely frequent measurements halt the quantum mechanical evolution and freeze the

system in its initial state. Zeno’s quantum mechanical arrow (the wave function), sped

by the Hamiltonian, does not move, if it is continuously observed. The QZE is not

considered paradoxical nowadays: it is a consequence (admittedly, a curious one) of the

quantum mechanical evolution law. Clearly, if one considers real physical measurement

processes, effectively described in terms of projection operators, the N → ∞ limit must

be considered as a convenient mathematical abstraction [125, 176, 141, 73], but the

evolution is indeed slowed down for sufficiently large N . An interesting alternative

viewpoint can be found in [17], where the “continuous” measurement is implemented

in terms of a dynamical constraint. From such a perspective, no N → ∞ limit need be

considered. The constraint picture that arises from the QZE is discussed in [38].

As a very simple example consider a two-level system with Hamiltonian

H = Hint = Ωσ1, (9)

where Ω ∈ R and σ1 is the first Pauli matrix. Let the initial state be |ψ0〉 = |+〉,
the positive eigenstate of the third Pauli matrix σ3. The survival amplitude, survival

probability and Zeno time read

A(t) = 〈+|e−iΩtσ1 |+〉 = cos Ωt, p(t) = cos2 Ωt, τZ = Ω−1, (10)

respectively. For large N ,

p(N)(t) =

(

cos
Ωt

N

)2N

∼
(

1 − Ω2t2

2N2

)2N

∼ e−Ω2t2/N N→∞−→ 1. (11)
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Figure 2. The quantum Zeno effect. The dashed (full) line is the survival probability

without (with) measurements. The total duration of the experiment is t = 1 and there

are N = 5 measurements, so that τ = 0.2. In the limit of “continuous observation”

(N → ∞, t finite), p(t) → 1. The grey line is the interpolating function in the far r.h.s.

of Eq. (14).

The limit (8) is therefore valid and one obtains a nice example of QZE. Observe that in

this case τZ does yield a good estimate of the duration of the short time region.

2.2. A few preliminary comments and the inverse Zeno effect

Let us briefly comment on the seemingly innocuous derivation of the preceding

subsection.

2.2.1. Short-time dynamics. The QZE is ascribable to the following mathematical

feature of the Schrödinger equation: in a short time δτ ∝ 1/N , the phase of the wave

function evolves like O(δτ), while the probability changes by O(δτ 2), so that

p(N)(t) =
[
1 − O(1/N2)

]N N→∞−→ 1. (12)

This is sketched in Fig. 3.

2.2.2. Quantum measurements. In the preceding analysis, the measurements simply

ascertain whether the system is in its initial pure state. In other words, the von Neumann

measurement can be described by the one-dimensional projector

P = |ψ0〉〈ψ0|. (13)

This notion will be extended in the following section, where more general measurements

will be considered. This will lead us to the notion of Zeno subspaces.

2.2.3. Rigor. No care was taken of subtle mathematical issues, such as for instance the

validity of the asymptotic expansion (3). Loosely speaking, we required finite moments
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Figure 3. Short-time evolution of phase and probability. The phase of the evolved

wave function is linear in time, while the probability loss is quadratic.

of H in the initial state and implicitly assumed that the Hamiltonian H be bounded.

In a general setting, the features of the Hamiltonian must be spelled out and it is not

obvious that the series (3) will converge, or it is even defined, as it involves higher order

moments of the field Hamiltonian in the cumulant expansion. An explicit example

involving the hydrogen atom can be found in [41]. See also [164, 165], were the role of

the form factors of the interaction is scrutinized.

The quantum Zeno effect in a quantum field theoretical framework has been

investigated only relatively recently [13, 41, 104, 81, 42, 3, 5]. The features of the short-

time evolution are not obvious, in particular when the convergence of the expansions

cannot be proven.

There are other problems that are largely unexplored. Among these, the conditions

that lead to a non-quadratic evolution at short times [29, 121, 119]. Interestingly, these

issues are relevant in quantum tunneling [120].

2.2.4. The Zeno time. In many situations, the Zeno time (3) yields a misleading

estimate: strictly speaking, τZ is nothing but the convexity of p(t) in the origin. If the

asymptotic series (3) is nasty, one needs a much more refined estimate of the duration

of the short-time quadratic region [41, 5]. This leads us to the final comment:

2.2.5. Inverse Zeno effect: Heraclitus vs Zeno. Interfering with a transition at a later

stage in its progress leads to the opposite phenomenon, known as the inverse or anti-

Zeno effect, in which decay is accelerated. Both effects have recently been seen in the
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same experimental setup [53]. Let us briefly describe this interesting aspects of quantal

evolutions. Rewrite (8) as

p(N)(t) = p(τ)N = exp(N log p(τ)) = exp(−γeff(τ)t), (14)

where we introduced the effective decay rate

γeff(τ) ≡ −1

τ
log p(τ). (15)

The far right hand side of (14) interpolates the survival probability when N

measurements are performed, namely it intercepts the survival probability at its cusps,

when the system is projected back onto its initial state (see Fig. 2).

Observe that in the region of validity of the expansion (3) γeff is a linear function

of τ

γeff(τ) ∼ τ/τ 2
Z , for τ → 0. (16)

For example, with the Hamiltonian (9) and the initial state |+〉, one gets from Eq. (11)

p(N)(t) ∼ e−Ω2t2/N = e−(Ω2τ)t = e−γeff (τ)t, (17)

with τ = t/N and γeff(τ) ∼ Ω2τ = τ/τ 2
Z.

If the system is unstable one expects to recover the “natural” decay rate γ, in

agreement with the Fermi golden rule, for sufficiently long times, i.e., after the initial

quadratic region is over

γeff(τ)
“large”τ−→ γ. (18)

The physical meaning of the mathematical expressions τ → 0 and “large” τ in the

preceding formulas is in itself an interesting issue, that entails the definition of a

timescale [39, 42]. This difficult and delicate problem will not be discussed here. Suffices

it to say that when a quantum field theoretical description is necessary, τZ is not the

right timescale. We shall neither scrutinize here the features of the quantum mechanical

evolution law at short [18, 87] and long [106, 54, 68, 130, 85, 86] times, nor analyze the

validity of the Weisskopf-Wigner approximation [61, 181, 182, 20] and the onset to the

Fermi “golden rule” [50, 51, 52]. These topics are summarized and discussed in [124].

Consider now an unstable system, with decay rate γ. If a finite time τ ∗ exists such

that

γeff(τ ∗) = γ, (19)

then by performing measurements at time intervals τ ∗ the system decays according to

its “natural” lifetime, as if no measurements were performed. By Eqs. (19) and (15)

one gets

p(τ ∗) = e−γτ
∗

, (20)

i.e., τ ∗ is the intersection between the curves p(t) and e−γt [39]. Figure 4(a) illustrates

an example in which such a time τ ∗ exists. By looking at Fig. 4(b), it is evident that

if τ = τ1 < τ ∗ one obtains a QZE. Vice versa, if τ = τ2 > τ ∗, one obtains an inverse

Zeno effect (IZE). In this sense, τ ∗ can be viewed as a transition time from a quantum
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Figure 4. (a) Time τ∗ separates the quantum Zeno from the Heraclitus (or inverse

Zeno) regime. The full line is the survival probability p(t), that tends to the

asymptotic exponential Ze−γt for large t (dotted line, Z stemming from wave-function

renormalization, see [39]); the dashed line is the exponential e−γt. (b) Quantum

Zeno vs inverse Zeno (or Heraclitus) effect. The dashed line is the undisturbed

survival probability p(t). The full black lines represent the survival probabilities when

measurements are made at time intervals τ and the dotted grey lines their exponential

interpolations, according to (14). For τ1 < τ∗ < τ2 the effective decay rate γeff(τ1)

[γeff(τ2)] is smaller [larger] than the “natural” decay rate γ = γeff(τ∗), yielding QZE

[IZE].

Zeno to an inverse Zeno regime. Paraphrasing Misra and Sudarshan, we can say that

τ ∗ determines the transition from Zeno (who argued that a sped arrow does not move)

to Heraclitus (who replied that everything flows).

The Zeno-Heraclitus transition and the onset to the inverse Zeno effect were

discussed by different authors [94, 155, 135, 84, 160, 170, 137, 47, 89, 43, 90, 39]. In

some cases, τ ∗ does not exist and no inverse Zeno effect can take place [39]. In the

remaining part of this article we will assume that N is sufficiently large, so that we are

in the Zeno regime, and that the N → ∞ limit can be taken.

3. Finite-dimensional projections: the quantum Zeno subspaces

We now give a broader definition of measurement and generalize the notion of QZE.

This can be done with the help of Lüders’s postulate [98], that suitably extends von

Neumann’s [179].

A measurement is called “incomplete” if some outcomes are lumped together, for

instance because the measuring apparatus has insufficient resolution. The projection

operator that selects a given lump is therefore multidimensional and in this sense the

information gained on the measured observable is incomplete. By contrast, a (selective)

complete measurement yields a definite outcome of the observable being measured. In

the discussion of Sec. 2 the measurements were selective and complete, because the

system was found in |ψ0〉.
Let the evolution of the quantum system in the Hilbert space H be governed by

the unitary operator U(t) = exp(−iHt), where H is a time-independent Hamiltonian.
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We assume that the projection operator P that describes the measurement does not

commute with the Hamiltonian, [P,H ] 6= 0 and that TrP = s < ∞. The measurement

therefore ascertains whether the system is in the s-dimensional subspace PH = HP .

For instance, the reader can think of a finite, say m-dimensional Hilbert space. In such

a case H is a m×m matrix, with dimHP = s < m = dimH.

It is convenient to discuss the evolution in terms of density matrices. The initial

density matrix ρ0 is taken to belong to HP (state preparation)

ρ0 = Pρ0P, Tr[ρ0P ] = 1 (21)

and the state at time τ is

ρ(τ) = U(τ)ρ0U
†(τ) (22)

If we measure P and the outcome is positive, the state, up to a normalization p(τ),

changes into [98]

ρ(τ) → Pρ(τ)P = PU(τ)ρ0U
†(τ)P

= V (τ)ρ0V
†(τ), V (τ) ≡ PU(τ)P (23)

and the survival probability in HP reads

p(τ) = Tr
[
U(τ)ρ0U

†(τ)P
]

= Tr
[
PU(τ)Pρ0PU

†(τ)P
]

= Tr
[
V (τ)ρ0V

†(τ)
]
. (24)

Since [P,H ] 6= 0, the Hamiltonian H induces transitions out of HP into H⊥
P = HQ

(HP ⊕HQ = H and P +Q = 1) and p(τ) is in general smaller than unity. There is, of

course, a probability q(τ) = 1− p(τ) that the system has not survived (i.e., it has made

a transition out of HP ) and its state has changed, up to a normalization q(τ), into

ρ(τ) → Qρ(τ)Q = QU(t)ρ0U
†(t)Q

= VQP (τ)ρ0V
†
QP (τ), VQP (τ) ≡ QU(τ)P. (25)

The final state after the measurement is therefore a block diagonal matrix:

ρ0
unitary−→ U(τ)ρ0U

†(τ)
measurement−→

(
V (τ)ρ0V

†(τ) 0

0 VQP (τ)ρ0V
†
QP (τ)

)

.

