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Introduction

We are considering a in-situ scheme to calibrate the c-mod mse diagnostic using polar-
ized light sources that are translated into position after each c-mod shot, as illustrated in
Figure 1. We require two light sources (rather than just one) because the change in polariza-
tion angle due to stress-induced birefringence is a function of two variables: the actual phase
shift imposed by the stress, and the orientation of the stress principal axis. By measuring
the change in polarization at two different polarization angles, we can uniquely determine
both the phase shift and the angle of the stress principal axis, from which one can compute
the change in polarization angle at any input polarization angle.

The overall design objective is to provide a calibration that is accurate to better than 0.2o

in pitch angle, which requires an accuracy of better than 0.1o in the mse frame of reference.
Unfortunately, if the calibration polarized light source were to wobble about its axis by some
angle ∆θ, the polarization angle of its light changes by the same amount. This places a very
demanding requirement on the mechanical design of the translatable light source: it must
retain its orientation, over a period of months, to something in the neighborhood of 0.1o.

This difficult requirement led us to consider an alternate scheme (Figure 2) that uses a
fixed (non-moving) polarized light source that is mounted on the mse optics cannister. The
polarized light is reflected by a mirror that is translated into the mse field-of-view after each
shot. This scheme still requires that the polarized light source retain its orientation to better
than 0.1o over a period of months, but this should not be difficult to achieve because the the
light source is firmly attached to the rugged mse optics cannister.

Two questions arise: first, the light will be reflected from the mirror at non-normal
incidence. How will this change the polarization angle? Second, there will be unavoidable
errors in positioning the mirror. How will these errors affect the polarization angle?

The approach used here has been generalized to a train of mirrors in N. Elias, ‘Optical
Interferometric Polarimetry. I. Foundation’, The Astrophysical Journal 549:647-668, March
1, 2001.

The basic conclusion of this analysis is that, unfortunately, small angular displacements
of the mirror generate surprisingly large changes in the polarization angle of the reflected
light. For an ideal metal mirror, the mis-orientation of the mirror that we can tolerate isn’t
much less than the allowable mis-orientation of the polarized light source in the original
calibration scheme, unless the angle-of-incidence is less than about 14o. This result may
signficantly complicate the optical design of a calibration system using a fixed polarized
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light source and a translated mirror.

Implementation in IDL procedure

The arithmetic described by Eqs. 1 through 14 are implemented, in the same order as the
numbered equations, in the idl procedure \ sscott \ idl \ mirror reflection 2007.pro.
The procedure accepts as input k̂, n̂, and the polarization direction φp and returns the k-

vector of the reflected ray, k̂′, and its polarization direction φ′
p.

The calculation

The geometry for the problem is defined in Fig. 3. Inside the tokamak, two vectors are
used to define the coordinate system: the vertical unit vector ẑ (i.e. vertical with respect
to gravity) and the k-vector of the optical ray of interest, k̂. Two other variables enter the
calculation: the unit normal to the mirror surface, n̂, and the polarization direction of the
light, φp.

First, we construct a right-handed coordinate system [x̂, k̂, ŷ] which is convenient for
describing the optical ray’s electrical field vectors. A horizontal coordinate, x̂, is defined as
the cross product of the z-axis and k̂. The vertical coordinate, ŷ, is then defined as the cross
product of the x̂ direction and the k̂ direction.

x̂ =
k̂ × ẑ

|k̂ × ẑ|
ŷ = x̂× k̂ (1)

The electric field vector will have components only in the x̂ and ŷ directions. In the tokamak
coordinate system, the pitch angle of the electric field vector is defined as φp ≡ tan−1(Ey/Ex).
Note that by construction, x̂ is horizontal in the tokamak frame of reference, but ŷ may not
be exactly vertical (ŷ will be vertical only if k̂ lies in the tokamak horizontal midplane).
The [x̂, k̂, ŷ] coordinate system is convenient for describing the optical ray’s polarization
and propagation as it approaches the mirror, but it is not appropriate for what happens
at the mirror. At the mirror, we need to consider the directions of the S-polarization and
P-polarization, which are defined by the the k-vector and the mirror normal, n̂. We define
a horizontal coordinate ŝ and a vertical coordinate p̂ corresponding to the directions of the
S- and P- polarizations, respectively:

