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Noether Theorem, Noether Charge and All That 

 

 

Created for PF by Samalkhaiat 

 

 1.0 Transformations 

Let G  be a Lie group whose action on Minkowski space-time 
( )( )1,3

,ηM  is formally 

realized by coordinate transformations 

 

 ,x x g x g G→ = ∀ ∈ . (1.1)                           

 

Infinitesimally, we may write this as 

 

 x x xµ µ µδ= + , (1.2) 

 

where ( ; )x f xµ µδ ε=  are smooth functions of the coordinates and 1αε ≪ , 

1, 2,...,dim(G)α = , are the infinitesimal group parameters.  

 

We assume that our dynamical variables (the fields) are described by continuous 

functions 2 (1,3){1,2,.., }, ( ) ( , )n

rr n xϕ∀ ∈ ∈ℓ ℂM
 
and transform by finite-dimensional 

( n n×  matrix) representation ρ  of the group (1,3)on G M : ( (1,3)( ),Gρ M ), 

 

 ( ) ( ) ( ) ( )s

r r r sx x D g xϕ ϕ ϕ→ = , (1.3) 

 

 1 2 1 2( ) ( ) ( )s t s

r r tD g g D g D g= . (1.4) 

                       

Close to the identity element of the group, i.e. infinitesimally, we can write 

  

 ( ) ( )s s s

r r rD g α
αδ ε= + Σ , (1.5) 

                               

where the n n×  matrices αΣ ’s form a representation of the Lie algebra of the group 

  

 [ , ] iC γ
α β αβ γΣ Σ = Σ . (1.6) 

                                    

Using (1.5), we can rewrite (1.3) as 

  

 * ( ) ( ) ( )r r rx x xδ ϕ ϕ ϕ= − , (1.7) 

                            

where  

 * ( ) ( ) ( )s

r r sx xα
αδ ϕ ε ϕΣ≐ . (1.8) 
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For later use, let us now derive some of the important properties of the variation 

symbol *δ . From (1.6) and (1.8), we see that 

  

 * * *[ , ] ( ) ( )r rx iC xγ
α β αβ γδ δ ϕ δ ϕ= . (1.9) 

                  

Using its definitions (1.7), we can easily show that *δ  acts as derivation on functions 

 

 * * *( ( ) ( )) ( ( )) ( ) ( ) ( ( ))f x g x f x g x f x g xδ δ δ= + . (1.10) 

 

Since *

rδ ϕ  is written entirely in terms of the primary fields without time derivatives, 

it (anti)commutes with ( )s yϕ  at equal time  

 

 *[ ( , ) , ( , )] 0r st x t yδ ϕ ϕ =
� �

. (1.11)                                   

 

To first order in xµδ  we can write 

 

 ( ) ( ) ( )r r rx x x xµ
µϕ ϕ δ ϕ= + ∂ . (1.12) 

                            

Using this expansion, we can rewrite (1.7) as 

 

 * ( ) ( ) ( )r r rx x x xµ
µδ ϕ δϕ δ ϕ= + ∂ , (1.13) 

                        

where  

 ( ) ( ) ( )r r rx x xδϕ ϕ ϕ−≐ , (1.14) 

                                      

is the infinitesimal change in the functional form of fields. If the field index r  is a 

space-time index taking values in the set { , , , ,...}µ µν µνρ∅ , in 4-dimensional space-

time ( )r xδϕ  is nothing but the Lie derivative of a space-time tensor ( )r xϕ  with 

respect to the infinitesimal transformation (1.2). The transformation considered is 

called space-time (symmetry) transformation if 0xµδ ≠  and internal (symmetry) 

transformation if 0xµδ = ; *( )δ δ−  is called the orbital part of the (symmetry) 

transformation. 

 

Commuting both sides of (1.13) with ( , )s t yϕ
�

 (at equal time) and using (1.11), we 

find  

 0[ ( , ) , ( , )] [ ( , ) , ( , )]r s r st x t y x t x t yδϕ ϕ δ ϕ ϕ= −
� � � �

ɺ . (1.15) 

 

And finally, we note that it will be useful to write (1.13) as an operator equation 

  

 * xµ
µδ δ δ= + ∂ , (1.16) 

                                                

with *( , )δ δ  are given by their usual definitions on functions (1.7) and (1.14). Notice 

that, while δ  commutes with derivatives, *δ  does not commute with σ∂ : 
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 *[ , ] ( )xµ
σ µ σδ δ∂ = ∂ ∂ . (1.17) 

 

Exercise (1.1) In D-dimensional Minkowski space-time, show that  

 

 ( )22x x x c x x xµ µ µ µ ν ν µ µν
ν νδ ε ω η=∈ + + + − , 

 

is the most general solution to the conformal Killing equation 

 

 ( ) ( ) ( )2
x x x

D

µ ν ν µ µν σ
σδ δ η δ∂ + ∂ = ∂  . 

Solution is given in [1]. 

 

Exercise (1.2) Let ( )f xµ  be a solution to the conformal Killing equation 

 

 2 ( )f f x gµ ν ν µ µνω∇ +∇ =  . 

 

Show that f xµ
µ ɺ  is a constant along the geodesic. 

 

Solution: ( ) ( ) ( )1
0

2

d
f x x f x f f x x g x x

d

µ σ µ σ µ µ σ
µ σ µ σ µ µ σ µσω

τ
= ∇ = ∇ +∇ = =ɺ ɺ ɺ ɺ ɺ ɺ ɺ . 

 

2.0  Invariance of the Action and Noether Theorem 

 

 

 

 
Emmy Noether [1882-1935] 
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The action [ :( ( ), )S Gρ Ω →ℝ ] is given by the integral 

 

 

 4[ ] ( ( ), ( ))r r rS d x x xµϕ ϕ ϕ
Ω

= ∂∫ L   

 

where 4Ω ⊂ ℝ  is an arbitrary, contractible and bounded region in (1,3)( , )ηM . The 

Lagrangian density ( )xL  is a local real function of fundamental (primary) 

fields ( )r xϕ , that is, it is constructed from ( )r xϕ  and their derivatives, rµϕ∂ , at the 

same space-time point xµ . In order for the canonical formalism to make sense, ( )xL  

is assumed to contain no second or higher derivatives of ( )r xϕ  and to be at most 

quadratic in rµϕ∂  ( 4: n n× →ℂ ℂ ℝL ). It is also assumed that the fields are well-

behaved and vanish sufficiently rapidly at infinity. 

