
Chapter 3 

Some QED Vacuum 
Effects 

[My father] said, "I understand that they say that light is emitted 
from an atom when it goes from one state to another, from an excited 
state to a state of lower energy." 

I said, "That's right." 
"And light is a kind of particle, a photon, I think they call it." 
"Yes." 
"So if the photon comes out of the atom when it goes from the 

excited to the lower state, the photon must have been in the atom in 
the excited state." 

I said, "Well, no." 
He said, "Well, how do you look at it so you can think of a particle 

photon coming out without it having been there in the excited state?" 
I thought a few minutes, and I said, i ' m sorry; I don't know. I 

can't explain it to you." 
— Richard P. Feynman, The Physics Teacher (September 1969). 

3.1 Introduction 

We noted in the preceding chapter that Dirac's theory of emission and 
absorption (1927) was the first application of the quantum theory of radi-
ation. The importance of Dirac's theory of spontaneous emission has been 
emphasized by Weinberg (1977): 

. . . This problem was of crucial importance, because the process of 
spontaneous emission of radiation is one in which "particles" are 
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actually created. Before the event, the system consists of an excited 
atom, whereas after the event, it consists of an atom in a state of lower 
energy, plus one photon. If quantum mechanics could not deal with 
processes of creation and destruction, it could not be an all-embracing 
physical theory .. . Dirac's successful theory of spontaneous emission 
of radiation confirmed the universal character of quantum mechanics. 

Dirac argued that his theory "must presumably give the effect of radia-
tion reaction on the emitting system." Spontaneous emission was also inter-
preted in terms of radiation reaction in the theory of Landau (1927) and, 
before the development of the quantum formalism, by van Vleck (1924). 
However, contemporary physicists, when asked to give a physical expla-
nation for the occurrence of spontaneous emission, generally invoke the 
vacuum electromagnetic field. This view was popularized by Weisskopf 
(1935) and later by Welton (1948), who argued that spontaneous emission 
"can be thought of as forced emission taking place under the action of the 
fluctuating field." In the following chapters we show that these two inter-
pretations — based on radiation reaction or vacuum field fluctuations — 
are in fact closely related in the quantum theory of radiation. We show 
furthermore that various other effects can be interpreted equally well in 
terms of radiation reaction or vacuum field fluctuations. 

What are these "vacuum fluctuation effects"? The first example that 
is usually cited is the Lamb shift, or sometimes the Casimir force between 
conducting plates. In this chapter we consider these and other manifes-
tations of the vacuum electromagnetic field. Our aim is not to present 
detailed calculations, but to emphasize the physics of the vacuum field. For 
this reason we adhere strictly to the formalism of the quantized field only 
when it is absolutely necessary. 

3.2 Spontaneous Emission 

Spontaneous emission is ultimately responsible for most of the light around 
us. For a thermal source the ratio of the spontaneous and stimulated emis-
sion rates for radiation of frequency ωσ is (Section 1.8) 

Λ21 ftu^T^ ( 3 1 ) 

£ 2 1 ^ 0 ) 

The sun may be regarded for our purposes as a blackbody radiator at the 
temperature T = 6000 K. At this temperature the ratio (3.1) is about 400 
at the wavelength λ = 400 nm, and about 30 at A = 700 nm. Most of the 
visible output from the sun, therefore, is due to spontaneous rather than 
stimulated emission. 
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As we shall see in the following chapter, spontaneous emission can be 
correctly described only when the radiation field is quantized; if the field 
is not treated quantum mechanically we obtain predictions in conflict with 
experiment. Nevertheless some aspects of spontaneous emission are ade-
quately described without the full machinery of quantum electrodynamics. 
In this section we use some simplistic arguments to derive the A coefficient 
for spontaneous emission and to provide some preliminary evidence for the 
interplay between radiation reaction and vacuum field fluctuations. 

Consider the rate Ä21 of stimulated emission in a broadband field of 
spectral energy density ρ(ω0). According to the discussion in Section 1.8, 
this rate is B2\p(u0) for an atomic transition from level 2 to level 1 with 
transition frequency ω0 = (E2~-Ei)/h. The Einstein B coefficient for stim-
ulated emission is given by the standard formula 

#21 - - ^ - , (Λ.2) 

where d is the electric dipole matrix element for the transition 2 —+ 1 and 
d = | d | . T h u s 

4π2<*2 , . 
#2i = -^-ρ{ω0). 