ŝ =
k̂ × n̂

|k̂ × n̂|
p̂ = ŝ× k̂ (2)

Linearly polarized light in the plasma coordinate system will have components Ex and Ey.
But the reflective properties of the mirror are defined with respect to the S- and P- polarized
components Es and Ep. So we need to rotate from the x, y coordinates to the s, p coordinates.
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By reference to Fig. 3, this rotation angle, β, is given by

sin β = −p̂ · x̂ = ŝ · ŷ
cos β = p̂ · ŷ = ŝ · x̂

β = tan−1

(
−p̂ · x̂
p̂ · ŷ

)

= tan−1

(
ŝ · ŷ
ŝ · x̂

)

= tan−1

(
ŝ · ŷ
p̂ · ŷ

)

= − tan−1

(
p̂ · x̂
ŝ · x̂

)
(3)

In the original, ‘optical-ray’ coordinate system, the electric field vectors Ex and Ey are simply
defined by the polarization angle φp:

Ex = Eo cos φp

Ey = Eo sin φp (4)

As illustrated in Fig. 3, we can transform these coordinates into the mirror coordinate system:

Es = Ey sin β + Ex cos β

Ep = Ey cos β − Ex sin β. (5)

The mirror changes the electric field vectors of the optical ray in a simple way. Using
primes to denote parameters of the reflected ray,

E ′
s = ±RsEs (6)

E ′
p = RpEp (7)

where Rs and Rp are the mirror’s reflectivity coefficients for the S- and P-polarizations,
respectively. The ‘+’ sign pertains to dielectric mirrors and the ‘-’ sign pertains to metal
mirrors. Henceforth we will assume ideal mirror properties, i.e. Rs = Rp = 1.

The change in direction of the optical ray’s k-vector is given by

k̂′ = k̂ − 2(k̂ · n̂)n̂. (8)

We now need to define the mirror coordinate system for the reflected ray. Just as we did
for the incident ray, we construct a coordinate system for the reflected ray using the mirror
normal n̂ and the relevant k-vector, which in this case is the k-vector of the reflected ray. So
the unit vectors for the mirror coordinate system for the reflected ray are ŝ′ and p̂′,

ŝ′ =
k̂′ × n̂

|k̂′ × n̂|
p̂′ = ŝ′ × k̂′. (9)

3



Note that ŝ′ = ŝ because (focusing just on the numerator for the present):

ŝ′ = k̂′ × n̂

= (k̂ − 2(k̂ · n̂)n̂)× n̂

= k̂ × n̂− 2(k̂ · n̂)n̂× n̂

= k̂ × n̂ (10)

which is just the numerator for ŝ.

Similarly, we define a coordinate system x̂′ and ŷ′ for the reflected optical ray in the lab
frame using the absolute directional vector ẑ and the k-vector of the reflected ray:

x̂′ =
k̂′ × ẑ

|k̂′ × ẑ|
ŷ′ = x̂′ × k̂′ (11)

We have already computed the electric field vectors of the reflected ray in the mirror’s
coordinate system (E ′

s and E ′
p), but to compute the polarization direction in the lab frame

(i.e. relative to the absolute vertical direction ẑ), we need to transform these back into the
coordinate system of the optical ray. So we need to compute the rotation angle β′ between
these coordinate systems. Following the approach we used to evaluate the corresponding
rotation angle β for the initial transformation into the mirror coordinate system, we evaluate
β′ from

β′ = tan−1

(
−p̂′ · x̂′

p̂′ · ŷ′

)