Under the transformation (1.1), a region (1,3)D∈M  is mapped into a new region D  by 

point-to-point correspondence. Therefore, infinitesimally ( )g ε  induces an 

infinitesimal change in the region of integration 

                                   

 ( ) :g ε δΩ → Ω = Ω+ Ω  

 

and maps the action integral into 

 

 

 4( ) : [ ] [ ] ( )r rg S S d x x
δ

ε ϕ ϕ
Ω+ Ω

→ = ∫ L  (2.1)

                              

  

                                   
where 

 ( ) ( ( ), ( ))r rx x xµϕ ϕ∂≐L L .                                                      

 

If the action integral is invariant (i.e., [ ] [ ], andr r rS S αϕ ϕ ε ϕ= ∀ ) under certain group 

of transformations (with parameters αε ), the theory is said to have a symmetry 

corresponding to those transformations. Therefore, in order for the group G  to be a 

symmetry group of our theory, we must have  

 

 ( )* 4 4 4( ) ( ) ( ) 0d x x d x x d x x
δ

δ
Ω Ω+ Ω Ω

= − =∫ ∫ ∫L L L . (2.2) 

 

Changing the dummy integration variable in the second integral, we get 

 

 4 4( ) ( ) 0d x x d x x
δΩ+ Ω Ω

− =∫ ∫L L . (2.3) 

 

Using the relation 

 ( ) ( ) ( )x x xδ= +L L L , (2.4) 

 

we can rewrite (2.3) in the form 
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 ( )4 4 4( ) ( ) ( ) 0d x x d x x d x x
δ

δ
Ω+ Ω Ω Ω

− + =∫ ∫ ∫L L L . (2.5) 

 

We know from elementary calculus that 

 

 ( )( ) ( ) ( ) ( ) ( )
b b b b

a a a a

d
dx f x dx f x f b b f a a dx f x x

dx

δ

δ
δ δ δ

+

+
− ≈ − =∫ ∫ ∫ . (2.6) 

 

Generalizing this to the 4-dimensional case in (2.5), we find (to first order in xµδ ) 

that 

 ( )( )4 ( ) 0d x x xµ
µ δ δ

Ω
∂ + =∫ L L . (2.7) 

 

The same result can be obtained if we apply the derivation property of *δ  on the left-

hand side of (2.2) 

 

 ( ) ( )* 4 * 4 4 *( ) ( ) ( ) 0d x x d x x d x xδ δ δ
Ω Ω Ω

= + =∫ ∫ ∫L L L . (2.8) 

 

Using the relation 

 ( ) ( )det |1 | exp Tr In |1 | exp Tr+∈= +∈ = ∈ , 

 

we can expand the Jacobian of the transformations to first order as 

 

 ( ) ( )x
det = det 1 Tr 1

x
x x xρ ρ ρ τ

σ σ σ τδ δ δ δ
∂  + ∂ = + ∂ ≈ + ∂ ∂ 

. 

Thus 

 4 4 4 4 * 4 4x
det ( ) , ( ) ( )

x
d x d x d x x d x d x d x xµ µ

µ µδ δ δ
∂ = = + ∂ ⇒ = ∂ ∂ 

. (2.9) 

 

And applying the operator equation (1.16) to the Lagrangian, gives us 

 

 * xµ
µδ δ δ= + ∂L L L . (2.10) 

  

Putting (2.9) and (2.10) in equation (2.8) gives us back equation (2.7).  

Since 4Ω ⊂ ℝ  is an arbitrary contractible region, the integrand in equation (2.7) must 

vanishes identically 

 

 ( ) 0xµ
µδ δ+ ∂ ≡L L . (2.11) 

 

This is an identity with respect to all its arguments, if the group G  is an invariance 

group of the action integral. It holds for all functions ( )r xϕ , it does not matter whether 

( )r xϕ ’s are solutions of the Euler-Lagrange equations or not. Since the divergence 

term is not discarded, the behaviour of ( )r xϕ  on the boundary, ∂Ω , is also irrelevant. 

Since [ , ] 0µδ ∂ = , we can write 
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( ) ( )( ) r r

r r

x µ
µ

δ δϕ δϕ
ϕ ϕ
∂ ∂

= + ∂
∂ ∂ ∂

L L
L . (2.12) 

Introducing the Euler derivatives 

 

 
ˆ

ˆ
r rr

µ
µ

δ
ϕ ϕδϕ

 ∂ ∂
− ∂   ∂ ∂ 

≐
L L L

, (2.13) 

 

into equation (2.12) and inserting the resulting equation back into equation (2.11), we 

arrive at the �oether Identity 

 

 
( )

ˆ
0

ˆ r r

rr

xµ
µ

µ

δ
δϕ δ δϕ

ϕδϕ

 ∂
 + ∂ + ≡
 ∂ ∂ 

L L
L . (2.14) 

 

Let us assume the fields ( )r xϕ  are solutions of the Euler-Lagrange equations 

 

 
ˆ

0, 1, 2,...,
ˆ ( )r

r n
x

δ
δϕ

= ∀ =
L

. (2.15) 

 

Thus, the Noether identity implies that the object (Noether current) 

 

 
( )

( ; ) r

r

J x xµ µ

µ

ε δ δϕ
ϕ

∂
+

∂ ∂
≐

L
L , (2.16) 

 

satisfies the conservation law 

 0J µ
µ∂ = . (2.17) 

 

The existence of the conserved (symmetry) current ( )J xµ  is known as the first 

�oether theorem. Of course, physical currents do not depend on the parameters of 

the symmetry group. Indeed, they can be factored out of equation (2.16) leaving a 

group index on the physical current 

 

 
( )( ) ( ) , 1, 2,...,dim(G)r

r

J x xµ µ
α α α

µ

δ ϕ δ α
ϕ

∂
= + =

∂ ∂

L
L . (2.18) 

 

Thus, there are as many conserved currents as there are parameters. Notice that the 

conserved current is not unique. In fact, adding a total divergence of antisymmetric 

tensor to the Noether current does not spoil the conservation law, 

 

 ( ) ( ) ( ) ( ) ( ),Jµ µ µν µν νµ
α α ν α α α= + ∂ = −J F F F  . (2.19) 

 

Quantities like these µν
F  are called super-potentials. They play important role in the 

construction of the conserved charges in general relativity and other generally 

covariant theories. Below, we will use this freedom to construct the symmetric 

energy-momentum tensor out of the non-symmetric canonical tensor.  
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It will be instructive to give another derivation of the Noether current which is 

ideologically different from the one we have just done. It consists in comparing the 

change δL  without using the equations of motion (i.e. the off-shell variation) with 

that when the Euler-Lagrange equations are satisfied (i.e. with the on-shell variation 

of L ). In this method, the explicit form of L  as well as rδϕ  are assumed known. 

According to (2.12), an arbitrary infinitesimal change in the fields induces the 

following change in the Lagrangian 

 

 
( ) ( )

r r

r r r

µ µ
µ µ

δ δϕ δϕ
ϕ ϕ ϕ

    ∂ ∂ ∂
= −∂ + ∂        ∂ ∂ ∂ ∂ ∂    

L L L
L . 

 

Using the equations of motion (i.e. on-shell), we find 

 

 
( )

r

r

µ
µ

δ δϕ
ϕ

 ∂
= ∂   ∂ ∂ 

L
L . (2.20) 

 

This is always true, whether or not rδϕ  is a symmetry transformation.  

On the other hand, if without the use of equations of motion (i.e. just by substituting 

rδϕ  in (2.12)) the Lagrangian changes by a total divergence of some object µΛ , 

 

 µ
µδ = ∂ ΛL  , (2.21) 

 

then the action remains unchanged, and the transformation, rδϕ , is a symmetry 

transformation of the theory. 