(26)

The density matrix is reduced to a mixture and any possibility of interference between

“survived” and “not survived” states is destroyed (complete decoherence).

We shall henceforth concentrate our attention only on the measurement outcome

(23)-(24) and turn to the multidimensional Zeno effect. The state of the system after a

(successful) series of P -observations at time intervals τ = t/N is

ρ(N)(t) = VN(t)ρ0V
†
N (t)/p(N)(t), VN(t) ≡ [PU(t/N)P ]N (27)

and the survival probability to find the system in HP is

p(N)(t) = Tr
[

VN(t)ρ0V
†
N(t)

]

. (28)
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We have to study the limit

UZ(t) ≡ lim
N→∞

VN(t) = lim
N→∞

[
P eiHt/NP

]N
. (29)

This is easily computed by expanding

VN(t) =
[
P
(
1 − iHt/N +O

(
1/N2

))
P
]N

= P
[
1 − iPHPt/N +O

(
1/N2

)]N

N→∞−→ P e−iPHPt = UZ(t). (30)

The dynamics is governed by the “Zeno” Hamiltonian HZ ≡ PHP and the evolution is

unitary in HP . We shall write

UZ(t) = P exp(−iHZt) (31)

and speak of quantum Zeno dynamics in the quantum Zeno subspace HP . Notice that

the one-dimensional result of the previous section is obtained when TrP = HP = s = 1

(and then HZ = constant = phase). The final state is

ρ(t) = lim
N→∞

ρ(N)(t) = UZ(t)ρ0UZ(t)† (32)

and the probability to find the system in HP is

lim
N→∞

p(N)(t) = Tr
[
UZ(t)ρ0UZ(t)†

]
= Tr [ρ0P ] = 1. (33)

This is the multidimensional QZE. If the particle is constantly checked for whether it

has remained in HP , it never makes a transition to H⊥
P .

A few comments are in order. First, notice that for finite N the dynamics (27)-(28)

is not reversible. The dynamics becomes unitary and reversible in theN → ∞ limit. The

physical mechanism that ensures the conservation of probabilities within the relevant

subspace hinges on the short time behavior of the survival probability: probability leaks

out of the subspace HP like τ 2 for short times. The infinite-N limit suppresses this

loss. Finally, the analysis of this section is straightforward for finite systems and finite

dimensional projectors. Things get much more complicated for infinite dimensional

systems. One can then inquire under what circumstances UZ(t) actually forms a group,

yielding reversible dynamics within the Zeno subspace. The seminal paper by Misra

and Sudarshan [117] showed that in general the dynamics in the N → ∞ limit is

governed by a semigroup and therefore bears the symptoms of irreversibility. The

simple finite-dimensional example discussed in this section shows that irreversibility is

not compulsory. Notice also that in the infinite dimensional case the meaning of PHP

must be defined and the self-adjointness of the Hamiltonian HZ cannot be taken for

granted.

We focused here on one quantum Zeno subspace HP . However, the notion of Zeno

subspace and Zeno dynamics can be extended to a collection of projectors (an orthogonal

resolution of the identity) [39]. See Sec. 13.1.
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4. Infinite-dimensional case: position measurement

We now analyze the infinite dimensional case. We will not focus on the most general

situation, but will rather study the Zeno dynamics for the simplest spatial projection, a

position measurement on a free particle. We shall review and slightly modify the proof

given in Refs. [34, 48].

Consider a free particle of mass m in d dimensions

H =
p2

2m
= − ∆

2m
, U(t) = e−iHt. (34)

The Hamiltonian H is a positive-definite self-adjoint operator on H = L2(Rd) and

U(t) is unitary. Given a compact domain Ω ⊂ Rd with a nonempty interior and a

regular boundary, we study the evolution of the particle when it undergoes frequent

measurements defined by the projector

P = χΩ(x) =

∫

Ω

ddx |x〉 〈x| , Pψ(x) = χΩ(x)ψ(x), (35)

where

χΩ(x) =

{

1 for x ∈ Ω

0 otherwise
(36)

is the characteristic function of the domain Ω, and thought of as an operator, along

with its complement Q = 1 − P = 1 − χΩ(x), decomposes the space L2(Rd) into two

orthogonal subspaces. We study the following process. We prepare a particle in a state

with support in Ω, let it evolve under the action of its Hamiltonian, perform frequent

P measurements during the time interval [0, t], and study the evolution of the system

within the Zeno subspace HP = PH.

The Zeno dynamics evolution operator is given by the limit

UZ(t) = lim
N→∞

[V (t/N)]N , (37)

where the (nonunitary) evolution operator V is given in Eq. (23) and represents a single

step (projection-evolution-projection) Zeno process. We now show that (37) yields the

unitary evolution

UZ(t) = exp(−iHZt)P (38)

generated by the Zeno Hamiltonian

HZ = −∆Ω

2m
, (39)

whose domain is a proper subspace of L2(Ω)

D(HZ) = {ψ ∈ L2(Ω) | ∆ψ ∈ L2(Ω), ψ(∂Ω) = 0}, (40)

∂Ω being the boundary of Ω (hard-wall or Dirichlet boundary conditions).

One might rewrite Eq. (39) as

HZ ≡ p2

2m
+ VΩ(x), VΩ(x) =

{

0 for x ∈ Ω

+∞ otherwise
. (41)
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In other words, the system behaves as if it were confined in Ω by rigid walls, inducing

the wave function to vanish on the boundary of Ω.

4.1. Proof

The matrix elements of the d-dimensional single-step propagator V in Eq. (23) read (in

the position representation)

G(x, τ ; y) = 〈x|V (τ) |y〉

= χΩ(x)
( m

2πiτ

)d/2

exp

[
im(x − y)2

2τ

]

χΩ(y). (42)

We will work in the eigenbasis {|n〉} of HZ belonging to the eigenvalues En

HZΨn(x) = EnΨn(x), Ψn(x) = 〈x|n〉, (43)

in the subspace PL2(Rd) ≃ L2(Ω). This is also the eigenbasis of UZ(t). In this basis,

Gm,n(τ) = 〈m|V (τ) |n〉

=

∫

Ω

ddx

∫

Ω

ddy
( m

2πiτ

)d/2

ei
m(x−y)2

2τ Ψ∗
m(x)Ψn(y) (44)

=

∫

Ω

ddx Ψ∗
m(x)[bound + stat] + b-s regions, (45)

where we split the integral into three parts, representing respectively the contribution

of the boundary x or y ∈ ∂Ω, the stationary part x = y ∈ Ω − ∂Ω, and the boundary

points that are also stationary points (such points belong to the diagonal part of the

intersection of the boundaries of the two domains Ω in (44), namely x = y ∈ ∂Ω).

We shall separately evaluate the three contributions in the small-τ limit, by introducing

some smooth regularizing functions and splitting the integration domain into three parts,

as shown in Fig. 5. Each regularizing function takes value one on a compact domain

and smoothly vanishes outside.

The first two terms can be evaluated by substituting ξ = y − x, to obtain

Gm,n(τ) =

∫

Ω

ddx Ψ∗
m(x)

∫

Ω−x

ddξ
( m

2πiτ

)d/2

ei
mξ2

2τ Ψn(x + ξ), (46)

where

Ω − x = {y | x + y ∈ Ω}. (47)

In order to compute the boundary term, we first observe that

eiλξ2

=
ξ · ∇eiλξ2

2iλξ2
(48)

and then integrate by parts (λ = m/2τ)

bound =

∫

Ω

ddξ

(
λ

πi

)d/2

Ψn(x + ξ)
ξ · ∇eiλξ2

2iλξ2

=

(
λ

πi

)d/2
[
∫

Ω

ddξ ∇ ·
(

Ψn(x + ξ)ξeiλξ2

2iλξ2

)
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Figure 5. Regularizers on the integration domain.

−
∫

Ω

ddξ ∇ ·
(

Ψn(x + ξ)ξ

ξ2

)
ξ · ∇eiλξ2

(2iλ)2ξ2

]

=

(
λ

πi

)d/2
[
∮

∂(Ω−x)

dd−1S
Ψn(x + ξ)ξ · û

ξ2

eiλξ2

2iλ

(
1 +O(λ−1)

)

]

=
( m

2πiτ

)d/2
[
∮

∂Ω

dd−1S
Ψn(y)(y − x) · û

(y − x)2

eim(x−y)2/2τ

im/τ

× (1 + O(τ))

]

, (49)

û being the unit vector perpendicular to the boundary. We extended the integration

domain to the whole Ω and did not explicitly write the regularizing function, that should

multiply the integrand, as its action is trivial in this case. In the second equality, Eq.

(48) was used again in order to obtain a higher-order volume integral with the same

structure as the initial one. Since Ψn in Eq. (43) is an eigenfunction of HZ, whose

domain is (40), one gets

bound = 0. (50)

The stationary contribution is obtained by expanding the integrand around x

stat =
( m

2πiτ

)d/2
∫

ddξ eiλξ2

×
(

Ψn(x) + ∇Ψn(x) · ξ +
1

2!
∂i∂jΨn(x)ξiξj +O(|ξ|3)

)

. (51)
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Observe that the contributions of the linear and quadratic (with i 6= j) terms in the

integral vanish due to symmetry and one is left with

stat = Ψn(x) + i
τ

2m
∆Ψn(x) +O(τ 2)

= (1 − iEnτ) Ψn(x) +O(τ 2), (52)

where we used Eq. (43). Also in this case we did not explicitly write the regularizing

function in the integrand, as its action is trivial.