= tan−1

(
ŝ′ · ŷ′

ŝ′ · x̂′

)

= tan−1

(
ŝ′ · ŷ′

p̂′ · ŷ′

)

= − tan−1

(
p̂′ · x̂′

ŝ′ · x̂′

)
(12)

Finally, we transform the electric field vectors in the mirror coordinate system of the reflected
ray:

E ′
x = E ′

s cos β′ − E ′
p sin β′

E ′
y = E ′

s sin β′ + E ′
p cos β′ (13)

and the polarization angle of the reflected ray in the lab frame becomes

φ′
p = tan−1

(
E ′

y

E ′
x

)
(14)
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We consider three configurations of the incident light & mirror orientation of increasing
complexity. In the first case, the incident light is assumed to lie in the x− y plane, while the
mirror normal is oriented in the x̂ direction, as illustrated in Figure 4. In the intermediate
case (Figure 5), the incident light is allowed to have a non-zero component in the ẑ-direction,
but we still assume the mirror is oriented with its normal in the x̂ direction. In the final
case (Figure 6), we also allow the mirror to be rotated about the y− axis by an angle ε and
then by an angle α about the z-axis.

Analytic calculation for simplified geometry: ‘tilt’ the mirror

We can compute the change in polarization direction analytically for a simple case where
φ = 0, α = 0. This corresponds to a configuration where the incident light lies in the x− y
plane with an angle-of-incidence θ with respect to a vertical mirror. The mirror is then tilted
by an angle ε about the y-axis. The geometry is a simplified version of the configuration
illustrated in Fig. 6

For reference: this arithmetic was checked with Maple, using file reflection simple flat mirror.mws.

k̂ = [− cos θ,− sin θ, 0]

n̂ = [cos ε, 0, sin ε]

A =
√

1− cos2 θ cos2 ε

ŝ =
1

A
[− sin θ sin ε, cos θ sin ε, sin θ cos ε]

p̂ =
1

A
[sin2 θ cos ε,− cos θ sin θ cos ε, sin ε]

x̂ = [− sin θ, cos θ, 0]

ŷ = [0, 0, 1]

β = tan−1

(
sin θ

tan ε

)
k̂′ = [cos θ cos 2ε,− sin θ, cos θ sin 2ε]

ŝ′ =
1

A
[− sin θ sin ε, cos θ sin ε, sin θ cos ε]

p̂′ =
1

A
[cos2 θ sin ε sin 2ε + sin2 θ cos ε,

sin θ cos θ(sin ε sin 2ε + cos2 2ε,

−(sin2 θ sin ε + cos2 θ sin ε cos 2ε)]

B =
√

1− cos2 θ sin2 2ε

x̂′ =
1

B
[− sin θ,− cos θ cos 2ε, 0]

ŷ′ =
1

B
[− cos2 θ sin 2ε cos 2ε, sin θ cos θ sin 2ε, sin2 θ + cos2 θ cos2 2ε]
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β′ = tan−1

(
sin θ

tan ε(sin2 θ − cos2 θ cos 2ε)

)
Ex = Eo cos φp

Ey = Eo sin φp

Ep = Ey cos β − Ex sin β = Eo sin(φp − β)

Es = Ex cos β + Ey sin β = Eo cos(φp − β) (15)

For an ideal dielectric mirror,

E ′
p = Ep

E ′
s = Es

E ′
x = E ′

s cos β′ − E ′
p sin β′ = Eo cos(φp + β′ − β)

E ′
y = E ′

s sin β′ + E ′
p cos β′ = Eo sin(φb + β′ − β)

φ′
p = tan−1

(
sin(φp + β′ − β)

cos(φp + β′ − β)

)
(‘tilt’; dielectric) (16)

Note that the angles β and β′ which are used to move into and out of the mirror’s S-P frame
of reference enter only through their difference.