From (2.19) and (2.20), it follows that the conserved Noether current is 

 

 ( ) ( )
( )

r

r

J x xµ µ

µ

δϕ
ϕ

∂
= −Λ

∂ ∂
L

 . (2.22) 

Notice that using this method to derive the current, you do not need to know how xµ  

transforms under the symmetry group in question. So, how can you distinguish 

between internal and space-time symmetries, if you don’t have xµδ ? To answer this 

question we use the fact that adding total divergences to a Lagrangian does not affect 

the dynamics. Indeed, it is always possible to find a dynamically equivalent 

Lagrangian ˆ( )xL such that 

 ˆ( ) ( )x x µ
µ= + ∂ ∆L L  . (2.23) 

 

Thus 

 ˆ ( )µ µ µ
µ µδ δ δ δ= + ∂ ∆ = ∂ Λ + ∆L L  . (2.24) 

 

So, if 0µ
µ∂ Λ = , or it is possible to remove it by a suitable choice of µ∆ , then you are 

dealing with an internal symmetry. Otherwise, it is space-time symmetry.   
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2.1 Translation Invariance and the Stress Energy-Momentum   

        Tensor 

 
Using the relation 

 *( ) ( ) ( )r r rx x x xν
α α α νδ ϕ δ ϕ δ ϕ= − ∂ , (2.25) 

 

which follows from (1.16) when we factor out the infinitesimal parameters αε , we 

can rewrite (2.18) in the form 

 

 
( )

*

( ) ( ) ( )r

r

J x x xµ µ ν
α α ν α

µ

δ ϕ θ δ
ϕ

∂
= −

∂ ∂

L
, (2.26) 

where 

 
( )

( ) ( )r

r

x xµ µ
ν ν ν

µ

θ ϕ δ
ϕ

∂
∂ −

∂ ∂
≐

L
L . (2.27) 

 

Introducing the canonical conjugate field 

 

 
( )

( )
( )

r

r

x
x

x
π

ϕ
∂
∂
≐
ɺ

L
 , (2.28) 

 

into the 00θ  component, we find 

 

 00( ) ( ) ( ) ( ) ( )r

rx x x x xθ π ϕ= −ɺ≐H L . (2.29) 

 

In the classical mechanics of continuous system, ( )xH  is nothing but the Hamiltonian 

density of the system. Therefore, it follows from considerations of covariance that 
µνθ  represents the canonical stress energy-momentum tensor of the field. Let us 

calculate its divergence on shell, i.e. by using the Euler-Lagrange equations of 

motion, 

 

 ( , , )
( )

r r

r r

x
x

µν ν ν ν µν
µ µ µ

µ

θ ϕ ϕ ϕ ϕ η
ϕ ϕ
∂ ∂ ∂

∂ = ∂ + ∂ ∂ −∂ ∂ = −
∂ ∂ ∂ ∂
L L L

L  . 

 

Clearly, this vanishes (on shell) if the Lagrangian does not depend explicitly on xµ . 

Thus, the energy-momentum tensor is the conserved Noether current associated with 

the symmetry group of space-time translations. Indeed, under space-time translations 

 

 ,x xν ν ν ν
α αδ ε δ δ= ⇒ =  . (2.30) 

 

And all fields, regardless of their tensorial character, are invariant, 

 

 * ( ) 0r xδ ϕ = . (2.31) 

 

Putting (2.24) and (2.25) into the defining equation (2.20) of ( ) ( )J xµ
α , we find 
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 ( ) ( )J x xµ µ
α αθ≡ − . 

 

Thus, it follows trivially from (2.17) that the energy-momentum tensor is conserved 

 

 ( ) 0xµν
µθ∂ = . (2.32) 

 

 

2.2  Lorentz Invariance and the field’s Moment Tensor 

 
Under infinitesimal Lorentz transformations 

 

 x xν νσ ρ
ρσδ η ω=  , (2.33) 

the field transforms according to 

 ( )* ( ) ( )
2

s

r sr

i
x xνσ

νσδ ϕ ω ϕ= − Σ  , (2.34) 

 

where µνΣ ’s are the appropriate (spin) transformation matrices for the field rϕ . Using 

these relations, we can write the conserved current, (2.26), in the form 

 

 
1

( ) ( )
2 ( )

s

r s

r

J i x xµ νσ ρ µ ρ µ
νσ σρ ν νρ σ

µ

ω ϕ η θ η θ
ϕ

 ∂
= − − Σ − −  ∂ ∂ 

L
. 

 

This implies that the moment tensor 

 

 
( ) ( )

( )

s

r s

r

x x iµ ρ µ ρ µ
νσ νρ σ σρ ν νσ

µ

µ
σν

η θ η θ ϕ
ϕ

∂
= − − Σ

∂ ∂

= −

L
M

M

 (2.35) 

 

is conserved. Thus, a field theory is Poincare’ invariant if and only if  

 

 0µνσ νσ σν µνσ
µ µθ θ∂ = − + ∂ =SM  . (2.36) 

The object 

 ( ) ( ) ( )
( )

s

r s

r

x i xρµν µν

ρ

ϕ
ϕ

∂
− Σ

∂ ∂
≐

L
S  , (2.37) 

depends entirely on the intrinsic properties (tensorial nature) of the field. In classical 

field theory, it characterizes the polarization properties of the field. Thus, it 

corresponds to the spin (angular momentum) of particles described by the quantized 

field. 

For a single component field (scalar), the (spin) matrix Σ  vanishes and (2.35) 

becomes 

 x xµνσ ν µσ σ µνθ θ= −M  . 
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This relation is very muck like the relation between momentum and orbital angular 

momentum in the classical mechanics of particle i j j i ijk kx p x p L− =∈ . Therefore, the 

first term in (2.35), 

 x xµνσ ν µσ σ µνθ θ= −L  , (2.38) 

 

should correspond to some intrinsic “orbital” angular momentum of the field. Thus 

the moment tensor 

 

 µνρ µνρ µνρ= + SM L  (2.39) 

 

must be related the total angular momentum tensor of the field. 

 

From (2.35) and (2.36) we can clearly see the connection between the symmetry 

properties of the canonical energy-momentum tensor µνθ  and the structure of the total 

moment tensor µνρM . For a scalar field, since 0µνρ =S , we find that µν νµθ θ= . On the 

other hand, for arbitrary multi-component field, µνθ  is not necessarily symmetric. 

However, the Poincare’ invariance condition, (2.36), together with the freedom of 

adding super-potential to the current, (2.19), allow us to construct a symmetric 

energy-momentum tensor. Since σµν σνµ= −S S , let us seek for a quantity σµνF  such 

that 

 σµν σµν σνµ= −S F F  . (2.40) 

 

 Putting this in the Poincare’ invariance condition (2.36), we find 

 

 µν σµν νµ σνµ
σ σθ θ+ ∂ = + ∂F  F  . 