Finally, we evaluate the contribution of the b-s region. Let us first see what happens

in d = 1. We take Ω = [0, a] and compute

b-s region =

(
λ

πi

)1/2 ∫ a

0

dx

∫ a

0

dyeiλ(x−y)2Ψ∗
m(x)Ψn(y)ν(x, y), (53)

where ν(x, y) is a regularizing function that smoothly vanishes for |x|, |y| > ǫ. We

expand the eigenfunctions around the origin,

Ψm(x) = Ψm(0) + xΨ′
m(0) +O(x2) ∼ xΨ′

m(0), x→ 0, (54)

where we made use of the fact that Ψm is an eigenfunction of the Hamiltonian (39)

and obeys Dirichlet boundary conditions (the calculation around the other boundary

point x ≃ y ≃ a is identical). Plugging into (53) and changing integration variables

ξ = (x− y)/
√

2, η = (x+ y)/
√

2, we get

b-s region ∼
(
λ

πi

)1/2 ∫ ǫ

0

dx

∫ x

0

dy xy eiλ(x−y)2Ψ∗′
m(0)Ψ′

n(0)

=

(
λ

πi

)1/2

Ψ∗′
m(0)Ψ′

n(0)

∫ ǫ/
√

2

0

dη

∫ η

0

dξei2λξ
2

(η2 − ξ2)

=

(
1

πi

)1/2

Ψ∗′
m(0)Ψ′

n(0)

(√
πi

24
ǫ3 − i3/2

16λ
ǫ− 1

12λ3/2
+ o(λ−3/2)

)

= O(τ 3/2) + ǫO(τ) +
ǫ3

24
, (55)

and by sending ǫ→ 0 we obtain

b-s region = O(τ 3/2). (56)

Note that the residual ǫO(τ) contribution is due to the stationary points in [0, ǫ]2 and

belongs to the bulk of Eq. (52).

In d dimensions the proof is similar. By writing

b-s region =

(
λ

πi

)d/2 ∫

Ω

ddx

∫

Ω

ddyeiλ(x−y)2Ψ∗
m(x)Ψn(y)ν(x,y),

≃
(
λ

πi

)d/2 ∫

ωǫ

ddx

∫

ωǫ

ddyeiλ(x−y)2Ψ∗
m(x)Ψn(y), (57)

where ν(x,y) is the regularizing function and

ωǫ = {x ∈ Ω|d(x, ∂Ω) < ǫ}, d(x, ∂Ω) = inf
y∈∂Ω

|x − y|, (58)
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one obtains

b-s region = o(τ). (59)

By plugging (50), (52) and (59) into (46) we obtain the matrix elements of the single-step

operator

Gm,n(τ) = δm,n (1 − iEnτ) +Rm,n(τ), (60)

where for τ → 0

Rm,n(τ) = o(τ), (61)

and under the assumption of uniform convergence of the infinite sums stemming from

the insertion of N − 1 resolutions of the identity in (37), one obtains (τ = t/N):

GZ
m,n(t) = 〈m|UZ(t) |n〉

= lim
N→∞

∑

n1,...,nN−1

Gm,n1(t/N)Gn1,n2(t/N) · · ·GnN−1,n(t/N)

= δm,n exp (−iEnt) . (62)

This is precisely the propagator of a particle in a box with Dirichlet boundary conditions.

This in turn proves that HZ is given in (39) and has eigenbasis {|n〉}. Note also that

the o(t) contribution (61) drops out of (62) in the N → ∞ limit since it appears as

N × o(1/N).

4.2. A few comments on the proof

It is worth emphasizing that the basis given in Eq. (43) is only one of many (infinite in

fact) possibilities for a basis for the domain Ω. Any one of these would be valid, but not

all would be equally convenient. Thus with a basis whose functions did not vanish at the

boundary ∂Ω, the dominant contribution of order λ−d/2 in the function bound(λ) in (49)

would have given a nondiagonal term both in (49) and (62). The matrix representation

of G (in this basis) would in that case still need to be diagonalized, leading back to the

matrix we have found using a more convenient basis. Our point is that one can always

choose to use the basis {|n〉} of (43). For that choice the calculation is easiest and the

resulting interpretation transparent.

Note also that in the preceding proof the detailed features of the convergence of

the limits are not worked out. We implicitly assumed the uniform convergence of the

infinite sums in Eq. (62). Much additional care is required at a rigorous mathematical

level, where one must prove that the limits can be interchanged. We shall reconsider

this problem in much greater details in the following sections.

4.3. Particle in a potential

The introduction of a potential is not difficult to deal with if mathematical subtelties

are not spelled out. Let us therefore proceed formally and extend the proof that spatial

projections yield ordinary constraints (Dirichlet) when the particle moves in a sufficiently
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regular potential. The situation clearly becomes more complicated when the potential

is singular and/or the projected spatial region (or its boundary) lacks the required

regularity.

Let

H =
p2

2m
+ V (x), U(t) = exp(−itH), (63)

where V is a regular potential. (It may be unbounded from below, for example

V (x) = Fxj for some j, although within the projected region Ω the total Hamiltonian

H should be lower bounded.) The measurement is again application of the projector

(36) and we simply replace the short-time propagator (42) with

G(x, τ ; y) = χΩ(x)
( m

2πiτ

)d/2

exp

[
im(x − y)2

2τ

]

× exp

[

−iτ(V (x) + V (y))

2

]

χΩ(y). (64)

We make use again of the eigenbasis of the Hamiltonian with Dirichlet boundary

conditions on Ω

HZ|Ψn〉 =

(
p2

2m
+ V (x)

)

|Ψn〉 = En|Ψn〉 , Ψn(x)|x∈∂Ω = 0 (65)

and notice that the eigenfunction can be expanded as in (54) by virtue of the regularity

of the potential. A calculation identical to the previous one yields

Gm,n(τ) = δm,n (1 − iEnτ) +Rm,n(τ), (66)

where again Rm,n(τ) = o(τ), so that

GZ
m,n(t) = 〈m|UZ(t) |n〉 = δm,n exp (−iEnt) . (67)

In conclusion, the evolution in the Zeno subspace is governed by the Hamiltonian

HZ =
p2

2m
+ VΩ(x), VΩ(x) =

{

V (x) for x ∈ Ω

+∞ otherwise
(68)

We notice here something interesting. We need only require that the Hamiltonian be

lower bounded in the Zeno subspace. Although for unbounded potentials (like V = Fxj)

H may not be lower bounded, VΩ(x) can be lower bounded in Ω, yielding unitary

evolution operators.

4.4. The physics behind the “hard wall”

If we ponder over the proofs of this section, we understand how the Zeno mechanism

prevents leakage out of the Zeno subspace. Frequent projections force the wave function

to vanish on the boundary of the spatial region associated with the projection. In turn,

this implies a vanishing current through the boundary. This is equivalent to a “hard

wall”. The derivation of the Dirichlet boundary conditions has implications for this

notion, as used for example in elementary quantum mechanics. Everyone would agree

that this notion is an idealization. However, in many cases where this idealization is
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useful the “wall” is dynamic rather than static, the result of some fluctuating atomic

presence. We have here a sufficient condition for the validity of this notion in a dynamic

situation. Moreover, there is a quantitative framework (arising from our asymptotic

analysis and finite-time-interval QZE effects) for gauging the effects of less than perfect

hard walls. As we will see in Sec. 4.6, this has also spinoffs for the notion of constraint

in quantum mechanics.

4.5. Algebra of observables in the Zeno subspace and Zeno dynamics in Heisenberg

picture

We now look at the Zeno dynamics in the Heisenberg picture. The following discussion

is an exploratory investigation. A natural question concerns the destiny of the algebra

of observables after the projection [38]. This is not a simple problem. One can assume

that to a given observable O before the Zeno projection procedure there corresponds

the observable POP in the projected space:

O ⇒ POP. (69)

For example, if one starts in R and projects over a finite interval I of R, P = χI(x), the

momentum and position operators become

p⇒ PpP =

{
i∂x for x ∈ I

0 otherwise
, (70)

x⇒ PxP =

{
x for x ∈ I

0 otherwise
. (71)

Observe that the correspondence (69) is not an algebra homomorphism. However, if we

redefine a new associative product in the algebra of operators, by setting

A ∗B ≡ APB, (72)

with this new product the previous correspondence (69) becomes an algebra

homomorphism [109, 21]. Notice also that the new (projected) algebra acquires a unity

operator P . In general the evolution will not be an automorphism of the new product.

However, it will respect the product to order O(t/N) and induce, in the limit, a Zeno

dynamics on the projected algebra, i.e. on the image of the projection. The evolution

will be trivially an automorphism when it commutes with P and is therefore compatible

with the new product without any approximation.

In general one has to modify the associative product in such a way that the

“deviation” of U(t/N) from being an automorphism is of order o(t/N), so that in the

limit UZ(t) will be an automorphism of the new associative product adapted to the

constraint. In other words, the sequence of evolution operators

VN(t) = V (t/N)N = (PU(t/N)P )N , (73)

yielding the Zeno limit (37), is mirrored at the level of the algebra by the following

sequence of deformed associative products

A ∗N B ≡ APNB, (74)
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where PN is a positive operator with 0 ≤ PN ≤ 1 and PNP = PPN = P . For any

N , PN forms together with QN = 1 − PN a positive operator valued measure, yielding

a resolution of the identity, i.e. PN + QN = 1, which approximates the orthogonal

resolution P +Q = 1, in the sense that

PNψ = Pψ +O(1/N), ∀ψ ∈ H. (75)

For any N the evolution VN(t) is an automorphism of the product ∗N and in the limit

N → ∞ we get the desired result (72).

Observe that, for unbounded operators, (69) does not necessarily yield self-adjoint

operators: for example, after the Zeno procedure, the momentum p would act on

functions that vanish on the boundary of I and would have deficiencies 〈1, 1〉, see [34].

On the other hand the Zeno Hamiltonian (39) is self-adjoint. However, it would be

arbitrary to require a similar property for every observable in the algebra. In general, we

speculate that the lack of self-adjointness of the operators representing the “observables”

of the system in the projected subspace might be related to the incompleteness of the

corresponding classical field [132, 192, 34].

4.6. Projections onto lower dimensional regions: constraints

In all the situations considered so far, the projected domain always has the same

dimensionality of the original space (Rn). [Remember that, after Eq. (34), we required

the projected domain Ω to have a nonempty interior.] However, it is interesting to ask

what would happen if one would project onto a domain Ω′ of lower dimensionality [38].

This is clearly a more delicate problem, as one necessarily has to face the presence of

divergences. It goes without saying that these divergences must be ascribed to the lower

dimensionality of the projected domain and not directly to the convergence features of

the Zeno propagator [60]. Our problem is to understand how these divergences can be

cured. One way to tackle this problem is to start from a projection onto a domain

Ω ⊂ Rn and then take the limit Ω → Ω′ ⊂ Rn−1, with a Hilbert space (Zeno subspace)

L2(Ω′) [38].