This result follows also from the classical formula (1.7) when we replace 
e2/m by (e 2 /m) / , with / the transition oscillator strength denned as 
2md2a>0/e

2ft. (See the remark at the end of Appendix A.) That is, 

WA 2π2β2 , . 2π2β2
 r . λ „ 

iâ0 = Ä W - ï^rj^ = Ä21· (34) 

According to equation (3.3) the vacuum electromagnetic field should 
induce an atom in the excited level 2 to make a downward transition to 
level 1 at the rate (transition probability per unit time) 

ÄVF - \Ί&~) U ^ J - IS?- - ~2Ml' (35) 

where A21 is the Einstein A coefficient for spontaneous emission (Chapter 

We have thus arrived at the same result found in Section 1.9: the vac-
uum field induces transitions at a rate equal to half the spontaneous emis-
sion rate. Evidently spontaneous emission cannot simply "be thought of as 
forced emission taking place under the action of the fluctuating field." 

Consider now the effect of radiation reaction. As shown in Appendix A, 
the radiation reaction field is responsible for the rate 2e2a2/3c3 at which an 

(3-3) 
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oscillating charge loses energy to the electromagnetic field. For oscillation 
at frequency ωσ with amplitude x0 this rate is 

when we average over a cycle of oscillation. Since e — τηω^χ^ is the energy 
of oscillation, we have 

de (eW0\ 
dt \3τη<?)*' 

and so e 2 wj /3mc 3 is the rate of emission attributable to radiation reaction. 
The replacement of e 2 / m by e2f/m as previously gives 

_(eW0\(2md?u>0\ 2dW0 1 
RRR - VwJ \~är) - ΊΚ^ = 2Ml 

for the emission rate due to radiation reaction. 
On the basis of this simplistic semiclassical analysis, therefore, we have 

arrived at the conclusion that Ä R R = RVF = ^ 2 1 and 

A2i = RVF + RRR· (3.9) 

In other words, both the vacuum field and radiation reaction induce transi-
tions at the rate ^A2\) and the two together give the Einstein A coefficient 
for spontaneous emission. 

As noted earlier, modern physicists generally think of spontaneous emis-
sion as a consequence of the vacuum field. Weisskopf (1981), for instance, 
writes that "spontaneous emission appears as a forced emission caused by 
the zero-point oscillations of the electromagnetic field." The fact that the 
vacuum field gives only half the correct A coefficient in this simplified pic-
ture does not seem to be widely appreciated, although it has been em-
phasized by several authors (Ginzburg, 1983; Milonni, 1984), and in his 
well-known textbook Schiff (1968) indirectly acknowledges it: 

. . . From a formal point of view, we can say that the spontaneous 
emission probability is equal to the probability of emission that would 
be induced by the presence of one quantum in each state of the ra-
diation field. Now . . . the smallest possible energy of the field corre-
sponds to the presence of one-half quantum per state. This suggests 
that we regard the spontaneous emission as being induced by the 
zero-point oscillations of the electromagnetic field; note, however, 
that these oscillations are twice as effective in producing emissive 
transitions as are real photons and are of course incapable of produc-
ing absorptive transitions. 

(3.6) 

(3.7) 

(3.8) 
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These arguments indicate that the "missing one-half" comes from radi-
ation reaction. Of course these arguments are semiclassical and oversimpli-
fied; the main purpose of the following chapter is to refine these arguments 
using the quantum theory of radiation. We will also show why the vac-
uum field is "of course incapable of producing absorptive transitions" : in 
the lower state of an atomic transition the effects of the vacuum field and 
radiation reaction cancel, so that the "spontaneous absorption" rate is 

A12 = RVF - RRR = 2^21 - 2^21 = 0. (3.10) 

3.3 Atomic Stability 

The fact that an accelerating charge loses energy by radiating implies, ac-
cording to classical ideas, that an electron should spiral into the nucleus and 
that atoms should not be stable. The balancing of the effects of radiation 
reaction and the vacuum field implied by (3.10), however, suggests that the 
stability of atoms might be attributable to the influence on the atom of the 
vacuum field. We now give a simplistic argument in support of this idea. 