 Therefore, if we set 

 T µν µν σµν
σθ + ∂≐ F  , (2.41) 

 

we see that 

 T Tµν νµ=  . (2.42) 

 

Furthermore the conservation of the canonical energy-momentum tensor, 0µν
µθ∂ = , 

implies 

 T µν σµν
µ µ σ∂ = ∂ ∂ F  . (2.43) 

 

Thus, the conservation of the symmetric tensor Tµν  demands (super-potential) 

 

 σµν µσν= −F F  (2.44) 

 

Now, we can use (2.40) and (2.44) to solve for the super-potential 

 

 
1

( )
2

σµν σµν µσν νµσ= − +F S S S  . (2.45) 
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The conserved tensor Tµν  is called the Belinfante symmetric energy-momentum 

tensor. In terms of this symmetric tensor, the total moment tensor becomes 

 

 
( ) ( ) ,x T x T

x x

µνσ ν µσ σ µν σµν νµσ µνσ ρµνσ
ρ

ρµνσ ρµσ ν ρµν σ

= − + − − + ∂

= −

F F S P

P F F

M
 

 

The quantity in the middle bracket vanishes when (2.40) and (2.44) are used, and if 

we drop the super-potential P , we arrive at the Belinfante moment tensor 

 

 x T x Tµνσ ν µσ σ µν= −M  . (2.46) 

 

Notice that the (internal) spin part has “disappeared” from the total moment tensor 

whose conservation now follows from the conservation of the symmetrical energy-

momentum tensor. 

The physical importance of the symmetrical (Belinfante) energy momentum tensor 

follows from the belief that gravitons couple to T µν , and not to µνθ . Indeed, if the 

matter theory is minimally coupled to gravity and its action is varied with respect to 

the metric tensor g µν , the symmetric energy momentum tensor is obtained in the limit 

gµν µνη→  

 ( )2
, ,DT d x g

gg
µν µνµν

δ
ϕ ϕ

δ
= ∇

− ∫ L  . (2.47) 

 

With the symmetrical energy momentum tensor, the conserved Poincare’ currents 

take on the compact (Bessel-Hagen [2]) form 

 

 J T xν
µ µν δ= −  . (2.48) 

 

Since x xν ν ν λ
λδ ω=∈ + , we can rewrite the current in the form 

 

 ( )1

2
J T x T T x T x Tν ν σ ν νσ

µ µν σ µν µν ν µσ σ µνω ω− =∈ + =∈ − −  , (2.49) 

or 

 
1

2
J Tµ µν µνσ

ν νσω = − ∈ − 
 

M . (2.50) 

 

Taking the divergence of the current (2.48), and using the symmetry of the energy 

momentum tensor, we find 

 

 
1

( ) ( ) 0
2

J T x T x xµ µ ν µ ν ν µ
µ µν µνδ δ δ−∂ = ∂ + ∂ + ∂ = . 

The first term on the right hand side vanishes because of 0T µν
µ∂ = , and the second 

term vanishes because the Poincare’ transformations (Killing vector fields) 

 

 ( )x f x xµ µ µ µ ν
νδ ω=∈ +≐  , (2.51) 
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are the most general solutions to the Killing equation (in any number of dimensions) 

 

 0f fµ ν ν µ∂ + ∂ =  . (2.52) 

Now consider the current 

 

 J T xν
µ µν δ=  , (2.53) 

 

where Tµν  is the conserved and symmetric energy momentum tensor, and x fν νδ =  is 

vector field satisfying the conformal Killing equation in D-dimensional space-time 

 

 
2

f f f
D

µ ν ν µ σ µν
σ η∂ + ∂ = ∂ . (2.54) 

 

Taking the divergence of the current, we find 

 

 
f

J T
D

σ
µ µσ

µ µ

∂
∂ =  . (2.55) 

 

Thus, the current (2.53) is conserved provided that the conserved and symmetric 

energy momentum tensor is traceless 0T µ
µ = . Indeed, conformal invariance allows us 

to further improve the Belinfante energy-momentum tensor so that it is traceless much 

in the same way that Poincare’ invariance allowed us to make the canonical Energy-

momentum tensor symmetric [1]. This way, the conserved conformal currents can be 

written in the compact Bessel-Hagen form (2.53). 

 

 

2.3  Poincare and Scale Invariance and the Traceless Energy  
       Momentum Tensor 
 
Under scale (dilatation) transformation 

 

 ,x x e x x xµ µ µ µ µδ−∈→ = ⇒ = −∈  , (2.56) 

 

the fields transform according to 

 

 *( ) ( ) ( ), ( ) ( )d

r r r r rx x e x x d xϕ ϕ ϕ δ ϕ ϕ∈→ = ⇒ =∈ . (2.57) 

and 

 ( )( ) ( )r rx d x xσ
σδϕ ϕ=∈ + ∂ . (2.58) 

 

where the real number d  represents the scaling dimension of the field rϕ (we assume 

all components have the same scaling dimension). In D dimensions, its value for 

scalar and vector fields, is given by 

 
2

2

D
d

−
= . (2.59) 

 

Using (2.26), we find the canonical dilatation current  
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( )

r

r

D x dµ µ ν
ν

µ

θ ϕ
ϕ

∂
= +

∂ ∂
L

 . (2.60) 

 

Thus 

 
( )

r

r

D dµ µ
µ µ µ

µ

θ ϕ
ϕ

 ∂
∂ = + ∂   ∂ ∂ 

L
. (2.61) 

 

Therefore, in scale invariant theories, the trace of the canonical energy-momentum 

tensor is given by 

 

 
( )

r

r

dµ
µ σ

σ

θ ϕ
ϕ

 ∂
= −∂  ∂ ∂ 

L
. (2.62) 

 

We will now show that Poincare’ and scale invariance allow us to construct 

conserved, symmetric and traceless energy momentum tensor. Recall that for any 

rank-3 tensor σµν σνµ= −R R , anti-symmetric in the last two indices, the following 

combination is a tensor anti-symmetric in the first two indices 

 

 
1

( )
2

σµν σµν µνσ νσµ µσν= + − = −F R R R F . (2.63) 

 

Thus, 0σµν
µ σ∂ ∂ =F  and the following modified energy-momentum tensor is 

conserved 

 

 
1

( )
2

T µν µν σµν µνσ νσµ
σθ= + ∂ + −R R R . (2.64) 

 

Taking the trace, T Tσ µν
σ µνη= , we find 

 

 T σ σ µνσ
σ σ µν σθ η= + ∂ R  . (2.65) 

 

 

Using the condition for scale invariance, (2.62), the trace becomes 

 

 
( )

r

r

T dµ µνσ
µ σ µν

σ

η ϕ
ϕ

 ∂
= ∂ − ∂ ∂ 

L
R . (2.66) 

 

Recall that, in order to symmetrize the energy-momentum tensor, Poincare’ 

invariance allowed us to choose σµν σµν=R S , see (2.45). So, for Poincare’ and scale 

invariant theories, traceless energy-momentum tensor can be obtained by writing 

 

 ( )1

1
V V

D

µνσ µνσ µν σ µσ νη η= + −
−

R S , (2.67) 
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where the vector field V µ  is determined from (2.66) by setting 0T µ
µ = : 

 