These problems are still very open (even at the level of formal derivations) and lead

us to interesting links with constrained dynamics in quantum mechanics and quantum

field theory. Curiously, the Zeno phenomenon and the Zeno dynamics might suggest

strategies in order to impose constraints onto quantum evolutions.

5. Bounded Hamiltonians

So far, for the sake of simplicity and illustration, our analysis lacked mathematical

rigor. The present and the following seven sections will have a different character.

We shall focus on the conditions that must be required in order that the analysis be

mathematically sound.
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Consider a bounded Hamiltonian H , with H = H† and ‖H‖ < ∞. The one

parameter unitary group

U(t) = exp(−iHt) =
∑

n≥0

(−it)n
n!

Hn (76)

is uniformly continuous, with norm derivative U ′(0) = −iH , that is lims→t ‖U(s) −
U(t)‖ = 0 and lims→0 ‖(U(s) − U(0))/s − iH‖ = 0 [83]. In this case it is very easy

to prove the existence and explicitly derive the expression of the (uniform) limit of the

Zeno product formula

UZ(t) = lim
N→∞

VN (t), VN(t) =

[

PU

(
t

N

)

P

]N

. (77)

Indeed, by the existence of the norm derivative, or directly by (76),

U(t) = 1 − iHt+ o(t), (78)

where o(t) is an operator valued function defined in a neighborhood of 0, such that

‖o(t)‖/t→ 0 as t→ 0. Therefore,

VN(t) =

[

P

(

1 − iH
t

N
+ o

(
t

N

))

P

]N

= P

[

1 − iPHP
t

N
+ o

(
t

N

)]N

. (79)

By using the following straightforward equality
[

1 +
A

N
+ o

(
1

N

)]N

=

N∑

k=0

Ak

k!
+ o(1)

N→∞−→ expA, (80)

valid for any bounded A, one obtains the desired result

UZ(t) = P exp (−iHZt) , HZ = PHP, (81)

uniformly in any compact t interval. The Zeno dynamics is thus rigorously proved for a

bounded Hamiltonian. Although not explicitly stated, the result of Sec. 3 is a particular

case of the above: for finite dimensional systems, H is bounded and the result rigorous.

5.1. Examples

A first (somewhat trivial) example is H = finite-rank operator (a matrix; remember

that the Hilbert space is in general infinite-dimensional). Then HZ = PHP is block

diagonal.

As a second example, consider a particle on the real line and take the Hamiltonian

H = p2e−Λ2p2, (82)

p being the momentum operator and Λ > 0 a cutoff, and the projection

P = χR+(x), (83)

χ being the characteristic function. A Zeno effect takes place and the Zeno dynamics

on the positive half-line is governed by the operators

UZ(t) = P exp (−iHZt) , HZ = Pp2e−Λ2p2P. (84)
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Figure 6. Zeno dynamics of the momentum operator.

6. Unbounded Hamiltonians

Let us now consider the case of an unbounded Hamiltonian H . In such a situation there

are two serious problems that must be faced: the existence of the limit of the Zeno

product formula (77) and the form of the limiting dynamics. In particular, one can ask

under which conditions the (limiting) Zeno dynamics exists and under which additional

conditions it is a unitary group in the Zeno subspace. This problem will occupy us for

the next few sections.

Let us start from an example and show that in order to obtain a unitary group,

one should restrict one’s attention to semibounded Hamiltonians. Consider the right

translation on the line. The Hilbert space is H = L2(R) and the Hamiltonian is taken

to be the momentum operator H = p = −i∂x with domain D(H) = H1(R), where

H1(R) = {ϕ ∈ L2(R)|∂xϕ ∈ L2(R)} is the Sobolev space. Note that p is self-adjoint

and unbounded both below and above, since its spectrum is the whole line R. Let us

choose the projection on the unit segment P = χ[0,1](x), so that HP = PH ≃ L2(0, 1).

We get

e−itpχ[0,1](x)e
itp = χ[0,1](x− t) = χ[t,1+t](x), (85)

hence, for any t, s ∈ R with ts ≥ 0,

χ[0,1]e
−itpχ[0,1]e

−ispχ[0,1] = χ[0,1]χ[t,1+t]e
−i(t+s)pχ[0,1]. (86)

On the other hand,

e−i(t+s)pχ[0,1] = χ[t+s,1+t+s]e
−i(t+s)pχ[0,1] (87)

and thus

χ[0,1]e
−itpχ[0,1]e

−ispχ[0,1] = χ[0,1]χ[t,1+t]χ[t+s,1+t+s]e
−i(t+s)pχ[0,1]

= χ[0,1]e
−i(t+s)pχ[0,1], (88)

that is

(P e−itHP )(P e−isHP ) = P e−i(t+s)HP, (89)

when ts ≥ 0.

Therefore, since the Zeno product formula does not depends on N

VN(t) = P e−itHP, N ≥ 1, (90)
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its limit exists and reads

VZ(t) = P e−itHP. (91)

The Zeno dynamics is represented in Fig. 6 and is clearly not unitary in HP . Rather, it

is a contractive semigroup describing probability leakage out of the Zeno subspace. In

a sense, in this situation there is no quantum Zeno effect.

In the following we will therefore restrict our attention to semibounded operators,

and, for definiteness, to positive Hamiltonians. This entails no loss of generality, because

any semibounded operator H can be written as H = ±H0 + c, with c ∈ R and H0 ≥ 0.

7. One dimensional projection

Let us start by considering a one dimensional projection P with range HP = span{ψ}
(where for simplicity we write ψ = ψ0 = initial state) and a one parameter group of

unitaries {U(t)}t with a (generally unbounded) positive generator H ≥ 0,

P = |ψ〉 〈ψ| , U(t) = exp(−iHt). (92)

The Zeno product formula reads

VN(t) =

[

PU

(
t

N

)

P

]N

= P

[

〈ψ|U
(
t

N

)

|ψ〉
]N

(93)

Therefore, one has to study the limit

F (t) = lim
N→+∞

[

A
(
t

N

)]N

, A(t) = 〈ψ|U(t) |ψ〉 . (94)

By noting that A(0) = 1 one gets

F (t) = exp (tA′(0)) (95)

where

A′(0) = lim
s→0

A(s) − 1

s
= lim

s→0
〈ψ| U(s) − 1

s
|ψ〉 . (96)

If ψ ∈ D(H1/2), then the above limit exists and reads

A′(0) = −i
∥
∥H1/2ψ

∥
∥

2
= −i

〈
H1/2ψ

∣
∣ H1/2ψ

〉
. (97)

The proof is easily given in terms of the spectral representation E(λ) of H : from

H =

∫ +∞

0

λdE(λ), H1/2 =

∫ +∞

0

λ1/2dE(λ), (98)

one gets

〈ψ| U(s) − 1

s
|ψ〉 =

∫ +∞

0

e−iλs − 1

s
d‖E(λ)ψ‖2, (99)

where d‖E(λ)ψ‖2 = d〈ψ,E(λ)ψ〉. If ψ ∈ D(H1/2), i.e.

∥
∥H1/2ψ

∥
∥

2
=

∫ +∞

0

λd‖E(λ)ψ‖2 <∞, (100)
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then by noting that
∣
∣
∣
∣

e−iλs − 1

s

∣
∣
∣
∣
=

∣
∣
∣
∣
λ sinc

(
λs

2

)∣
∣
∣
∣
≤ |λ|, (101)

by dominated convergence one gets (97) . Therefore

UZ(t) = s−lim
N→∞

VN(t) = P exp
(

−i
∥
∥H1/2ψ

∥
∥

2
t
)

(102)

∀t ∈ R and uniformly in any compact interval. Here, A = s− limN AN denotes the

strong operator limit, that is limN ANϕ = Aϕ, ∀ϕ ∈ H. In fact, in this case the limit

holds in norm, for

‖VN(t) − UZ(t)‖ =

∣
∣
∣
∣
∣
A
(
t

N

)N

− F (t)

∣
∣
∣
∣
∣
‖P‖ → 0, N → +∞. (103)

Therefore, the (trivial) evolution in the one-dimensional subspace HP is engendered by

the phase
∥
∥H1/2ψ

∥
∥

2
, that is by the Zeno Hamiltonian

HZ =
∥
∥H1/2ψ

∥
∥

2
P = |ψ〉

〈
H1/2ψ

∣
∣ H1/2ψ

〉
〈ψ|

= (H1/2P )†(H1/2P ). (104)

Incidentally, H1/2P – and thus (H1/2P )† – is a bounded operator, with D(H1/2P ) = H,

for
∥
∥H1/2P

∥
∥ =

∥
∥H1/2ψ

∥
∥ <∞. (105)

In conclusion, for a one dimensional projection P , the limit of the Zeno product formula

(93) exists if D(H1/2P ) = H and is given by

UZ(t) = s−lim
N→∞

VN(t) = P exp (−iHZt)

= P exp
(
−i(H1/2P )†(H1/2P )t

)
. (106)

Moreover, the limit holds in norm, uniformly in t in any compact subset of R.

7.1. Example

Consider a free particle on the real line, H = L2(R), and take the Hamiltonian

H = p2, (107)

p being the momentum operator. Let the measurement be associated to the projection

operator P = |ψ〉 〈ψ|, that projects the system onto the state

ψ̂(p) = 〈p|ψ〉 =
N

a+ |p|5/2 , (108)

where a is a positive constant and N a normalization factor. This state does not belong

to the domain of the Hamiltonian,

‖Hψ‖2 =

∫

p4|ψ̂(p)|2dp = ∞. (109)
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However, it belongs to the domain of H1/2:

‖H1/2ψ‖2 =

∫

p2|ψ̂(p)|2dp = Eψ <∞. (110)

A Zeno effect takes place and the Zeno Hamiltonian reduces to a phase:

HZ = EψP. (111)

8. Finite dimensional projection

The generalization to finite dimensional projections is straightforward. First notice that

the sufficient condition ψ ∈ D(H1/2) translates into HP ⊂ D(H1/2), i.e. D(H1/2P ) = H.

In fact, H1/2P is not only bounded, but also a finite rank operator. Therefore all the

results of the previous subsection immediately translate into analogous results.

Consider a finite dimensional projection P and a positive Hamiltonian H . If

D(H1/2P ) = H the limit of the Zeno product formula (93) exists and is given by

UZ(t) = s−lim
N→∞

VN(t) = P exp (−iHZt) , (112)

where

HZ = (H1/2P )†(H1/2P ). (113)

Moreover, the limit holds in norm, uniformly in any bounded interval of t.