For an ideal metal mirror,

E ′
s = −Es = −Eo cos(φp − β)

E ′
p = Ep = Eo sin(φp − β)

E ′
x = −Eo cos(φp − β − β′)

E ′
y = Eo sin(φp − β − β′)

φ′
p = tan−1

(
− sin(φp − β − β′)

cos(φp − β − β′)

)
(‘tilt; metal) (17)

The analytic expressions in Eqs. 16 and 17 are implemented as option ‘itype=1’ in mir-
ror reflection 2007.pro.

The polarization angle of the reflected light, φ′
p, is given by Equation 16 for a perfect dielectric

mirror:

φ′
p = tan−1

(
sin(φp + β′ − β)

cos(φp + β′ − β)

)

=
sin φp cos(β′ − β) + cos φp sin(β′ − β)

cos φp cos(β′ − β)− sin φp sin(β′ − β)

=
tan φp + tan(β′ − β)

1 + tan φp tan(β′ − β)
(18)

But we remember the angle-addition formula for the tangent,

tan(a + b) =
tan a + tan b

1− tan a tan b
(19)
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So Equation 18 implies that φ′
p = φp + β′ − β, i.e. the change in polarization angle upon

reflection from a dielectric mirror for the ‘tilt’ configuration is just ∆φp = β′ − β and this

change is independent of the incident polarization angle.

For a perfect metal mirror,

tan φ′
p =

− sin(φp + (β − β′))

cos(φp − (β + β′))

=
tan φp − tan(β′ + β)

1 + tan φp tan(β′ + β)
(‘tilt’; metal) (20)

and so φ′ = π−(φ−(β′+β)), i.e. the polarization angle upon reflection from a perfect metal

mirror changes by an amount ∆φp = π + β′ + β − 2φp for the simplified ‘tilt’ geometry.

Note that unlike the situation for a dielectric mirror, the change in polarization angle from
reflection off a metal mirror does depend on the input polarization direction.

By reference to Figure 7, we can simplify expression for the change in polarization angle
upon reflection from a mirror for the simplified ‘tilt’ geometry (φ = α = 0). First we consider
the case of a dielectric mirror.

We construct two triangles with angles β′ and β at the lower-left corner. The width of
the triangles is tan ε and the height of the triangles is sin θ and a sin θ, where a = 1/(sin2 θ−
cos2 θ cos 2ε). The hypotenuses of the triangles are x and x′, where

x2 = tan2 ε + sin2 θ

x′2 = tan2 ε + a2 sin2 θ (21)

From the law of sines,

x

sin(90o − β′)
=

(a− 1) sin θ

sin ∆β
(22)

and from the law of cosines,

(a− 1)2 sin2 θ = x2 + x′2 − 2xx′ cos(∆β) (23)

After a little arithmetic, this yields

tan ∆φp = tan ∆β =
(a− 1) sin θ tan ε

tan2 ε + a sin2 θ
(24)

After some more arithmetic, we get the final expression

tan ∆φp =
sin θ sin(2ε) cos2 ε

tan2 θ − cos(2ε) sin2 ε
(‘tilt’; dielectric) (25)

The expression for ∆φp given by Eq. 25 is implemented as ‘itype=2’ in mirror reflection 2007.pro
and it agrees with the numerically-evaluated result. Note that we should expect to see
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large changes in the polarization angle when the denominator of Eq. 25 is small, i.e. when
tan2 θ ≈ cos(2ε) sin2 ε.

In the limit where both θ and ε are small, Eq. 25 reduces to

tan ∆φp ≈ 2θε

θ2 − ε2
(‘tilt’; dielectric) (26)

This is implemented as ‘itype=3’ in mirror reflection 2007.pro. Note that in this limit, we
expect to see large changes in the polarization angle when θ ≈ ε.