 
( )

r

r

V dσ µνρ
σ ρ µν

ρ

ϕ η
ϕ

 ∂
∂ = ∂ −  ∂ ∂ 

L
S . (2.68) 

 

Notice that for a scalar field, the spin matrix vanishes. Thus from (2.37) we find 

0µνσ =S . Therefore, if we consider the scale invariant field theory 

 

 
2

2
1

2

D

Dµ ν
µνη ϕ ϕ λϕ −= ∂ ∂ −L  , (2.69) 

 

we find 

 2 2 22 2
,

4 4

D D
V Vσ σ σ

σ ϕ ϕ
− −

∂ = ∂ ⇒ = ∂  . (2.70) 

 

Thus, the conserved, symmetric and traceless energy-momentum tensor is 

 

 ( )2 22

4( 1)

D
T

D

µν µν µν µ νη ϕ
−

= + ∂ −∂ ∂
−

T  , (2.71) 

 

where T µν  is the symmetric energy-momentum tensor 

  

 T µν µ νϕ ϕ= ∂ ∂ −L  . (2.72) 

 

Exercise (2.1) Show that the energy momentum tensor (2.71), is conserved, 

                        0µν
µ∂ =T  and traceless, 0µν

µνη =T . 

 

Exercise (2.2) Consider the free Maxwell theory in D-dimensional space-time 

 

 
1

4
F F µν

µν= −L . 

 

Show that the symmetric, conserved energy momentum tensor is given by 

the Belifante expression in any number of dimensions 

 

 21

4
T F F Fµν µσ ν µν

σ η= − +  , 

but traceless only in 4 dimensions 

 

 21
4

D
T Fσ

σ
 = − 
 

. 

 

Exercise (2.3) Show that the above Maxwell theory is scale invariant in any number 

                        of dimensions. Given that 
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2

2

D
A x Aµ

σ µ σδ
− =∈ ∂ + 

 
. 

 

Show that (up to a trivially conserved super potential) the conserved dilation current 

is given by 

 
4

2

D
D T x F Aµ µ ν µν

ν ν

−
= +  . 

Show, by explicit calculations, that 0Dµ
µ∂ = . 

 

 

  
2.4 The New Improved CCJ tensor [3] and the Belinfante tensor  
       from the action: fun with super-potentials 
 

 

Basically, this subsection is about obtaining the results of the last two subsections 

from varying the action integral. Recall that “on-shell”, the variation of the action can 

be written as   

 4 *

( )
r

r

S d x xµ ν
µ ν

µ

δ δ ϕ θ δ
ϕ

 ∂
= ∂ −  ∂ ∂ 
∫

L
 . (2.73) 

 

To this variation, we will add zero and show that the coefficient of xνδ  is the “new 

improved” energy-momentum tensor of Callan, Coleman and Jackiw [3].  

Consider the functional 

 4 ( )R d x xσ
σ= ∂ Γ∫  , 

 

where µΓ  is a local function of the field and its derivatives to finite order. We vary 

this using (1.10), 

 ( ) ( )* * 4 4 *R d x d xδ δ δ= ∂ ⋅Γ + ∂ ⋅Γ∫ ∫  . 

 

If in the first integral we make use of (2.9), and in the second integral we use (1.16), 

we find 

 

 ( ) ( ) ( ) ( )( )* 4 4 4R d x x d x d x xδ δ δ δ= ∂ ⋅ ∂ ⋅Γ + ∂ ⋅Γ + ⋅∂ ∂ ⋅Γ∫ ∫ ∫  . 

 

Combining the first and the third terms and using [ , ] 0δ ∂ =  in the second term, we get 

 

 ( )* 4R d x xσ σ ρ
σ ρδ δ δ= ∂ Γ + ∂ Γ∫  . (2.74) 

 

Using (1.16) again, this can be rewritten as 

 

 ( )( )* 4 *R d x xσ σ ρ ρ σ τ
σ τ ρ τ ρδ δ δ δ δ= ∂ Γ + ∂ Γ − ∂ Γ∫  . (2.75) 

 

Integrating the second term by part, we find 
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 ( ){ } ( )* 4 *R d x x x xσ σ ρ ρ σ τ σ ρ ρ σ
σ τ τ ρ σ ρδ δ δ δ δ δ δ= ∂ Γ − Γ − Γ ∂ + ∂ ∂ Γ − Γ∫ . 

 

The second term vanishes identically, and we are left with  

   .      

 ( ){ }* 4 *R d x xσ σ ρ ρ σ τ
σ τ τ ρδ δ δ δ δ= ∂ Γ − Γ − Γ ∂∫  . (2.76) 

 

Now, we add (2.76) and subtract (2.75) from (2.73) 

 

 
( )

( ){ }

* 4 *

4

( )
r

r

S d x x

d x x

σ ρ ρ σ τ
σ τ τ ρ

σ

σ σ ρ ρ σ τ
σ τ τ ρ τ ρ

δ δ ϕ δ δ δ
ϕ

θ δ δ δ

 ∂
= ∂ − Γ − Γ ∂ 

∂ ∂ 

− ∂ + ∂ Γ − ∂ Γ

∫

∫

L

 (2.77) 

 

Let us assume that our symmetry transformations change the action according to 

 

 * 4 ( )S d x xσ
σδ = ∂ Λ∫  . (2.78) 

 

Now, if we can find µΓ  such that 

 

 ( )* ( , )
( )

r

r

xσ ρ ρ σ τ σ
τ τ ρ

σ

δ ϕ δ δ δ ϕ ϕ
ϕ

∂
− Γ − Γ ∂ = Λ ∂

∂ ∂
L

 , (2.79) 

 

holds, then the Noether current will have the Bessel-Hagen form 

 

 J T xσ σ τ
τ δ= , (2.80) 

 

with “a new improved energy-momentum tensor” given by 

 

 ( )T στ στ στ ρ ρτ σ
ρθ η η= + ∂ Γ − Γ  . (2.81) 

 

 

Exercise (2.4) Consider the free massless scalar field action in four dimensions 

 

 41

2
S d x µ

µϕ ϕ= ∂ ∂∫  . 

(i) Show that * 0Sδ = , i.e. ( ) 0xσΛ = , under the Lorentz transformations 

 

 *, 0x xµ µ ν
νδ ω δ ϕ= = . 

 

Then show that Lorentz invariance implies the following conditions on µΓ  

 

 µ ν ν µ∂ Γ = ∂ Γ  . 
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(ii) Show that * 0, 0S µδ = Λ = , under the scale transformations 

 

 *,x xµ µδ δ ϕ ϕ= −∈ =∈  . 

Use (2.79) to show that scale invariance implies 

 21

6

σ σϕΓ = ∂ . 

Use this to show that (2.81) leads to the symmetric and traceless energy-momentum 

tensor. 

 ( )2 21

6
T µν µν µν µ νθ η ϕ= + ∂ −∂ ∂ . 

   

(iii) Show that the conformal transformations 

 

 2 *2 ( ) , 2( )x x c x c x c xµ µ σ µ σ
σ σδ δ ϕ ϕ= − =  , 

 

change the scalar field action by total divergence 

 

 ( )* 4 4 2S d x d x cσ σ
σ σδ ϕ= ∂ Λ = ∂∫ ∫  . 