Note that all the experiments performed so far make use of finite dimensional

projections (onto a finite numbers of quantum levels) and belong to this class. Moreover,

observe that in this simple case one is able to give a precise mathematical meaning

to the physical intuition that the limiting Zeno Hamiltonian must be PHP . As a

matter of fact, HZ in Eq. (113) is nothing but the corresponding rigorous expression.

Note also that, in general, PHP ⊂ (H1/2P )†(H1/2P ) as a proper restriction, but if

HP ⊂ D(H) ⊂ D(H1/2), i.e. D(HP ) = H, the Zeno Hamiltonian simplifies into

HZ = PHP. (114)

Obviously, the last condition is always satisfied for bounded H and the results of Sec. 5

are reobtained.

9. Product formulae

We now study more general product formulae, clarifying what is the state of the art and

what can be said when the Hamiltonian is unbounded and the projection operator

infinite dimensional. The general mathematical problem is still open and of great

interest. We start this section with a formula due to Trotter, in which no projection

operators appear, and then partially extend these results to the Zeno dynamics.
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9.1. Trotter

Let A and B be self-adjoint operators with domains D(A) and D(B) and let A+B be

essentially self-adjoint on D(A+B) = D(A) ∩D(B). Then [173, 174]

s−lim
N→∞

(
eiAt/NeiBt/N

)N
= ei(A+B)t (115)

for all t ∈ R, uniformly on compact sets. Moreover, if A and B are lower bounded, then

s−lim
N→∞

(
e−At/Ne−Bt/N

)N
= e−(A+B)t (116)

for all t ≥ 0, uniformly on compact sets. This is the celebrated Trotter product formula.

Recall that a symmetric operator T (that is, a densely defined operator with

T ⊂ T †) is said to be essentially self-adjoint if its closure T †† is self-adjoint.

9.2. Kato

Let A and B be positive self-adjoint operators in PAH and PBH, where PA, PB are the

projections on the closures of D(A) and D(B), respectively. Let D = D(A1/2)∩D(B1/2)

and let PC be the projection on D. Then one gets [82]

s− lim
N→∞

[exp(−At/N)PA exp(−Bt/N)PB]N = exp(−tC)PC , (117)

for all t ≥ 0, where C is the form sum of A and B, i.e. the self-adjoint operator

in PCH associated with the closed densely defined quadratic form q on D: q(ϕ) =

‖A1/2ϕ‖2 + ‖B1/2ϕ‖2. This formula is due to Kato, who gave important contributions

in this field and motivated many studies by several authors.

9.3. Corollary: Self-adjoint Zeno product formula

Note that if A = 0, PA = P , B = H and PB = 1 one gets D = HP ∩ D(H1/2) =

HP ∩D(H1/2P ). Now, if D(H1/2P ) is dense in H, i.e. D = HP , one also gets PC = P .

Therefore, Kato’s formula (117) translates into

s− lim
N→∞

[P exp(−Ht/N)]N = exp(−tHZ)P, t ≥ 0, (118)

where HZ is the Zeno Hamiltonian, associated with hZ(ϕ) = ‖H1/2Pϕ‖2, i.e. HZ =

(H1/2P )†(H1/2P ). Note also that

[P exp(−Ht/N)P ]N = [P exp(−Ht/N)]N P, (119)

and the symmetric self-adjoint Zeno product formula follows: if H ≥ 0 and D(H1/2P )

is dense in H, then

s− lim
N→∞

[P exp(−Ht/N)P ]N = P exp(−tHZ), t ≥ 0, (120)

with

HZ = (H1/2P )†(H1/2P ). (121)

This is the correct self-adjoint extension of the “physical” Hamiltonian PHP .
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10. The theorem of Misra and Sudarshan

In order to investigate the structure of the Zeno limit, Misra and Sudarshan [117]

completely bypass the problem of its existence. Instead, they assume that it exists.

Consider

VN(t) =

[

PU

(
t

N

)

P

]N

, (122)

with H > 0 unbounded and P infinite dimensional projection. Assume that

UZ(t) = s−lim
N→∞

VN(t) (123)

exists for all t ∈ R and that it is strongly continuous at t = 0,

s−lim
t→0

UZ(t) = P. (124)

Then there is a semibounded self-adjoint operator HZ such that HZ = PHZP and

UZ(t) = P exp(−iHZt) (125)

for all t ∈ R. Moreover, HZ|HP
is uniquely associated with the closed and densely

defined quadratic form hZ : HP ∩D(H1/2) → R

hZ(ϕ) = ‖H1/2ϕ‖2, (126)

that is,

HZ = (H1/2P )†(H1/2P ). (127)

10.1. Remarks

The consequence of the theorem is straightforward. By Eq. (125) the density matrix

after the Zeno evolution (27) is

ρ(t) = lim
N→∞

VN(t)ρ0VN(t)/p(N)(t) = UZ(t)ρ0U
†
Z(t) (128)

and the probability to find the system in HP at the final time t is

p(t) = lim
N→∞

p(N)(t) = Tr
[

UZ(t)ρ0U
†
Z(t)

]

= Tr [ρ0P ] = 1. (129)

If the particle is “continuously” observed, in order to check whether it has survived

inside HP , it will never make a transition to H⊥
P . This is the original formulation of the

quantum Zeno paradox.

Note that the continuity condition at t = 0 is equivalent to requiring that D(H1/2)

be dense in HP . Therefore, the proof is the combination of Kato’s product formula (118),

which is valid for self-adjoint semigroups, with an analytic continuation. The latter part

relies on the following technical lemma, whose proof can be found in [117]. Here we will

follow the modified proof by Exner [31], who also gives the explicit expression of the

Zeno Hamiltonian HZ. See also [159].

We conclude by remarking that Kato’s product formula, that greatly simplifies the

proof, appeared in 1978 [82], one year after the article by Misra and Sudarshan [117].

The two publications were independent: the first focused on functional analysis, the

second on mathematical physics.
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10.2. Lemma

For each N , the function VN(z) is defined and strongly continuous in the closed lower

halfplane {z ∈ C, Im z ≤ 0} and is strongly analytic in the open lower halfplane. The

following integral relations hold [117]

VN(z) =
(z − i)2

2πi

∫

R

VN(t)

(t− i)2(z − t)
dt, Im z < 0, (130)

1

2πi

∫

R

VN(t)

(t− i)2(z − t)
dt = 0, Im z > 0. (131)

10.3. Proof of the theorem

We start from (130). The limit s− limN→∞ VN(t) exists by assumption for all t ∈ R,

and by dominated convergence one gets

UZ(z) =
(z − i)2

2πi

∫

R

UZ(t)

(t− i)2(z − t)
dt, Im z < 0. (132)

Now for each t > 0, by Kato’s product formula

UZ(−it) = s−lim
N→∞

(P exp(−Ht/N)P )N = P exp(−HZt). (133)

It is easy to see that z 7→ P exp(−iHZz) is strongly analytic for all z with Im z < 0.

Now, the two operator-valued analytic functions P exp(−iHZz) and UZ(z) coincide on

the half line z = −it, with t ∈ R+, see Eq. (133), and thus they coincide on the whole

half plane

UZ(z) = P exp(−iHZz), Im z < 0. (134)

Moreover, by functional calculus one gets the group relation UZ(z1)UZ(z2) = UZ(z1 + z2)

for all z with Im z < 0.

Finally, it is not difficult to show [117] that UZ(t) is the boundary value of the above

analytic function, namely,

s−lim
ε↓0

UZ(t− iε) = UZ(t) (135)

holds for all t ∈ R. By combining (134) with (135) one gets the desired result (125).

11. Existence of the limit

In the theorem by Misra and Sudarshan the existence of the Zeno limit is postulated.

Clearly, it remains to prove that the limit exists for H unbounded and P infinite

dimensional. Once the limit is proven to exist, it must have the form (127). Many

efforts have been done in this direction during the last two or three decades.

In 2004, Exner and Ichinose proved the existence of the limit in a weak sense

[32]. The convergence is only in L2
loc(R,H) = {ϕ : R → H|

∫

K
‖ϕ(t)‖2dt <
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∞, for every compact K ⊂ R}. The statement of the theorem is the following: if

H ≥ 0 and D(H1/2P ) is dense in H, then for any ϕ ∈ H

lim
N→∞

∫ s

0

‖VN(t)ϕ− P exp(−iHZt)ϕ‖2 dt = 0, (136)

for any s > 0, with

HZ = (H1/2P )†(H1/2P ). (137)

This, in turn, yields the existence of the limit of the Zeno product formula for almost all

t in the strong operator topology along a suitable increasing subsequence {Nj}j∈N ⊂ N

of natural numbers:

s− lim
j→∞

VNj
(t) = P exp(−iHZt), for a.e. t ∈ R. (138)

This is the state of the art in the Zeno product formula. In our opinion, it is a satisfactory

result from a physical standpoint. From a mathematical perspective, however, one might

still hope to prove a stronger result.

12. Corollary: Position measurements

Let us conclude our mathematical discussion with a particular case of physical interest:

the position measurement of a particle in a well-behaved potential. See Sec. 4 and in

particular 4.3.

Let H = − 1
2m

∆ + V (x) in L2(Rd), V ∈ L∞(Rd) bounded, and P = χΩ(x) with

Ω ⊂ Rd an open set with regular boundary ∂Ω. The Zeno limit exists in the L2
loc(R,H)

topology and is of the form (125) with

HZ =

(

− 1

2m
∆Ω + V (x)

)

χΩ(x), (139)

where ∆Ω is the Dirichlet Laplacian on HP = L2(Ω).

This is the rigorous statement behind the physical proof of Sec. 4. Assume that

one frequently checks whether a d-dimensional quantum system (particle) is contained

in a spatial region Ω. The Zeno effect takes place and the dynamics is governed by

the Hamiltonian (139). The convergence in the L2
loc(R,H) topology, rather than in the

strong topology, is tantamount to assuming a time coarse graining over a small time

interval s: see (136).

12.1. Proof

H is self-adjoint and semibounded, since it is a bounded perturbation of the Laplacian.