Using equation (3.4) we write 

^ =-s^*^ = w (311) 

for the rate at which an atom absorbs energy from the vacuum field. But 
according to (3.6) there is also a loss of energy at the rate 

WEM = 3^3° " (3.12) 

due to radiation, where we have again made the replacement e2 /m —► 
e 2 / /m . Equating (3.11) and (3.12), we obtain 

πιχΐω ft, (3.13) 

which will be recognized as the Bohr quantization condition for the ground 
state of a one-electron atom. 

This "derivation" of the Bohr quantization condition obviously should 
not be taken very seriously. It suggests only how Bohr's quantization con-
dition, at least for n = 1, might have been interpreted by physicists in 1913. 
We now know that the vacuum field is in fact formally necessary for the 
stability of atoms in quantum theory: as we saw in Section 2.6, radiation 
reaction will cause canonical commutators like [x,px] to decay to zero un-
less the fluctuating vacuum field is included, in which case commutators 
are consistently preserved. 
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3.4 The Lamb Shift 
The solution of the Schrödinger equation for the hydrogen atom gives energy 
levels depending only on the principal quantum number n. In the solution 
of the Dirac equation (Chapter 9) the spin-orbit coupling partially lifts 
this degeneracy, but states with the same n and the same total angular 
momentum quantum number j} such as 2s1j2 and 2p1/2, remain degenerate: 

E- mc2 1 + 
(i + è) + \/(; + i )2-«2 

- 1 / 2 

(3.14) 

where a = e2/he = 1/137 is the fine structure constant, n = l,2,3,...oo, 
and j+ | < n. Experiments in the 1930s indicated that the 2si/2 and 2pij2 

energies might actually differ, but the data were not sufficiently accurate 
to draw any definite conclusions, and other experiments appeared to con-
firm the prediction of degeneracy. In 1947, however, Lamb and Retherford 
performed experiments showing convincingly that the 2si/2 level lies about 
1000 MHz, or 0.030 cm - 1 , above the 2pi/2 level. Shortly thereafter they 
reported a more accurate value near 1060 MHz. This tiny energy difference 
is called the Lamb shift. 

According to the energy level formula (3.14) predicted by the Dirac 
equation, the energy difference between the 2p3/2 and 2pi/2,2si/2 levels 
is = a4mc2/32, corresponding to a frequency of about 11,000 MHz or a 
wavelength of about 2.7 cm. A simplified energy level diagram for the 
n = 2 states of hydrogen, including the Lamb shift, is shown in Figure 3.1. 

The fact that the 2«χ/2 — 2p3/2 (and 2si/2 — 2pi/2) transition wave-
length lies in the microwave region allowed Lamb and Retherford to utilize 
advances in microwave technology made during World War II. The basic 
idea of their experiment is as follows. First a beam of H atoms is produced 
by thermal dissociation of H2 in an oven. The atomic beam is then bom-
barded with an electron beam that collisionally excites about 10~8 of the 
atoms into the 2sij2 state. This state is met astable, since (one-photon) 
spontaneous emission to the l«i/2 ground state is forbidden (Δ/ = 0). The 
radiative lifetime of the 2s\/2 state is thus very large (= 1/7 sec) and is 
due to two-photon spontaneous emission to the ground state. The 2$i/2 
atoms are detected by the fact that they cause emission of electrons when 
they are incident on a metal target. Excited atoms incident on the metal 
thus produce an electric current, while ground-state atoms do not. Now the 
application of a field at the 2«i/2 — 2p3/2 (or 2«χ/2 — 2ρχ/2) transition fre-
quency induces transitions to a p state which quickly decays to the ground 
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Figure 3.1: Energy level diagram for the n = 2 states of the hydrogen atom. 

state by spontaneous emission. Application of a field of the appropriate fre-
quency thus reduces the electric current at the detector of excited atoms. 
(The microwave field can be held fixed while the transition frequency is 
Zeeman-shifted with a magnetic field.) In this way Lamb and Retherford 
(1947) determined that the 2si/2 — %Pi/2 level shift was about 1000 MHz. 
In 1952 they reported a value of 1058.27 ± 1 . 0 MHz based on more refined 
measurements. The Lamb-Retherford experiments and analysis were re-
markably accurate. Since then various other experimental techniques have 
been employed, and the currently accepted value for the 2sij2 — 2pi/2 shift* 
in hydrogen is about 1057.85 MHz.1 

The Lamb shift and its explanation marked the beginning of modern 
quantum electrodynamics. In the words of Dirac (1989), "No progress was 
made for 20 years. Then a development came, initiated by Lamb's discov-
ery and explanation of the Lamb shift, which fundamentally changed the 
character of theoretical physics. It involved setting up rules for discarding 
. . . infinities . . . " 