 

Use Lorentz invariance and scale invariance restrictions on µΓ  to show that (2.79) is 

satisfied for the conformal transformations. 

  

  

3.0 Canonical Quantization 
 
Before introducing the Noether charge and discuss its properties, we need to set up 

our quantization scheme. We will work with the canonical quantization rule: Poisson 

bracket of functions goes to equal-time (anti)commutator of the corresponding 

operators
1
 

 

 ˆ ˆ{ ( , ), ( , )} [ ( , ), ( , )]PBi f t g t f t g t→x y x y  . 

 

However, we will not use the hat to indicate operators. Also, we will not write the 

time argument explicitly. Unless stated otherwise, all (anti)commutators are 

considered to be at equal times. So, for any local functional F , we use the following 

rules 

 

 
( )

{ ( ), ( )} [ ( ), ( )]
( )

r PB rr

F x
i F x y i F x y

y

δ
ϕ ϕ

δπ
= − =  , (3.1) 

 
( )

{ ( ), ( )} [ ( ), ( )]
( )

r r

PB

r

F x
i F x y i F x y

y

δ
π π

δϕ
= = . (3.2) 

 

The fundamental equal-time commutation relations follow by putting , r

rF ϕ π= : 

                                                 

1
 In ref. [4] I have out-lined the proof of   

0

ˆ ˆˆ ˆlim ( )
i A B A B

AB BA
x p p x→

− ∂ ∂ ∂ ∂
− = −

∂ ∂ ∂ ∂ℏ ℏ
. 
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3[ ( ), ( )] ( ),

[ ( ), ( )] [ ( ), ( )] 0.

s s

r r

r s

r s

x y i

x y x y

ϕ π δ δ

ϕ ϕ π π

= −

= =

x y
 (3.3) 

 

Notice that 

 ( ) ( , , )r

r

xπ ϕ ϕ ϕ
ϕ
∂

= ∇
∂

ɺ
ɺ
L  . (3.4) 

 

In most cases, the Lagrangian is quadratic in rϕɺ . Thus, rπ is linear in rϕɺ . We will 

assume that the simultaneous linear equations (3.4) can be solved for rϕɺ . That is we 

assume that it is possible to represent the “velocity” by some function 

 

 ( ) ( , , )r rx fϕ ϕ ϕ π= ∇ɺ  . (3.5) 

 

The “functional” derivative of any local function of the field variables, such as the 

Lagrangian, will be calculated using the chain rule: 

 

 

( )

3 ( ) 3

( )( ) ( )( ) ( ) ( ) ( )
,

( ) ( ) ( ) ( ) ( ) ( ) ( )

( )( ) ( )
( ) ( ) ( ) ,

( ) ( ) ( )

x

j ss s

r s r j s r s r

x s s
j

r j r r

x xx x x x

y x y y x y

xx x
x

x y

δ ϕδϕ δϕδ
δϕ ϕ δϕ ϕ δϕ ϕ δϕ

δϕ
δ δ π

ϕ ϕ δϕ

∂∂ ∂ ∂
= + +

∂ ∂ ∂ ∂

∂ ∂
= − + ∂ − +

∂ ∂ ∂
x y x y

ɺ

ɺ

ɺ

L L L L

L L
 

 

 
( ) ( )( ) ( )

( )
( ) ( ) ( ) ( )

ss s

r r r

s

x xx x
x

y x y y

δϕ δϕδ
π

δπ ϕ δπ δπ
∂

= =
∂

ɺ ɺ

ɺ

L L
 . 

 

Thus, using (3.1) and (3.2) in the above two equations, we infer the following equal-

times commutation relations 

 

 [ ( ), ( )] ( )[ ( ) , ( )]s

r s rx y x x yϕ π ϕ ϕ= ɺL  , (3.6) 

 

 3 ( ) 3[ ( ), ( )] ( ) ( ) ( )[ ( ) , ( )]
( )

r x s r

j s

r j r

x y i i x x yπ δ δ π ϕ π
ϕ ϕ
∂ ∂

= − + ∂ − +
∂ ∂ ∂

x y x y ɺ
L L

L  (3.7) 

 

The last two terms in (3.7) can be combined to give 

 

 3( ) ( )
[ ( ), ( )] ( ) [ ( ), ( )]

( ) ( )

r r

s

r s

x x
x y i x y

x
σ

σ

π δ ϕ π
ϕ ϕ
∂ ∂

= − + ∂
∂ ∂ ∂

x y
L L

L  . (3.8) 

 

We will now use these commutation relations together with the fundamental equal-

time commutation relations (3.3) to derive few important equations. Let’s start by 

deriving the so-called Heisenberg equations 

 

 
[ H, ( )] ( ),

[ H, ( )] ( ).

r r

r r

i x x

i x x

ϕ ϕ

π π

=

=

ɺ

ɺ
 (3.9) 
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The Hamiltonian H  is obtained by integrating the Hamiltonian density which we 

defined in (2.29) 

 

 3 3 00H ( ) ( )d x x d x xθ= =∫ ∫H  , (3.10) 

 

whereas the 3-momentum of the field is given by 

 

 3 0P ( )j jd x xθ= ∫  (3.11) 

 

So, let us commute the Hamiltonian density with ( )r yϕ  and ( )r yπ  

 

 
[ ( ), ( )] [ ( ), ( )] ( ) ( )[ ( ), ( )] [ ( ), ( )],

[ ( ), ( )] ( )[ ( ), ( )] [ ( ), ( )].

s s

r r s s r r

r s r r

s

x y x y x x x y x y

x y x x y x y

ϕ π ϕ ϕ π ϕ ϕ ϕ

π π ϕ π π

= + −

= −

ɺ ɺ

ɺ

H L

H L
 

 

Inserting (3.6) and (3.7) and using (3.3), we find 

 

 3[ ( ), ( )] ( ) ( )r ri x y xϕ δ ϕ= −x y ɺH  , (3.12) 

 3 ( ) 3( ) ( )
[ ( ), ( )] ( ) ( )

( )

r x

j

r j r

x x
i x yπ δ δ

ϕ ϕ
∂ ∂

= − + ∂ −
∂ ∂ ∂

x y x y
L L

H  . (3.13) 

 

Integrating over x, we find (after integrating (3.13) by part) 

 

 
0

[ H, ( )] ( ),

( ) ( ) ( )
[ H, ( )] ( ) ,

( ) ( )

r r

r r

j

r j r r

i y y

y y y
i y y

y

ϕ ϕ

π π
ϕ ϕ ϕ

=

   ∂ ∂ ∂
= −∂ = ∂ =    ∂ ∂ ∂ ∂  

ɺ

ɺ
ɺ

L L L  

 

where the Euler-Lagrange equation and the definition of the conjugate momentum 

(2.28) have been used. In QFT these are called Heisenberg equations which, 

according to (3.1) and (3.2), correspond to the canonical Hamilton equations in 

classical field theory 

 
H H

( ) , ( )
( ) ( )

rr

r

x x
x x

δ δ
ϕ π

δπ δϕ
= = −ɺ ɺ  . (3.14) 