Without loss of generality we can assume V (x) ≥ 0, whence H ≥ 0. Obviously, the set

of smooth functions of compact support contained in Ω satisfies C∞
0 (Ω) ⊂ D(H1/2)∩HP

and it is well known to be dense, C∞
0 (Ω) = HP . Thus D(H1/2P ) = H and the theorem
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applies. The restriction of the Zeno Hamiltonian HZ|HP
is associated with the closure

of the quadratic form

ϕ ∈ C∞
0 (Ω) 7→ ‖H1/2ϕ‖2 =

1

2

∫

Ω

|∇ϕ(x)|2ddx+

∫

Ω

V (x)|ϕ(x)|2ddx. (140)

However, due to the boundness of V , the domain of the closure is nothing but {ϕ ∈
L2(Ω)|∇ϕ ∈ L2(Ω), ϕ(∂Ω) = 0} = H1

0 (Ω). The vectors ϕ ∈ H1
0 (Ω) in the domain of

HZ|HP
should in addition satisfy Hϕ ∈ HP , and, due to the boundness of V , this implies

that ϕ ∈ H2(Ω) = {ϕ ∈ L2(Ω)|∆ϕ ∈ L2(Ω)}. Therefore D(HZ)∩HP = H2(Ω)∩H1
0 (Ω),

which is the domain of the Dirichlet Hamiltonian ∆Ω, and the desired result is obtained.

13. Three alternative ways to obtain the Zeno subspaces

After the mathematical interlude of Secs. 5-12, we revert to a less rigorous analysis and

focus on applications. The quantum Zeno phenomenon is usually ascribed to repeated

von Neumann’s projections on a quantum system. Indeed, this is the approach we have

adopted so far. In a way, this approach goes back to Misra and Sudarshan [117] and to

some extent, even to von Neumann [179].

However, during the last few years it has become clear that this view of the QZE is

too narrow, because the projective measurements can be replaced by another quantum

system interacting strongly with the principal system. The QZE appears therefore to

be a more general phenomenon, that can be explained in dynamical terms. After all, a

projection à la von Neumann is just a handy way to summarize the complicated physical

processes that take place during a quantum measurement. The latter is performed by

an external apparatus or a quantum field and may involve complicated interactions

with the environment. The external system performing the observation need not be

a bona fide detection system, that clicks or is endowed with a pointer. It is enough

that the information on the state of the observed system be encoded in some external

degrees of freedom by a physical process that associates different (external) states to

different values of the observable being measured. For instance, a spontaneous emission

process can be a very effective measurement, for it is irreversible and entangles the

state of the system (the emitting atom or molecule) with the state of the apparatus

(the electromagnetic field). The von Neumann rules arise when one traces away the

photonic state and is left with an incoherent superposition of atomic states. In the light

of these observations, it is clear that the main physical features of the Zeno effect are

a consequence of the dynamics and need not be ascribed to the “collapse” of the wave

function. But then, one would like to understand which features of the dynamical process

are essential for observing a QZE. It turns out that the QZE takes place whenever a

strong disturbance “dominates” the time evolution of the quantum system.

It is worth emphasizing that it is not only physically reasonable, but also logically

appealing to view the QZE as a dynamical effect: in this broader context, different

decoupling and control schemes can be understood as arising from the same physical

considerations, and hence can be unified under the same conceptual and formal
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framework. Furthermore, they appear as particular cases of a more general dynamics

in which the system of interest is strongly coupled to an external system that (loosely

speaking) plays the role of a measuring apparatus.

We now discuss three different manifestations of the quantum Zeno effect. We start

in Sec. 13.1 with (projective) measurements, then extend the notion of QZE to the case

of unitary kicks in Sec. 13.2 and finally discuss (unitary) continuous interactions in Sec.

13.3. In extending the notion of QZE to unitary processes we shall also find it convenient

to study the evolution in the whole Hilbert space, that will be split into invariant, Zeno

subspaces. In the two latter cases (unitary kicks and continuous coupling) the quantum

Zeno subspaces will turn out to be the eigenspaces of the interaction. We shall discuss

the superselection rule that originates from the Zeno dynamics in Sec. 13.4 and show

the close equivalence between the two unitary approaches in Sec. 13.5.

13.1. Quantum Zeno subspaces via projective measurements

We first consider projective von Neumann’s measurements. Besides being incomplete,

in the sense specified at the beginning of Sec. 3, the quantum measurements will be

“nonselective,” in the sense that the measuring apparatus does not select the different

outcomes, but simply destroys the phase correlations between some states, provoking

the transition from a pure state to a mixture. See, for example, [163, 143].

We now extend Misra and Sudarshan’s theorem [117] to incomplete and nonselective

measurements [45]. Let the evolution of the quantum system be described by the

superoperator

Ûtρ = U(t)ρU †(t), U(t) = exp(−iHt) (141)

where ρ is the density matrix of the system and H a time-independent lower-bounded

Hamiltonian. Let

{Pn}n, PnPm = δmnPn,
∑

n

Pn = 1, (142)

be a finite orthogonal resolution of the identity and PnH = Hn the relative subspaces.

The Hilbert space is accordingly partitioned in

H =
⊕

n

Hn. (143)

The nonselective measurement is described by the superoperator

P̂ ρ =
∑

n

PnρPn (144)

and the evolution after N measurements in a time t is governed by the superoperator

V̂
(N)
t =

(

P̂ Ût/N

)(

P̂ Ût/N

)

· · ·
(

P̂ Ût/N

)

︸ ︷︷ ︸

N times

=
(

P̂ Ût/N

)N

. (145)

Let us prepare the system in the initial state

P̂ ρ0 =
∑

n

Pnρ0Pn. (146)
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The evolution reads

ρ(t) = V̂
(N)
t ρ0 =

∑

n1,...,nN

V (N)
n1...nN

(t) ρ0 V
(N)†
n1...nN

(t), (147)

where

V (N)
n1...nN

(t) = PnN
U (t/N)PnN−1

· · ·Pn2U (t/N)Pn1, (148)

that should be compared to Eq. (27) (which is obtained as a particular case when all

projectors are the same). We assume, like in Sec. 10, the existence of the strong limits

U
(n)
Z (t) = s− lim

N→∞
V (N)
n...n(t) = lim

N→∞

[

PnU

(
t

N

)

Pn

]N

, (149)

s− lim
t→0+

U
(n)
Z (t) = Pn, ∀n (150)

Then U
(n)
Z (t) form a semigroup, and

U
(n)†
Z (t)U

(n)
Z (t) = Pn. (151)

Moreover, it is easy to show that

lim
N→∞

V
(N)
n...n′...(t) = 0, for n′ 6= n. (152)

Notice that, for any finite N , the off-diagonal operators (148) are in general

nonvanishing, i.e. V
(N)
n...n′...(t) 6= 0 for n′ 6= n. It is only in the limit (152) that

these operators become diagonal. This is because U (t/N) provokes transitions among

different subspaces Hn. The limiting evolution superoperator is

ÛZ(t) ≡ lim
N→∞

V̂
(N)
t , (153)

and the final state reads

ρ(t) = ÛZ(t)ρ0 =
∑

n

U
(n)
Z (t)ρ0U

(n)†
Z (t),

with
∑

n

U
(n)†
Z (t)U

(n)
Z (t) =

∑

n

Pn = 1. (154)

The components U
(n)
Z (t)ρ0U

(n)†
Z (t) make up a block diagonal matrix: the initial density

matrix is reduced to a mixture and any interference between different subspaces Hn is

destroyed (complete decoherence). Moreover,

pn(t) = Tr [ρ(t)Pn] = Tr
[

U
(n)
Z (t)ρ0U

(n)†
Z (t)

]

= Tr [ρ0Pn] = pn(0), ∀n. (155)

Probability is conserved in each subspace and no probability leakage between different

subspaces is possible: the total Hilbert space splits into invariant Zeno subspaces Hn

and the different components of the density matrix independently evolve within each

sector. One can think of the total Hilbert space as the shell of a tortoise, each invariant

subspace being one of the scutes. Motion among different scutes is impossible. (See Fig.

7 in the following.) Misra and Sudarshan’s seminal result is reobtained when pn(0) = 1

for some n, in (155): the initial state is then in one of the invariant subspaces and the

survival probability in that subspace remains unity.
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When the Hamiltonian is bounded ‖H‖ <∞, each limiting evolution operator U
(n)
Z

in (150) is unitary within the subspace Hn and has the form

U
(n)
Z (t) = lim

N→∞
[PnU(t/N)Pn]

N = Pn exp(−iPnHPnt). (156)

More generally, if Hn ⊂ D(H) (which is trivially satisfied for a bounded H), then the

resulting Hamiltonian PnHPn is self-adjoint and U
(n)
Z (t) is unitary in Hn. When the

above condition does not hold, one has to resort to the theorem proved in Sec. 10 and

work out the real form of the self-adjoint Zeno Hamiltonian H
(n)
Z = PnH

(n)
Z Pn in the

sector Hn.

In any case, with the necessary precautions on the meaning of operators and

boundary conditions, the Zeno evolution can be written

ÛZ(t)ρ0 =
∑

n

Pn exp(−iHZt)ρ0 exp(iHZt)Pn, (157)

where

HZ = P̂H =
∑

n

PnHPn (158)

is the global Zeno Hamiltonian.

13.2. Quantum Zeno subspaces via unitary kicks (“bang-bang”)

We have seen that if the projections are multidimensional, the system evolves in a

collection of Zeno subspaces. The deus ex machina of these phenomena are von

Neumann’s projections, that are supposed to be instantaneous processes, yielding the

collapse of the wave function (an ultimately nonunitary process). However, QZE is

not a consequence of nonunitary evolutions: it can be obtained by repeatedly dividing

the wave function into branch waves [138, 136] (but see also [145]). If the branching

processes are frequent enough, one gets again Zeno. We now further elaborate on this

issue, obtaining first, in this subsection, the quantum Zeno subspaces by means of a

sequence of frequent instantaneous unitary processes, then in the next subsection by

means of a strong continuous coupling. We will only sketch the main results: additional

details and a complete proof can be found in [37, 46].

Consider the dynamics of a quantum system undergoing N “kicks” Ukick in a time

interval t. Kicks are simply instantaneous unitary transformations, in practice a limiting

concept (the duration of the kick being the shortest timescale in the problem at hand).

Notice the similarity with a von Neumann projection, a process that is also supposed

to take place instantaneously. Consider a system that undergoes a smooth unitary

evolution U interspersed at equal time intervals t/N with N kicks. The evolution reads

UN(t) =

[

UkickU

(
t

N

)][

UkickU

(
t

N

)]

· · ·
[

UkickU

(
t

N

)]

︸ ︷︷ ︸

N times

=

[

UkickU

(
t

N

)]N

(159)
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In the large N limit, the evolution is dominated by the large contribution of (Ukick)
N .