The reason the Dirac theory leading to (3.14) fails to account for the 
Lamb shift is that it ignores the coupling of the atomic electron to the 
vacuum electromagnetic field. Actually the Lamb shift turns out to be 
a predominantly nonrelativistic effect, and can be understood in part by 
modifying the Schrödinger theory of the hydrogen atom to include the cou-

1For a review see Drake (1982). 
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pling to the vacuum field. We therefore consider the nonrelativistic theory 
with Hamiltonian (Chapter 4) 

, = /fA + , F _ i . A . p + _ fL A 2 , (3.15) 

where Ηχ is the Hamiltonian operator for the atomic electron and, as in the 
preceding chapter, A is the vector potential, H? is the field Hamiltonian, 
and we make the electric dipole approximation of neglecting any spatial 
variation of A. 

If the field is treated according to standard classical electromagnetic 
theory, the vector potential A = 0 in the vacuum and so there is no field 
to perturb the atomic energy levels. This is not the case when the field 
is quantized; standard second-order perturbation theory gives the follow-
ing expression for the shift in the atomic level n due to the interaction 
—(e/mc)A · p : 

±En = YY Km>1kAJ/lkAln>vac)l2
> 

„ , En - Em - hujk 
m lu 

where we follow the notation of Chapter 2 for the field in free space. Hence, 
AEn is the energy shift of the state |n,vac) in which the atom is in sta-
tionary state n and the field is in its vacuum state of no photons. The 
intermediate state |ra, 1^λ) corresponds to the atom in state m and one 
photon in mode (k, λ). This intermediate state has energy Em + hLJk which 
appears in the denominator in (3.16). Only one-photon intermediate states 
appear because A can only connect the vacuum state to such states , and 
furthermore only a\ in A contributes to the matrix element in (3.16) 
because aj^lvac) = 0. The expression (3.16) for AEn is derived in the 
following chapter in both the Schrödinger and Heisenberg pictures. 

Since 
1 11 

(m, l k jÄ k A |n ,vac) = ~ ( - £ j - ^ - J p n , n - e k A , (3.18) 

we can write 

A^4ÎEE-P",ehl . < 3 · 1 9 ) 

(3.16) 

(3.17) 
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Figure 3.2: Diagrammatic representation of (3.21) in terms of emission and 
absorption of virtual photons. 

where tiunm = E„ — Em. Using (2.71) and other simple manipulations, 
furthermore, we have 

AEn = 2e2 

37rm2c3 Σ ΐ ρ - , , ι ' Γ ^ 
~ Jo wn m -

2 a / l \ V i 12 Γ o 

ω 

dEE 
Ε„ 

(3.20) 

In these expressions the integrals are to be understood in terms of the 
Cauchy principal part. 

At the risk of laboring the obvious, we emphasize that AEn arises from 
the vacuum field. Writing 

| ( m , l k ; v | a ^ ( p e k A ) | n , v a c ) | 2 = (n, vac|akA(p · ekx)\m, lkx) 

x (m, l k A | a k A (p · ek A) |n, vac), 

(3.21) 

we are led to interpret AEn in terms of an emission process n —► m-\- y fol-
lowed by the absorption process m+y —* n, where 7 denotes a photon. This 
emission and absorption of "virtual photons" is indicated diagrammatically 
in Figure 3.2. 

We have ignored the contribution of the interaction (e2/2mc2)A2 to 
AEn- Since this term does not involve atomic operators, it contributes the 
same energy to every state |n,vac), 

e2 

AE0 = (n,vac|- rA2|n,vac) 
2mcz 
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e2 ^ ^ /2ττΛο2 \1 / 2 /2xf ic 2 \ 1 / 2 

k\ k'A' * 

x (vac laj^aj jvacje ]^ , ekx 

„2 

M ^ ) = ^ I *-· <"2> 2mc2 , 

and therefore it does not affect observable frequency shifts and may be 
ignored. This term is indicated diagrammatically in Figure 3.3. 

Both AEn and AE0 are seen to be infinite. This is especially problem-
matic for AEnf since this presumably corresponds to the Lamb shift, which 
experiment shows to be not infinite but small. It was the resolution of this 
dilemma that "fundamentally changed the character of theoretical physics" 
(Dirac, 1989). The first person to calculate a finite value for the Lamb shift 
was Bethe (1947), and we now turn our attention to his calculation. 