 

In exactly the same way, we can establish the following more general equal-time 

commutation relations 

 

 0 3[ ( ), ( )] ( ) ( ) ,r ri x y xµ µθ ϕ δ ϕ= − ∂x y  (3.15) 

 0 0 3 0 3( ) ( )
[ ( ), ( )] ( ) ( ) ( )r j r

j

j r r

x x
i x y xµ µ µ µθ π η η π δ η δ

ϕ ϕ

 ∂ ∂
= − ∂ − + −  ∂∂ ∂ 

x y x y
L L

 (3.16) 

 

Integrating these over x and introducing the Euler derivative (2.13) in (3.16), we find 
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 3 0[ P ( ), ( )] [ ( ) , ( )] ( )r r ri t x i d x x x xµ µ µϕ θ ϕ ϕ′ ′ = ∂∫≐  , (3.17) 

 3 0 0
ˆ

[ P ( ), ( )] [ ( ), ( )] ( )
ˆ

r r r

r

i t x i d x x x xµ µ µ µ δ
π θ π π η

δϕ
′ ′ = ∂ +∫≐

L
  ,  (3.18) 

where 

 3 0P ( ) ( )t d x xµ µθ= ∫  , (3.19) 

 

is the field energy-momentum “4-vector”. We will talk about the physical meaning of 

these relations, and show that Pµ is indeed a time-independent 4-vector, when we 

introduce the Noether charge. We will also see why the Euler-Lagrange equation of 

motion appears in (3.18) but not in (3.17). 

Notice that (3.18) shows the equivalence between Lagrangian and Hamiltonian 

formalisms 

 
ˆ ( ) P

0 [ P , ( )] ( )
ˆ ( )( )

r r

rr

x
i x x

xx

µ
µ µδ δ

π π
δϕδϕ

= ⇔ = ∂ = −
L

 . (3.20) 

 

Okay, since we calculated the ETCR of the zeroth component of translation 

current, 0µθ , with the fields, let us do some justice to the Poincare’ group and do the 

same thing with the zeroth-component of Lorentz current oµν
M . From (2.35) this is 

given by 

 

 0 0 0( ) ( ) ( ) ( ) ( ) ( )r s

r sx x x x x i x xνσ ν σ σ ν νσθ θ π ϕ= − − ΣM  . (3.21) 

 

Using (3.15) and the fundamental ETCR (3.3), we find 

 

 ( )0 3[ ( ) , ( )] ( ) ( ) ( )s

l l l l si x y x x i xνσ ν σ σ ν νσϕ ϕ ϕ ϕ δ= ∂ − ∂ − Σ −x yM  . (3.22) 

 

Integrating over x and changing y x→ , we get our final result 

 

 3 0[ M ( ) , ( )] [ ( ) , ( )] ( ) s

r r r r r si t x i d x x x x x iνσ νσ ν σ σ ν νσϕ ϕ ϕ ϕ ϕ′ ′ = ∂ − ∂ − Σ∫≐ M  .

 (3.23) 

 

In the next section we will show that the integral 

 

 3 0M ( ) L ( ) S ( ) ( )t t t d x xµν µν µν µν= + = ∫ M  , (3.24) 

 

is time-independent Lorentz tensor representing the total angular momentum of the 

field, with the orbital angular momentum Lµν and the spin angular momentum Sµν are 

given by 

 

 
( )3 3 0 0

3 0 3

L ( ) ( ) ( ) ( ) ,

S ( ) ( ) ( )( ) ( ).

o

r s

r s

t d x x d x x x x x

t d x x i d x x x

µν µν µ ν ν µ

µν µν µν

θ θ

π ϕ

= −

= − Σ

∫ ∫
∫ ∫

≐

≐ S

L

 (3.25) 
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Before going any further, let us make the following observations: If we contract 

(3.17) with the translation parameter aµ and (3.23) with the Lorentz parameter νσω , we 

recover the correct infinitesimal Poincare’ transformations on the field 

 

 ( ) [ P ( ) , ( )] ( )r r rx ia t x a xµ µ
µ µδϕ ϕ ϕ= − = − ∂  , (3.26) 

 

( ) [ M ( ) , ( )] ( ) ( )
2 2

( ) ( ) .
2

s

r r r r s

s

r r s

i i
x t x x x

i
x x

νσ σ ν µν
νσ ν σ µν

σ
σ

δϕ ω ϕ ω ϕ ω ϕ

δ ϕ ω ϕ

= = − ∂ − Σ

= − ∂ − ⋅Σ
 (3.27) 

Remarkably, the only assumption used to derive these relations is (that the fields 

satisfy) the fundamental ETCR’s (3.3). Indeed, neither dynamical considerations (i.e., 

equations of motion) nor symmetry considerations (i.e., conservation laws) have been 

used to obtain (3.26) and (3.27). In fact we will now derive even more general result, 

i.e., without specifying the group of the transformations. 

Setting 0µ = in the Noether current (2.18), we find 

 

 0 0

( ) ( ) ( ) ( ) ( )r

rJ x x x x xα α απ δ ϕ δ= − L  . (3.28) 

 

Thus, at 0 0x y=  

 

 0 0

( )[ ( ) , ( )] ( )[ ( ), ( )] [ ( ), ( )] ( ) [ ( ), ( )]r r

s r s s r sJ x y x x y x y x x x yα α α αϕ π δ ϕ ϕ π ϕ δ ϕ δ ϕ= + − L  . 

 

Due to (1.15) and (3.6) the first and the third terms add up to zero, and the second 

term, when evaluated from the ETCR (3.3), gives 

 

 0 3

( )[ ( ) , ( )] ( ) ( )s siJ x y xα αϕ δ ϕ δ= −x y  . (3.29) 

 

Hence, a 3-volume integration over x will generate the infinitesimal transformations 

on the fields 

 

 ( ) [ ( ) , ( )]r rx iQ t xα αδ ϕ ϕ=  , (3.30) 

 

where ( )Q tα (the Noether charge) is given by the integral 

 

 3 0

( )( ) ( )Q t d x J xα α= ∫  . (3.31) 

 

The Noether charge is going to be the subject of the next section. Again, the important 

fact about (3.30) is that it has been derived without reference to a specific form of 

( )xL , i.e., without any commitment to symmetry or dynamics. Thus, it seems that 

(3.30) is always valid, and that any result that can be derived from it will necessarily 

be true. However, this is true only if we ignore the usual difficulties of local quantum 

field theory.  