One therefore considers the sequence {VN}N of unitary operators

VN(t) = (U †
kick)

NUN (t) = (U †
kick)

N

[

UkickU

(
t

N

)]N

(160)

and its limit

UZ(t) ≡ lim
N→∞

VN(t). (161)

One can show that

UZ(t) = exp(−iHZt), (162)

where

HZ = P̂H =
∑

n

PnHPn (163)

is the Zeno Hamiltonian, Pn being the spectral projections of Ukick

Ukick =
∑

n

e−iλnPn. (e−iλn 6= e−iλl , for n 6= l), (164)

that we assume to have a discrete spectrum. In conclusion

UN(t) ∼ UN
kickUZ(t) = UN

kick exp(−iHZt)

= exp

(

−i
∑

n

NλnPn + PnHPnt

)

. (165)

This is again a Zeno dynamics, yielding Zeno subspaces, the partition of the Hilbert

space depending now on the features of the kick operator (164). The situation is identical

to the case of repeated projective measurements discussed in Sec. 13.1.

It is remarkable to observe that in this case the map HZ = P̂H is the projection

onto the centralizer

Z(Ukick) = {X| [X,Ukick] = 0}. (166)

The appearance of the Zeno subspaces is a direct consequence of the wildly oscillating

phases between different eigenspaces of the kick (yielding a superselection rule [184, 185])

and hinges on von Neumann’s ergodic theorem [149].

The analogy of the approach outlined in this section with the seminal papers on

quantum maps and quantum chaos [22, 16] is manifest. Note, however, that here we

are interested in the limit τ = t/N → 0, with t finite, while in quantum chaos the main

interest is in the large time limit t → ∞, with τ finite. The efficacy of “bang-bang”

kicks in controlling the dynamics in NMR experiments is well known since the sixties

[4, 30, 56, 95] and was revived thirty years later in the context of quantum information

[177]. An excellent review of these techniques can be found in [96].
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13.3. Quantum Zeno subspaces via a strong continuous coupling

Both von Neumann’s projections and unitary kicks are limiting processes, that are

supposed to take place instantaneously, namely on a very short timescale when compared

to the other timescales characterizing the evolution of the quantum system. On the other

hand, short timescales can be physically associated with strong couplings. It is then

natural to expect that the essential features of the QZE can be obtained by making

use of a strong continuous coupling, when the external system takes a sort of steady,

powerful “gaze” at the system of interest. The mathematical formulation of this idea

is contained in a theorem on the (large-K) dynamical evolution governed by a generic

Hamiltonian of the type

HK = H +KHc, (167)

where H is the Hamiltonian of the quantum system, Hc an additional interaction

Hamiltonian caricaturing the “continuous measurement” and K a coupling constant.

In the limit K → ∞ (“infinitely strong measurement” or “infinitely quick

detector”), the evolution operator

UK(t) = exp(−iHKt) (168)

is dominated by exp(−iKHct). One therefore considers the limiting operator

UZ(t) = lim
K→∞

exp(iKHct)UK(t), (169)

that can be shown to have the form

UZ(t) = exp(−iHZt), (170)

where

HZ = P̂H =
∑

n

PnHPn (171)

is the Zeno Hamiltonian, Pn being the eigenprojection of Hc, that we suppose to have

a discrete spectrum, belonging to the eigenvalue ηn

Hc =
∑

n

ηnPn, (ηn 6= ηm, for n 6= m) . (172)

This is formally identical to (158) and (163). In conclusion, the limiting evolution

operator is

UK(t) ∼ exp(−iKHct)UZ(t) = exp

(

−i
∑

n

KtηnPn + PnHPnt

)

, (173)

whose block-diagonal structure is explicit and yields the Zeno subspaces. Compare with

(165). The above statements can be proved by making use of the adiabatic theorem.

Like in the previous subsections, where the Zeno dynamics was obtained by making use

of frequent kicks, P̂ in (171) projects onto the centralizer

Z(Hc) = {X| [X,Hc)] = 0}. (174)



CONTENTS 40

Again, the Zeno subspaces are a consequence of the wildly oscillating phases between

different eigenspaces.

The notion of a continuous observation of the quantum state, performed for example

by its environment or an intense field, dates back to the eighties. Chiral molecules

can exist in two reflection-related isomers, but in practice they only appear as one or

the other isomer and never in their symmetric superposition (the system ground state).

Simonius [166] and then Harris and Stodolski [67] argued that the solution containing the

molecules acts as an environment that continuously observes the molecules, decohering

them and inhibiting any transitions. This concept is similar, in embryo, to that discussed

in this subsection. Similar ideas were discussed in literature of the last two decades

[142, 92, 169, 176, 147, 17, 112, 100, 170, 134, 150, 43, 114, 99]. The first quantitative

estimate of the link with the formulation in terms of projective measurements is rather

recent [112, 161, 44].

13.4. Dynamical superselection rules

Let us briefly discuss the physics behind the different manifestations of the quantum

Zeno effect discussed in this section. In the N → ∞ (K → ∞) limit the time evolution

operator UZ(t) becomes diagonal with respect to Ukick or Hc, i.e. it belongs to their

centralizers,

[UZ(t), Ukick] = 0, [UZ(t), Hc] = 0, (175)

a superselection rule arises and the total Hilbert space is split into subspaces Hn that are

invariant under the evolution. The dynamics within each Zeno subspace Hn is governed

by the Zeno Hamiltonian HZPn = PnHPn, which is the diagonal part of the system

Hamiltonian H , the remaining part of the evolution consisting in a sector-dependent

phase. The probability to find the system in each Hn

pn(t) = Tr [ρ(t)Pn] = Tr
[

UZ(t)ρ0U
†
Z(t)Pn

]

= Tr
[

UZ(t)ρ0PnU
†
Z(t)

]

= Tr [ρ0Pn] = pn(0) (176)

is constant. As a consequence, if the initial state is an incoherent superposition of the

form (146), then each component will evolve separately, according to

ρ(t) = UZ(t)ρ0U
†
Z(t) =

∑

n

U
(n)
Z (t)ρ0U

(n)†
Z (t), (177)

with U
(n)
Z (t) = Pn exp(−iPnHPnt), which is exactly the same result (154)-(156) found

in the case of projective measurements. In Fig. 7 we endeavored to give a pictorial

representation of the decomposition of the Hilbert space in the three cases discussed

(projective measurements, kicks and continuous coupling).

Notice, however, that there is one important difference between the nonunitary

evolution discussed in Sec. 13.1 and the dynamical evolutions discussed in Secs. 13.2-

13.3: indeed, if the initial state ρ0 contains coherent terms between any two Zeno

subspaces Hn and Hm, Pnρ0Pm 6= 0, these vanish after the first projection (154) in
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Figure 7. The Zeno subspaces. The Hilbert space of the system splits into sectors

(the scutes of the shell of a tortoise) and a dynamical superselection rule appears as

the number of measurements/kicks N or the coupling K is increased. This drawing

blends the paradox of the sped arrow that never reaches its target with that of the

tortoise and swifter-running Achilles, which was also proposed by Zeno in order to

counter the idea of motion: in a race in which the tortoise has a head start, Achilles

can never overtake it, because before he comes up to the point at which the tortoise

started, the tortoise will have got a little way, and so on ad infinitum: “that which is

in locomotion must arrive at the half-way stage before it arrives at the goal” [8]. In

our quantum context, sped arrows can only move within the scutes, but never cross

the boundary between different scutes.

Sec. 13.1: Pnρ(0
+)Pm = 0 [the state becomes an incoherent superposition ρ(0+) 6= ρ0,

whence Trρ(0+)2 < Trρ2
0]. On the other hand, such terms are preserved by the dynamical

(unitary) evolutions analyzed in Secs. 13.2-13.3, and do not vanish, even though they

wildly oscillate. For example, consider the initial state

ρ0 = (Pn + Pm)ρ0(Pn + Pm), Pnρ0Pm 6= 0. (178)

By (165) and (173) it evolves into

ρ(t) = U
(n)
Z (t)ρ0U

(n)†
Z (t) + U

(m)
Z (t)ρ0U

(m)
Z (t)

+ e−iN(λn−λm)U
(n)
Z (t)ρ0U

(m)†
Z (t)

+ eiN(λn−λm)U
(m)
Z (t)ρ0U

(n)†
Z (t) (179)

or

ρ(t) = U
(n)
Z (t)ρ0U

(n)†
Z (t) + U

(m)
Z (t)ρ0U

(m)
Z (t)

+ e−iK(ηn−ηm)tU
(n)
Z (t)ρ0U

(m)†
Z (t)

+ eiK(ηn−ηm)tU
(m)
Z (t)ρ0U

(n)†
Z (t), (180)

respectively, at variance with (154). Therefore Trρ(t)2 = Trρ2
0 for any t and the Zeno

dynamics is unitary in the whole Hilbert space H. We notice that these coherent terms
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become unobservable in the large-N or large-K limit, as a consequence of the Riemann-

Lebesgue theorem (applied to any observable that “connects” different sectors and whose

time resolution is finite). This interesting aspect is reminiscent of some results on

“classical” observables [78], semiclassical limit [15] and quantum measurement theory

[163, 6, 102, 103, 7]. It is also interesting to note that the superselection rules discussed

here are de facto equivalent to the celebrated “W3” ones [184, 185], but turn out to be

a mere consequence of the Zeno dynamics.

13.5. Origin of equivalence between continuous and pulsed formulations

The equivalence between the pulsed and continuous measurement formulation of the

quantum Zeno effect can be pushed much further: let us show that the two procedures

differ only in the order in which two limits are computed [37]. As we have seen, the

continuous case deals with the strong coupling limit

HK = H +KHc, K → ∞ (181)

and the Zeno subspaces are the eigenspaces of Hc. On the other hand, the kicked

dynamics entails the limit N → ∞ in (159) and the Zeno subspaces are the eigenspaces

of Ukick. This evolution is generated by the Hamiltonian

Hkick = H + τ0Hc

∑

n

δ(t− nτ), τ → 0 (182)

where τ is the period between two kicks and the unitary evolution during a kick is

Ukick = exp(−iτ0Hkick). The limit N → ∞ in (159) corresponds to τ → 0. The two

dynamics (181) and (182) are both limiting cases of the following one

H(τ,K) = H +KHkick

∑

n

g

(
t− n(τ + τ0/K)

τ0/K

)

, (183)

where the function g has the properties
∑

n

g(x− n) = 1 (184)

lim
K→∞

Kg(Kx) = δ(x). (185)

For example we can consider g(x) = χ[−1/2,1/2](x). In Eq. (183) the period between two

kicks is τ0/K + τ , while the kick lasts for a time τ0/K. By taking the limit τ → 0

in Eq. (183), i.e., a sequence of pulses of finite duration τ0/K without any idle time

among them, and using property (184), one recovers the continuous case (181). Then,

by taking the strong coupling limit K → ∞ one gets the Zeno subspaces. On the other

hand, by taking the K → ∞ limit, i.e., the limit of shorter pulses (but with the same

global—integral—effect), and using property (185) and the identity δ(t/τ0) = τ0δ(t),

one obtains the kicked case (182). Then, by taking the vanishing idle time limit τ → 0

one gets again the Zeno subspaces. In short, the mathematical equivalence between the

two approaches is expressed by the relation

lim
K→∞

lim
τ→0

H(τ,K) = lim
τ→0

lim
K→∞

H(τ,K), (186)
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(for almost all τ0) with the left (right) side expressing the continuous (pulsed) case.