In many of our numerical calculations, we have investigated configurations with a ’modest’
incidence angle (θ ≈ 15o) and ‘small’ tilt angles (ε ≈ 4− 8o). If we take the limit of Eq. 26
with θ >> ε (but both angles still small), we get

tan ∆φp ≈ 2ε

θ
. (‘tilt’; dielectric) (27)

Equation 27 implies that the change in polarization angle in this limit (a) increases linearly
with the tilt angle ε; and (b) increases inversely with the angle-of-incidence θ. This result
agrees qualitatively with our numerical calculations.

Now, for a metal mirror, we recall that the change in polarization angle is ∆φp = π +
(β′ + β)− 2φp. Using the angle-addition formula for the tangent, we get:

tan(β′ + β) =
tan β′ + tan β

1− tan β′ tan β

=

sin θ
tan ε(sin2 θ−cos2 θ cos(2ε))

+ sin θ
tan ε

1− sin2 θ
tan2 ε(sin2 θ−cos2 θ cos(2ε)))

=
sin θ tan ε(1 + sin2 θ − cos2 θ cos(2ε)))

tan2 ε(sin2 θ − cos2 θ cos(2ε))− sin2 θ
(28)

so the change in polarization angle is

∆φp = π − 2φp + tan−1

(
sin θ tan ε(1 + sin2 θ − cos2 θ cos(2ε)))

tan2 ε(sin2 θ − cos2 θ cos(2ε))− sin2 θ

)
(‘tilt’; metal) (29)

This is implemented as ‘itype=2’ in mirror reflection 2007.pro. In the limit of small θ and
small ε, Eq. 29 reduces to

tan ∆φp = −2θε (‘tilt’; metal) (30)

which is implemented as ‘itype=3’.

Analytic calculation for simplified geometry: ‘wobble’ the mirror

Now we consider an alternate simplified configuration. As before, we assume that the
incident light has no component in the vertical direction, i.e. the k vector lies in the x − y
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plane of Figure 6. But for this case we assume that the mirror is rotated only about the z axis
by an angle α, with no rotation about the y axis. This situation corresponds to φ = 0, ε=0
and is designated the ‘wobble’ configuration.

Below, we work though the formal arithmetic, but the configuration is really very simple:
changing the ‘wobble’ angle α is equivalent to changing the angle-of-incidence θ while leaving
the mirror pointed in the x-direction. The result for this case is well known: there is no
change of polariztion direction for a dielectric mirror, while a metal mirror simply reverses
the sign of the incident polarization angle.

k̂ = [− cos θ,− sin θ, 0]

n̂ = [cos α, sin α, 0]

m ≡ 1 for θ > α and = −1 for θ < α

ŝ = [0, 0, m]

p̂ = [sin θ sin(θ − α),− cos θ sin(θ − α), 0]/| sin(θ − α)|
x̂ = [− sin θ, cos θ, 0]

ŷ = [0, 0, 1]

β = π/2 for θ > α and = −π/2 forθ < α

k̂′ = [2 cos α cos(θ − α)− cos θ, 2 sin α cos(θ − α)− sin θ, 0]

ŝ′ = [0, 0, m]

p̂′ = [−m(2 sin α cos(θ − α)− sin θ), m(2 cos α cos(θ − α)− cos θ), 0]

β′ = π/2 for θ > α and = −π/2 forθ < α

Ex = Eo cos φp

Ey = Eo sin φp

Ep = −mEo cos φp

Es = mEo sin φp

E ′
p = −mEo cos φp

E ′
s = mnEo sin φp

E ′
x = Eo cos φp

E ′
y = nEo sin φp (31)

where n = 1 for a dielectric mirror and n = −1 for a metal mirror. The polarization angle
after reflection is then

φ′
p = φp (‘wobble’; dielectric)

φ′
p = −φp (‘wobble’; metal) (32)

i.e. there is no change in polarization direction upon reflection from a dielectric mirror, and
the polarization direction simply reverses sign upon reflection from a metal mirror.
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Angle measured by MSE