3.5 Bet he's Mass Renormalization 

The energy of a free electron due to its coupling to the field may be obtained 
from (3.20) by taking the limit in which all the transition frequencies ωητη —► 
0. Thus 

is the expectation value in state n of the operator corresponding to the 
energy of a free electron due to its coupling to the field. (As noted earlier, 

Figure 3.3: Diagrammatic representation of (3.22). 

(3.23) 
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the contribution AE0 is the same for every state, free or bound, and may 
be neglected for our purposes.) 

Now it is reasonable that the observed level shift for an atom in state 
n should be AEn — AE„ee, the difference between the shift in the electron 
energy when it is bound and when it is free: 

A£obs = AEn-AE*ee 

2 a / l \ V , ι2Γ f°° dEE f°° f„ 

= sïU?) Ç1^"1 [l En-Em-E+J0
 dE_ 

= Ιϊ(™) ΣΐΡ-»Ι2(^-^-)/ En-Em-E-
(3.24) 

This expression is still infinite but, unlike (3.20), the divergence is "only" 
logarithmic. The subtraction of AE„ee from AEn has thus reduced the 
divergence from linear to logarithmic. This subtraction was done by Bethe 
(1947). He correctly suggested that in a relativistic theory, where AEn and 
AE„ee themselves turn out to diverge only logarithmically, the subtraction 
of AE„ee would produce a finite value for AE%hs. 

Bethe assumed that the main part of the Lamb shift was due to the 
interaction of the electron with vacuum field modes of frequency small 
enough to justify a nonrelativistic approach. In this case it is reasonable to 
cut off the upper limit of integration in (3.24) by some Ü7max> which Bethe 
took to be mc2. Then 

dE 

En — Em — E 
Δ ^ - £(=:)'Ç'>-',«'-«->jf 

■ ̂ Ώ'Σΐρ-ι'ίΑ.-^ιπϊ (325) 

for mc2 » \En — Em\. Since the argument of the logarithm is accordingly 
very large, Bethe replaced the logarithm by an average value, independent 
of m, as a first approximation: 

ΔΕ^£(ά)2'°*ΐπΰΣ>""|2(Ε"*-*">· <326) 

Now 

J2\Pmn\2(Em - En) = Y^(n\p\m) ■ (m\p\n)(Em - En) 
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= ]C(nl[p> ΗΑ\\™) - (™\p\n) 
m 

= -ih(n\VV ■ p|n) = -iift(n|[VV,p]|n) 

= \^(n\V2V\n) = ±h3 J <PrWn(r)\2V3V(T), 

(3.27) 

where V is the binding potential. (HA = p2/2m + V) For the Coulomb 
potential V = -Ze2/r, we have V2V = 4rrZe263(r) and 

Σ \pmn\
2(Em - En) = 2wh2e2Z\tPn(0)\2, (3.28) 

\mc J 
^ * ^ f i i V |M0)laloglB, " I . (3.29) 

l^m — £"n| avg 

This expression already exhibits an important element of truth: the Lamb 
shift should be largest for s states, for which |^n(0) | 2 φ 0. For an s state 
with principal quantum number n, |^n(0) | 2 = (Ζ/ηα0)

3/π and 

A g i - « ^ a . h , " * ! . . (3.30) 

where R^ is the Rydberg unit of energy (e2/2a0 = 13.6 eV) for infinite 
nuclear mass. Using a numerical estimate of 17.8 R^ for the average exci-
tation energy \En — Em\avg defined by2 

W|P r , _ Em\Pmn\2(Em - En)lQg\Em - En\ 
l o è \ E m - E n U - E m | P m n | 2 ( £ m _ £ n ) · (3·31) 

Bethe obtained for the 2s state of hydrogen a level shift in excellent agree-
ment with experiment: 

AE^S S 1040 MHz. (3.32) 

2The sums in this expression include continuum states. In fact the continuum states 
make a larger contribution to the average excitation energy than discrete states. This 
explains why the average excitation energy turns out to be so large compared with 
bound-bound transition frequencies. See H. A. Bethe and E. E. Salpeter, Quantum 
Mechanics of One- and Two-Electron Atoms (Springer-Verlag, Berlin, 1957), pp. 318-
320. 
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The crux of Bethe's calculation is the "mass renormalization" implied 
by the subtraction of AEf

n
ree from AEn in (3.24). Recall from Appendix 

D that a charged particle has an "electromagnetic mass" 8m due to its 
own radiation reaction field. The nonrelativistic calculation in Appendix 
D gives 