The so-called Ward-Takahashi identity in QFT is just an alternative form of the 

canonical equal-time relation (3.30) and can be derived from the following time-

ordered product 
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 ( ) 0 0 0 0

( ) ( ) ( )T ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )r r rJ x y x y J x y y x y J xµ µ µ
α α αϕ ϕ ϕ= Θ − +Θ −  . (3.32) 

 

Differentiating this with respect to x and using the relations 

 

 

( ) 0 0 0 0

0

( ) 0 0 0 0

0

( ) ( ) ,

( ) ( ) ,

x

x

x y x y

y x x y

µ µ

µ µ

η δ

η δ

∂ Θ − = −

∂ Θ − = − −
 (3.33) 

we find 

 

 ( ) ( ) 0 0 0

( ) ( ) ( )T ( ) ( ) T ( ) ( ) ( )[ ( ) , ( )]r r rJ x y J x y x y J x yµ µ
µ α µ α αϕ ϕ δ ϕ∂ = ∂ + −  . (3.34) 

 

Using (3.29) in the second term on the right, we get 

 

 ( ) ( ) 4

( ) ( ) ( )T ( ) ( ) T ( ) ( ) ( )r r rJ x y J y i x y xµ µ
µ α µ α αϕ ϕ δ δ ϕ∂ = ∂ − −  . (3.35) 

 

Now, on integrating (3.35) over a space-time region Ω  containing the point y, we 

arrive at the Ward-Takahashi identity 

 

 ( ) ( )4 4

( ) ( )( ) T ( ) ( ) T ( ) ( )r r ri y d x J x y d x J x yµ µ
α µ α µ αδ ϕ ϕ ϕ

Ω Ω
= ∂ − ∂∫ ∫  . (3.36) 

 

It is clear that the first term on the right hand side of (3.36) vanishes if the current is 

conserved, i.e., symmetry current. 

 

Let us now return to (3.25) and use it to build up the equal time commutator 

[ M , ( )]ri xµν π : 

 

 3[ S , ( )] ( ) ( ) [ ( ) , ( )]r l s r

l si x d x x x xµν µνπ π ϕ π′ ′ ′= Σ∫  . 

 

Using (3.3), this becomes 

 

 [ S , ( )] ( ) ( )r s r

si x i xµν µνπ π= Σ  . (3.37) 

 

To calculate the commutator with the orbital angular momentum, we multiply (3.16) 

by ( ixµ ) and integrate over x. Integration by parts then gives 

 

 ( )3 0 0 0( ) ( )
[ ( ) , ( )] ( )

( )

r j r

j j

j r r

y y
i d x x x y y y y yµ ν ν µ µ ν µ νθ π η π η η

ϕ ϕ

 ∂ ∂
= ∂ −∂ +  ∂ ∂ ∂ 

∫
L L

 (3.38) 

Using the identities 

 

 

0

0

0

0

,

,

j

j

j

j

ν ν ν

µν µ ν µ ν

η η

η δ η δ η

∂ − ∂ = ∂

− =
 (3.39) 

 

in (3.38), we find after some rearrangement  
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3 0 0

0

0

[ , ( )]
( )

( ) .
( )

r r r r

j

j r

r

j

r j r

i d xx y y

y

µ ν µν µ ν ν µ µ

µ ν

θ π η π π η δ π δ
ϕ

η π
ϕ ϕ

 ∂
= + ∂ − +  ∂ ∂ 

 ∂ ∂
+ − −∂  ∂ ∂ ∂ 

∫

ɺ

L

L L

 

 

In this equation, we use the definition of the conjugate momentum 

 

 0

0 0

( ) ( )
( ) , ( )

( ) ( )

r r

r r

y y
y yπ π

ϕ ϕ
 ∂ ∂

= = ∂  ∂ ∂ ∂ ∂ 
ɺ

L L
 , (3.40) 

to obtain 

 

 3 0 0 0
ˆ

[ , ( )]
ˆ( )

r r r

r r

i d x x y y yµ ν µν µ ν µ ν µ ν
σ

σ

δ
θ π η π π δ η η

ϕ δϕ
∂

= + ∂ − +
∂ ∂∫
L L

 . (3.41) 

 

Thus, the required commutator follows by the anti-symmetric combination 

 

 

 [ ] [ ]0 [ ]0
ˆ( ) ( )

[ L , ( )]
ˆ( )

r r

r r

x x
i x x xµν µ ν µ ν µ ν

σ
σ

δ
π π δ η η

ϕ δϕ
∂

= ∂ − +
∂ ∂
L L

 . (3.42) 

 

Adding (3.42) to (3.37), we get 

 

 [ M , ( )] ( ) ( ) ( )( ) Fr r r s r r

si x x x x x i xµν µ ν ν µ µν µνπ π π π= ∂ − ∂ + Σ +  . (3.43) 

 

Notice the extra term in the Lorentz transformation law for rπ , 

 

 [ ]0 [ ]0
ˆ ( ) ( )

F F
ˆ ( )

r r

rr

x x
xµν νµ µ ν µ ν

σ
σ

δ
η δ η

ϕδϕ
∂

= − −
∂ ∂

≐
L L

 . (3.44) 

 

This extra piece does not vanish even when the equations of motion are satisfied. This 

is because the set{ ( )}r xπ does not form a covariant manifold under the Poincare’ 

group.  

 

Now, let us use Heisenberg equations (3.9) to prove the following theorem 

 

Theorem 3.1 

                       If the equal-time commutation relations (3.3) are valid at a certain  

                       time 0 0x y t= = , they are also valid at t ε+ . 

Proof: 

 

The proof will be based on Heisenberg equations and the following Jacobi identity 

 

 [ ( , ),[ H, ( , )]] [ ( , ),[ ( , ), H]] [ H,[ ( , ), ( , )]] 0s s s

r r rt i t t t i i t tϕ π π ϕ π ϕ+ + =x y y x y x  . 
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Since at 0 0x y t= = , we have 

 3[ ( , ), ( , )] ( )s s

r rt t iϕ π δ δ= −x y x y  . 

 

Thus the third term in the Jacobi identity vanishes because the deltas are c-numbers. 

And we are left with 

 

 [ ( , ) ,[ H, ( , )]] [[ H, ( , )], ( , )] 0s s

r rt i t i t tϕ π ϕ π+ =x y x y  . (3.45) 

 

Using Heisenberg equations (3.9) in (3.45), we find 

 

 [ ( , ) , ( , )] [ ( , ) , ( , )] 0s s

r rt t t tϕ π ϕ π+ =x y x yɺɺ  (3.46) 

 

Multiplying this byε and adding the result to the fundamental equal-time 

commutation relation, we find 

 

 3[ ( , ) , ( , )] [ ( , ) , ( , )] [ ( , ) , ( , )] ( )s s s s

r r r rt t t t t t iϕ π ϕ επ εϕ π δ δ+ + = −x y x y x y x yɺɺ  (3.47) 

 

Thus, to first order inε we can write this as 

 

 ( ) ( ) 3( , ) ( , ) , ( , ) ( , ) ( )s s s

r r rt t t t iϕ εϕ π επ δ δ + + = − x x y y x yɺ ɺ  , (3.48) 

or 

 

 3[ ( , ) , ( , )] ( )s s

r rt t iϕ ε π ε δ δ+ + = −x y x y  . (3.49) 

 

And, by exactly the same method, we can establish the remaining commutation 

relations 

 

 [ ( , ) , ( , )] [ ( , ) , ( , )] 0r s

r st t t tϕ ε ϕ ε π ε π ε+ + = + + =x y x y  . (3.50) 

  

                                                                                                                                 qed 
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