The calculation above is correct, so far as it goes: it computes the polarization angle
of the light that is reflected from a mirror in an absolute coordinate frame: the reference
frame of the torus. But there is one small detail that needs to be addressed: in our gedaken
experiment that considers the effect of an angular displacement of the calibration mirror,
the remainder of the mse optical system remains fixed, and so the mse optical axis remains
fixed. If the calibration mirror’s orientation changes, then the light that is reflected back into
the mse optics will no longer be coincident with the mse optical axis. Instead, the light will
enter the mse polarimeter at some non-zero angle-of-incidence. Does the angle-of-incidence
affect the angle that mse actually measures, and so is it possible that this effect magically
cancels the change in polarization angle at the mirror?

To address this question, one can consider an ‘ideal polarimeter’ to be nothing more than
a rotatable, perfect linear polarizer followed by an ideal photon counter. In this idealized
system, one can determine the polarization angle of the incident light by identifying the
angle at which the measured photon count rate is maximized.

So the effect of angle-of-incidence on an ideal polarimeter is just the same as the effect
of angle-of-incidence on an ideal linear polarizer. We measured this effect experimentally
some time ago, and we found that the change in polarization angle varies quadratically with
the angle-of-incidence for light incident on a linear polarizer. Therefore, the polarization
angle that a polarimeter measures at non-normal incidence differs only negligibly from the
true polarization angle if the angle-of-incidence is small. In the case of interest here, the
angle-of-incidence caused by a mirror mis-alignment would be only a few tenths of a degree.

So the change in polarization angle by reflection from a mirror will not be magically
cancelled by the effect of non-zero angle-of-incidence of light entering the mse optics.

Implications for Design of In-Situ Calibration System

Figure 8 is an idealized schematic of the proposed in-vessel calibration system, showing
two possible locations (points P and Q) of a polarized light source. In the figure, point P
lies in the x − y plane, as does the center of lens L1. Point Q lies off the midplane. Light
from point P has φ = 0 while light from point Q has φ 6= 0.

Two angular errors of orienting the mirror are considered: ’tilt’ and ‘wobble’. Our analysis
above has shown that the change in polarization angle for a ‘wobble’ does not depend on
the angle α (for both perfect dielectic and metal mirrors), and so errors in positioning the
mirror angle α will not cause the polarization angle to change. In other words, the calibration
system is insensitive to errors in the α angle (at least for φ = 0).

The major problem for the calibration system lies in ‘tilting’ mis-orientations of the mir-
ror, i.e. when ε 6= 0. The relevant parameter is the rate at which the change in polarization
angle changes with ε. This quantity, d(∆φp)/dε, is effectively an error multiplication factor:
if say d(∆φp)/dε = 2, then every 0.1o mis-orientation of the mirror in the ε direction will
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cause a 0.2o change in polarization angle.

The original proposal for an in-situ calibration system envisioned a polarized light source
(e.g. a wire grid polarizer illuminated from behind with fiber optics) that would be slid in
front of the mse L1 lens after a shot. This system obviously has an error multiplication
factor of 1.0 for angular rotations about the x-axis, which then requires that the mechanical
design be capable of reproducibly orienting the polarizer to an accuracy of 0.1o if we want a
calibration accuracy of 0.1o. This requirement is very stringent and difficult to achieve given
the environment: vacuum, temperature variations, disruptions, etc., and this fact led us to
consider the alternate scheme in which a fixed polarized light source is mounted on the mse
optics cannister.

But unless a mirror has an error multiplication factor substantially less than unity, it
really doesn’t significantly reduce the difficulty of mechanical design. A mirror system is
affected by different angular mis-orientations than a wire-grid polarizer: the mirror is affected
by rotations about the y-axis, while the wire-grid polarizer would be affected by rotations
about the x-axis. Unless it is somehow easier to eliminate mis-alignments in one direction
compared to another, the real driver for the design is the error multiplication factor.