Aoc ί°° 
6m = —— / dE. (3.33) 

3?rc2 J0 

As discussed in Chapter 5, the observed electron mass m is m0 + Sm, where 
m0 is the "bare mass," i.e., the contribution to the electron mass that is not 
associated with radiation reaction. Although (3.33) is infinite, and 6m is 
also infinite when calculated relativistically, we might suppose that in some 
future, more refined theory, 6m will be finite. If we assume furthermore 
that Sm/m in reality is small, then the kinetic energy of the electron is 

P 2 _ P 2 ~ P 2 ^ m 2 
2 ^ = 2(m0 + 6m) = 2m~Q " 2m^P ' ( ' ' 

Now the basic idea behind mass renormalization is this: when we write 
p 2 /2m for the electron kinetic energy in the Schrödinger equation, m is 
the observed mass (= 9.1 x 10~28 g), which includes 6m. But when we 
"turn on" the coupling of the electron to the field in our calculations, the 
radiation reaction on the electron adds 6m to its mass. Since we have 
implicitly already accounted for 6m in writing the electron mass as m in 
the Schrödinger (or Dirac) equation with no coupling to the field, we must 
be careful to avoid "double counting" Sm. In particular, we should subtract 
the "additional" contribution, —(6m/2m2)p2, that we incur after coupling 
the electron to the field. That is, we must subtract the self-energy 

-&w'w ■ -a^(i)pE<»iP'i.» 

3π \mcj ^ J0 

= AEn
ree (3.35) 

from the calculated shift in En arising from the coupling of the electron to 
the radiation field. This is exactly what Bethe did in order to reduce the 
order of divergence of AEn. 

The idea behind renormalization is attributable to Kramers (Dresden, 
1987) and also to Weisskopf (1936). Bethe applied it to the Lamb shift im-
mediately after a conference on Shelter Island, where the Lamb-Retherford 
experiments and the theoretical difficulties with infinities in electrodynam-
ics were discussed (Bethe, 1989): 
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. . . I thought that it ought to be possible to get Lamb's result by 
applying the idea of Kramers. So on the train from Shelter Island 
. . . I wrote down some . . . equations . . . and found out that the effect 
on the 2s-state or any state of hydrogen would involve the logarithm 
of the energy . . . Stupidly or boldly, I just assumed that the higher 
energy was mc2, and with this assumption, I got about the right 
answer. Of course, I was afraid that I might have made a mistake 
by a factor of 2 . . . after all one cannot remember factors of 2 on a 
train. So the next morning, as early as I could, I looked for Heitler's 
book in the General Electric library, and found that I had not made a 
mistake. Indeed I got a result of about a thousand megacycles which 
was about the right answer. 

In his Nobel lecture (1966) Feynman called Bethe 's est imate "the most 
important discovery in the history of quan tum electrodynamics." 

Renormalizability, like Lorentz invariance and gauge invariance, is pres-
ently believed to be required of any fundamental theory of physics. How-
ever, dissatisfaction with renormalization has been expressed at various 
times by many physicists, including Dirac (1978), who felt tha t "This is 
jus t not sensible mathematics . Sensible mathemat ics involves neglecting a 
quanti ty when it turns out to be small — not neglecting it jus t because it 
is infinitely great and you do not want it!" 

On the other hand, it can be argued tha t mass renormalization, for 
instance, would be necessary to avoid double counting in calculations even 
if the electromagnetic mass δπι turned out to be finite. It can also be argued 
tha t 6m in a more refined theory would turn out to be small, and tha t mass 
differences between the particles π+ and π° , or K + and K°, etc., are "almost 
certainly electromagnetic in origin" (Feynman, 1961). 

Discussion of these mat ters further would take us too far from our 
present subject. We shall return to the numerical value of the Lamb shift 
later in connection with vacuum polarization, but in the next few sections 
we wish to develop a more physical understanding of the dominant (non-
relativistic) contribution to the Lamb shift calculated by Bethe. 