Note that this formal equivalence must physically be checked on a case by case basis,

and it is legitimate only if the inverse Zeno regime is avoided and the role of the form

factors clearly spelled out. That is, physically the relevant timescales play a crucial role,

and in practice there certainly can be a difference [49] between kicked dynamics and

continuous coupling, in spite of their equivalence in the above mathematical limit.

14. Examples

One of the main potential applications of the quantum Zeno subspaces concerns the

possibility of freezing the loss of quantum mechanical coherence and probability leakage

due to the interaction of the system of interest with its environment. Let us therefore

look at some elementary examples in the light of the three different formulations of

the Zeno effect summarized in Sec. 13. In the following, it can be helpful to think of

the Zeno subspace H1 as the quantum computation subspace (qubit) that one wants to

protect from decoherence.

14.1. Von Neumann’s projections

Consider a 3-level system in Hsys = C
3

〈a| = (1, 0, 0), 〈b| = (0, 1, 0), 〈c| = (0, 0, 1) (187)

and the Hamiltonian

H = Ω1(|a〉 〈b| + |b〉 〈a|) + Ω2(|b〉 〈c| + |c〉 〈b|) =





0 Ω1 0

Ω1 0 Ω2

0 Ω2 0



 . (188)

We perform the (incomplete, nonselective) projective measurements (P1 + P2 = 1)

P1 = |a〉 〈a| + |b〉 〈b| =





1 0 0

0 1 0

0 0 0



 , P2 = |c〉 〈c| =





0 0 0

0 0 0

0 0 1



 , (189)

yielding the partition (143), with dimH1 = 2, dimH2 = 1. The evolution operators

(156) read

U
(1)
Z (t) = P1 exp(−iP1HP1t) = P1 exp



−i





0 Ω1t 0

Ω1t 0 0

0 0 0









=





cos Ω1t −i sin Ω1t 0

−i sin Ω1t cos Ω1t 0

0 0 0



 ,

U
(2)
Z (t) = P2 exp(−iP2HP2t) = P2 =





0 0 0

0 0 0

0 0 1



 (190)
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Figure 8. Three level system undergoing measurements (P1 not indicated). We

explicitly showed the Zeno subspace H1.

and the Zeno Hamiltonian (158) is

HZ = P1HP1 + P2HP2 =





0 Ω1 0

Ω1 0 0

0 0 0



 . (191)

The initial state (146) evolves according to (154): in the Zeno limit (N → ∞), the

subspaces H1 and H2 decouple. If the coupling Ω2 is viewed as a caricature of the

loss of quantum mechanical coherence, the subspace H1 becomes “decoherence free”

[133, 191, 28]. See Fig. 8.

14.2. Kicks

In order to exemplify how unitary kicks yield the Zeno subspaces, consider the 4-level

system in the enlarged Hilbert space Hsys ⊕ span{|M〉}
〈a| = (1, 0, 0, 0), 〈b| = (0, 1, 0, 0),

〈c| = (0, 0, 1, 0), 〈M | = (0, 0, 0, 1) (192)

and the Hamiltonian

H = Ω1(|a〉 〈b|+ |b〉 〈a|)+Ω2(|b〉 〈c|+ |c〉 〈b|) =







0 Ω1 0 0

Ω1 0 Ω2 0

0 Ω2 0 0

0 0 0 0






.(193)

This is the same example as (187)-(188), but we added a fourth level |M〉. We now

couple |M〉 to |c〉 by performing the unitary kicks

Ukick = P1 + e−iλ(|c〉〈M |+|M〉〈c|) =







1 0 0 0

0 1 0 0

0 0 cosλ −i sinλ
0 0 −i sin λ cosλ







=
∑

n=1,±
e−iλnPn, (194)



CONTENTS 45

ΩΩ

Ω 2

1

c

b

a

t/N
M

Zeno subspace

Figure 9. Three level system undergoing frequent unitary kicks that couple one of its

levels to an “external” system M . We explicitly indicated the Zeno subspace H1.

where λ = λ+ = −λ− 6= λ1 = 0 and the subspaces are defined by

P1 = |a〉 〈a| + |b〉 〈b| =







1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0






, (195)

P± =
(|c〉 ± |M〉)(〈c| ± 〈M |)

2
=

1

2







0 0 0 0

0 0 0 0

0 0 1 ±1

0 0 ±1 1






. (196)

(P1 + P− + P+ = 1.)

In the Zeno limit (N → ∞) the subspaces H1, H+ and H− decouple due to the

wildly oscillating phases O(N). See Fig. 9. The Zeno Hamiltonian (163) reads

HZ =
∑

n

PnHPn =







0 Ω1 0 0

Ω1 0 0 0

0 0 0 0

0 0 0 0







(197)

and the evolution (165) is

UN(t) ∼ exp

(

−i
∑

n

NλnPn + PnHPnt

)

= exp






−i







0 Ω1t 0 0

Ω1t 0 0 0

0 0 0 Nλ

0 0 Nλ 0













=







cos Ω1t −i sin Ω1t 0 0

−i sin Ω1t cos Ω1t 0 0

0 0 cosNλ −i sinNλ
0 0 −i sinNλ cosNλ






. (198)

This is the scheme adopted by Itano et al in their experiment [76].
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ΩΩ
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1

Zeno subspace
a

b

c
MK

Figure 10. Three level system with one of its levels strongly coupled to an “external”

system M . We explicitly indicated the Zeno subspace H1.

14.3. Continuous coupling

Finally, in order to understand how the scheme involving continuous measurements

works, add to (193) the Hamiltonian (acting on Hsys ⊕ span{|M〉})

KHc = K(|c〉 〈M |+ |M〉 〈c|) =







0 0 0 0

0 0 0 0

0 0 0 K

0 0 K 0







= K (P+ − P−) , (199)

where P± are the same as in (196). The fourth level |M〉 is now continuously coupled

to level |c〉, K ∈ R being the strength of the coupling. As K is increased, level |M〉
performs a better “continuous observation” of |c〉, yielding the Zeno subspaces. The

eigenprojections of Hc [see (172)]

Hc = η1P1 + η−P− + η+P+ (200)

are again (195)-(196), with η1 = 0, η± = ±1. Once again, in the Zeno limit (K → ∞)

the subspaces H1, H+ and H− decouple due to the wildly oscillating phases O(K). See

Fig. 10. The Zeno Hamiltonian HZ is given by (171) and turns out to be identical to

(197), while the evolution (173) explicitly reads

UK(t) ∼ exp

(

−i
∑

n

KtηnPn + PnHPnt

)

= exp






−i







0 Ω1t 0 0

Ω1t 0 0 0

0 0 0 Kt

0 0 Kt 0













=







cos Ω1t −i sin Ω1t 0 0

−i sin Ω1t cos Ω1t 0 0

0 0 cosKt −i sinKt
0 0 −i sinKt cosKt






. (201)

[Compare with (198): Kt plays the role of Nλ.] This is the scheme adopted by Ketterle

and collaborators in their experiment [168].
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15. Conclusions and outlook

We analyzed the physical and mathematical aspects of the quantum Zeno dynamics that

takes place when one frequently checks whether a quantum system has remained inside

a multidimensional Zeno subspace. Unlike in the traditional formulation of the QZE,

the system can evolve away from its initial state, although it remains in the eigenspace

of the projection operator associated with the measurement.

When the Zeno subspace is finite dimensional, the evolution can be easily (and

rigorously) derived. The situation is much more complicated for infinite dimensional

projections, such as traditional position measurements, namely projections onto spatial

regions. This is an open problem from the mathematical point of view, where the

existence of the strong limit of the Zeno product formula remains to be proven. However,

if it converges, the Zeno dynamics uniquely determines the boundary conditions, and

they turn out to be of Dirichlet type.

The Zeno mechanism not only forces the system to remain in a given subspace, it

also constrains its (sub)dynamics in this space, determining the behavior of the wave

function on the boundary and yielding a unitary, decoherence free evolution. Besides

its theoretical interest, this feature might lead to potential applications and practical

implementations of the Zeno constraints in order to tailor subspaces that are robust

against decoherence, which are of great interest in quantum information processing

applications.

We implicitly assumed, throughout a part of our discussion, the validity of the

Copenhagen interpretation, according to which the measurement is considered to be

instantaneous. The QZE is traditionally derived by considering a series of rapid, pulsed

observations (projections). This became almost a dogma and motivated all seminal

experiments. However, a projection operator is a shorthand notation, that summarizes

the effects of a much more complicated underlying dynamical process, involving a huge

number of elementary quantum mechanical systems. Later formulations emphasized

that the QZE can also be generated by pulsed and even continuous Hamiltonian

interaction. Here we have shown that all these seemingly different pictures can be

unified and in particular the QZE in its continuous-interaction and pulsed (“kicks” or

“bang-bang”) formulation can be understood as limits of a single Hamiltonian, Eq. (183),

giving rise to either pulsed or continuous dynamics, with a resulting partitioning of the

controlled system’s Hilbert space into quantum Zeno subspaces. This unified view not

only offers the advantage of conceptual simplicity, but also has significant practical

consequences: it shows that the scope of all the methods analyzed here (QZE, kicks and

continuous interaction) are wider than previously suspected, leading to greater flexibility

in their implementation.

The present work enters an experimentally uncharted area, although the property of

being a multidimensional measurement is not at all exotic: the quantum Zeno dynamics

has not been experimentally demonstrated, even for a two-dimensional subspace (a

qubit). It would be of great interest to verify it for an N level system or for a collection
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of qubits and in particular for the most basic quantum measurement: position.
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