Dielectric mirror: Figure 9 plots the change in polarization angle as a function of ε and
angle-of-incidence θ. Figure 10 plots the corresponding error multiplication factor d(∆φp)/ε.
Note that d(∆φp)/ε is large for small angles of incidence, i.e. it would greatly magnify any
‘tilt’ mis-orientations of the mirror. We will define a minimum performance target for a
fixed-polarizer calibration system that d(∆φp)/ε < 0.5.

This target is met for dielectric mirrors only for θ > 62o , i.e. very large angles of
incidence.

Metal mirror: Figure 11 and 12 plot the same quantities for a perfect metal mirror. Here,
the situation is reversed: the error multiplication factor is zero at normal incidence (θ = 0)
and increases with increasing θ.

For metal mirrors, the target performance d(∆φp)/ε < 0.5 is achieved only for θ < 14o .

A related issue is whether the behavior changes qualitatively if the incident light has
some vertical component, i.e. φ 6= 0. Figures 13 and 14 plot the change in polarization
angle and error multiplication factor for a single angle-of-incidence (θ = 10o) as a function
of the tilt angle ε and φ. Evidently, allowing the incident light to have a k-vector with a
non-zero component in the vertical direction does not change the error multiplication factor
very much.

Conclusion: An in-situ calibration system that uses a fixed polarization light source mounted
on the mse optics cannister which reflects light off a sliding mirror will not be significantly
easier to construct – to the desired calibration reproducibility - than a ‘straightforward’
system that simply positions a wire grid polarizer directly in front of the L1 lens unless the
angle of incidence of light is (a) greater than about 60o for a dielectric mirror; or (b) less
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than 14o for a metal mirror. This adds a significant constraint to the design of the sliding-
mirror calibration system, especially considering the fact that mse’s field-of-view spans about
30− 35o.
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Analytic calculation of beta

The idl procedure mirror reflection 2007.pro computes the rotation angle β nu-
merically from various dot products, but for comparison we can also evaluate it analytically.

cos β = p̂ · ŷ (33)

=

(
(k̂ × ẑ)× k̂

|k̂ × ẑ|

)
·
(

(k̂ × n̂)× k̂

|k̂ × n̂|

)

=

[
(k̂ × n̂)× k̂

]
·
[
(k̂ × ẑ)× k̂

]
|k̂ × ẑ| |k̂ × n̂|

=

[
k̂(k̂ · n̂)− n̂

]
·
[
(k̂(k̂ · ẑ)− ẑ

]
|k̂ × ẑ| |k̂ × n̂|

=
n̂ · ẑ − (k̂ · ẑ)(k̂ · n̂)

|k̂ × ẑ| |k̂ × n̂|
(34)

Similarly, we can evaluate sin β:

sin β = −p̂ · x̂ (35)

= −
(

(k̂ × n̂)× k̂

|k̂ × n̂|

)
·
(

k̂ × ẑ

|k̂ × n̂|

)

= −

[
n̂− k̂(k̂ · n̂)

]
·
[
k̂ × ẑ

]
|k̂ × ẑ| |k̂ × n̂|

=
−n̂ · (k̂ × ẑ)

|k̂ × ẑ| |k̂ × n̂|
(36)

So

tan β =
−n̂ · (k̂ × ẑ)

n̂ · ẑ − (k̂ · ẑ)(k̂ · n̂)
(37)
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Wire-grid
polarizer-A

Wire-grid
polarizer-B

fibers

fiber
dissector

linear
polarizer

L6

PEMs

L5

L4

L4

M3
M2

M1

to plasma

vacuum
window

Light
source

vacuum
window

possible
locations of
illumination
fibers

Proposal for in-situ,
before/after shot
MSE calibration system

• One of two wire-grid polarizers, backed by a mirror, 
is illuminated with light from fiber optics.

• The illumination fibers must be ‘upstream’ of the PEMs.