3.6 Welton's Interpretation 

Welton (1948) interpreted the Lamb shift as follows. The vacuum field 
causes the position of the electron to fluctuate. The fluctuation Δ Γ is 
determined by m Ar = e E 0 , where E 0 is the zero-point electric field. If we 
make a Fourier decomposition of both E 0 and Δ Γ , then 

Δι-α, = ^ T E 0 ( W (3.36) 



Welton's Interpretation 91 

gives the component of Δ Γ at the frequency ω. Thus 

where the expectation values are over the vacuum state of the field. Since 
(ω2/π2ο3)άω is the number of field modes per unit volume in the frequency 
interval [ω}ω + du;], and each mode has a zero-point energy ^ftu/, we have 

1Λω G??) *"= έ [ ( Ε ^ } + { Β ΐ ·» ) ] ά ω = h&o)du ( 3 · 3 8 ) 

and 

J0 \mzLu*J π \mcj J0 ω 

π \mcj J0 E (3.39) 

where again a is the fine structure constant and h/mc is the electron Comp-
ton radius divided by 2π. 

Now the fluctuation in r causes the potential energy V(r) to fluctuate, 

V(r + Δ Γ ) = V(r) + Δ Γ · VV(r) + i (Ar) 2 V 2 V(r) + ... (3.40) 

for a spherically symmetric potential, so that an electron in state n should 
experience an energy shift with leading term 

AE'n = i ( (Ar) 2 )HV 2 V(r) |n) = i ( (Ar ) 2 ) ^Ze 2 |V„ (0 ) | 2 

8 « ^ 
3πηά 

r°° dE_ 
h E 

for an s state with principal quantum number n. This is infinite, but if we 
replace the upper limit of integration by mc2 in this nonrelativistic model, 
and the lower limit by Bethe's average excitation energy, then we recover 
exactly Bethe's expression (3.30) for the Lamb shift. 

Note that E'n — 0 for a free electron (V2 V = 0), so that there is no need 
here to subtract away a free-electron contribution in order to obtain an 
observable shift. That is, no mass renormalization is necessary in Welton's 
heuristic approach to the Lamb shift. 

The steps leading to (3.41) are the essence of Welton's interpretation 
of the Lamb shift, and this interpretation is mentioned in many textbooks 
in advanced quantum mechanics. Wei ton's argument seems to leave little 
doubt about the "reality" of the vacuum fluctuations of the electromagnetic 
field. 

(3.37) 

(3.41) 
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3.7 A Feynman Interpretation of the Lamb 
Shift 

Thus far we have described two ways of thinking about the role of the 
vacuum field in the Lamb shift: we can explain the level shift as the result of 
emission into and re-absorption from the vacuum of virtual photons (Figure 
3.2), or as the result of the fluctuations in the position of an electron due 
to the fluctuations in the vacuum electric field. In this section and the next 
we descibe two variations on this theme. 

The first is a simplification of an argument due originally to Feynman 
(1961) (Power 1966). Consider a dilute gas of N atoms per unit volume 
in a large box of volume V. Since the allowed wavelengths are fixed by 
the dimensions of the box, the effect of the refractive index of the gas is 
to change the frequencies ω* to Uk/n(uk)} where n(u>k) is the index at u;*. 
The change in the zero-point field energy due to the presence of the atoms 
is therefore 

AE=Σ \^£Λ - Σ \h»> = - Σ w«*) - Φ"* (3·42) 

for n(wic) = 1. Now n(wfc) is given, for a dilute gas of atoms in level n, by3 

- Λ . N ~ 1 , 4 π Ν V^mnldm»!2 

"<"*> = 1 + -3ΓΣ-;ΓΤ^Γ ( 3 4 3 ) 

where d m n is the m «-* n transition dipole moment. Thus 

AIT. ~ 2πΝ ^—V ^—V U / m n | « - l m n 

Δ£/η — — 
n 

kA "> m " * 

2 

2NV r^ , . ., f°° άωω3 

' 3 T T C 3 T.u^\dmn\' Γ JUW_ (3.44) 

To obtain an observable shift in level n we subtract from this expression 
the change in zero-point energy due to N free electrons per unit volume in 
the box. This is obtained by ignoring ω^ηη compared with ω\ in (3.44), i.e., 
by taking a limit of effectively continuous electron energies: 

AE0 = ——J2u>mn\dmn\
2 / άωω . (3.45) 

07TC *-^* Jn 

3See, for instance, P. W. Milonni and J. H. Eberly, Lasers (Wiley, New York, 1988), 
Chapter 7. 
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2Wy^ ., , . l9 f°° άωω 

The Thomas-Reiche-Kuhn sum rule,4 5Z m w m n | d m n | 2 = 3fte2/2m, allows 
us to write this free-electron energy as 

e2h f°° 
AE0 = (NV) r / άωω . 