• Two possible locations of the illumination system 
are shown.

• An in-vessel illumination system may require a shutter 
to prevent coating during boronization.

• Critical issue:  reproducibility of angular position
of the wire-grid polarizer (~0.1o).

Figure 1: Proposed system for an in-situ calibration system for mse on Alcator sc c-mod
that uses a polarized light source that can be translated into the mse field-of-view after each
c-mod plasma shot.

14



Proposal:  calibrate MSE before &
after every shot at two angles.

The retractable mirror is slid or
rotated out of the MSE field-of-view 
during plasma shots.

existing MSE fibers

reflected
light

fiber 
dissector

annular
polarizer A illumination

fiber set A

annular
polarizer B

retractable
mirror

illumination
fiber set B

lens L1

mirror M1

L2

M2

M3

L3

vacuum
window

Page 1

Figure 2: Proposed system for an in-situ calibration system for mse on Alcator sc c-mod.
Linearly polarized light strikes a mirror that is slid in front of the plasma-facing lens shortly
after a shot.
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Figure 3: Geometry for the calculation.
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θi

ki = - x cos θi – y sin θi

n = x

∧ ∧ ∧
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∧n

Base case:  incident light has no vertical component
and mirror normal is in x-direction.  

kr

∧
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Figure 4: Geometry for computing the polarization upon reflection from an ideal, flat mirror.
For this case, the k-vector of the incident light is assumed to lie in the x− y plane, and the
mirror normal is assumed to be in the x̂ direction.
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Intermediate case:  incident light has non-zero 
component in vertical direction
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P

mirror

Figure 5: Geometry for computing the polarization upon reflection from an ideal, flat mirror.
For this case, the k-vector of the incident light is allowed to have a non-zero component in
the z - direction, but the mirror normal is still assumed to be in the x̂ direction.
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α Final case:  Rotate mirror by angle ε about
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Figure 6: Geometry for computing the polarization upon reflection from an ideal, flat mirror.
For this case, the k-vector of the incident light is allowed to have a non-zero component in
the z - direction. The mirror is rotated an angle ε about the y-axis and then the mirror is
rotated by an angle α about the z-axis.
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Figure 7: Geometry for computing the change in polarization angle.
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Figure 8: Geometry for illuminating the MSE plasma-facing lens.
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Figure 9: Change in polarization angle upon reflection from a perfect dielectric mirror for
the simplified ‘tilt’ geometry (φ = α = 0) as a function of the tilt angle ε and the angle-of-
incidence θ.
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Figure 10: Absolute value of the rate-of-change of polarization angle as tilt angle is varied,
dDφp/dε upon reflection from a perfect dielectric mirror for the simplified ‘tilt’ geometry
(φ = α = 0) as a function of the tilt angle ε and the angle-of-incidence θ.
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Figure 11: Change in polarization angle upon reflection from a perfect metal mirror for the
simplified ‘tilt’ geometry (φ = α = 0) as a function of the tilt angle ε and the angle-of-
incidence θ. For these calculations the input polarization angle φp = 25o.
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Figure 12: Absolute value of the rate-of-change of polarization angle as tilt angle is varied,
dDφp/dε upon reflection from a perfect metal mirror for the simplified ‘tilt’ geometry (φ =
α = 0) as a function of the tilt angle ε and the angle-of-incidence θ.
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Figure 13: Change in polarization angle upon reflection from a perfect metal mirror for an
angle-of-incidence θ = 10o as a function of the ‘elevation angle’ φ and the tilt angle ε. For
these calculations the input polarization angle φp = 25o.
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Figure 14: Absolute value of the rate-of-change in polarization angle as the tilt angle is varied,
dDφp/dε upon reflection from a perfect metal mirror for an angle-of-incidence θ = 10o as
a function of the ‘elevation angle’ φ and the tilt angle ε. For these calculations the input
polarization angle φp = 25o.
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