ππισ* J0 

which is just the vacuum expectation value of the energy (e2/2mc2)A2 for 
NV electrons. [See equation (3.22).] The observable shift in level n should 
therefore be 

•E^«id-i2/ 

2NV v ^ 3 , , ,2i m ° 2 /o „\ 

- l^E^nldmnl2^^—^ (3.47) 
m 

when we introduce a high-frequency cutoff mc2 /h. 
Finally we recall that5 | p m n | 2 = m2 u2

mn\yimn\
2 = (m2cj2

n n/e2) |dm n |2 

and write (3.47) in the form 

AK"=(Mog Gib)'?«*- - E^"-^JÊ^K\ ■ (348) 

which is exactly Bethe's expresssion (3.25) obtained after mass renormal-
ization when we take NV = 1, i.e., when we let our original box contain 
one atom. Note that, as in Welton's argument and for basically the same 
reason, no mass renormalization is required in this approach. 

3.8 The Lamb Shift as a Stark Shift 

There is yet another interpretation of the "Bethe log." Consider the energy 
W — — \<\. - E associated with a dipole moment d induced by an electric 
field E.6 Writing d^ = α(ω)Έ,ω for the Fourier component of the dipole 
moment induced by the Fourier component Έ,ω of the field, where α(ω) is 

4See, for instance, J. J. Sakurai, Advanced Quantum Mechanics (Addison-Wesley, 
Reading, Mass., 1976), p. 74. 

5Ibid., p. 42. 
6 The factor 1/2 is due to the fact that the dipole moment is induced rather than 

permanent. See, for instance, J. D. Jackson, Classical Electrodynamics, 2nd ed. (Wiley, 
New York, 1975), p. 161. 

(3.46) 
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the polarizability, we have W = — ̂ α(ω)Ε2 and, if there is a continuous 
distribution of field frequencies, 

W = -^ ( α(ω)[4πρ(ω)άωΙ (3.49) 

where ρ(ω) is the spectral energy density of the field, E£ = 4πρ(ω)άω. For 
an atom in level n, therefore, we expect a level shift 

AEn = - 2 π / άωαη(ω)ρ(ω) (3.50) 
Jo 

due to an applied field of spectral energy density ρ(ω), where αη(ω) is the 
polarizability for level n and is given by the Kramers-Heisenberg formula,7 

«-(«-) = s f t L · ^ - „ 2 · (3·51) 

For a monochromatic field, equation (3.50) reduces to the standard formula 
for the second-order Stark shift produced by an external field. 

For an atom in the vacuum we use the spectral energy density p0{u) = 
hu>3/2n2c3 of the zero-point field and obtain the level shift 

A«. - - i^Ç^w-i ' jf £zz <"»> 
This is identical to equation (3.44) in the case of one atom (NV = 1). 
Therefore we can regard the Lamb shift as a Stark shift produced by the 
vacuum electromagnetic field. 

The equivalence of this interpretation of the Lamb shift to that given 
in the preceding section follows from the relation 

η(ω) = 1 -h 2πΝα(ω) (3.53) 

between the refractive index and the polarizability for a gas with η(ω) = 1. 
These interpretations of the Lamb shift can be "dressed up" by relating 
α(ω) to the real part of the forward scattering amplitude f(u) [oc ω2α(ω)] 
for a photon of frequency ω, but this is hardly necessary to bring out the 
point that the Bethe log may be attributed to the coupling of the atom to 
the vacuum radiation field. 

7See, for instance, A. S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 
1965), pp. 316-321. 
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3.9 Retardation 
The Bethe log arising from vacuum field fluctuations accounts for all but 
a few percent of the 2«ι/2 — 2ρχ/2 Lamb shift in hydrogen. The Lamb 
shift provides one of the most delicate tests of QED, and various other 
effects contributing to it, such as vacuum polarization, finite nuclear mass, 
etc., must be accounted for in any detailed comparison with experiment. 
However, for a basic understanding of why there is a Lamb shift and for an 
estimate of its magnitude in hydrogen, it is sufficient to concentrate on the 
Bethe log. For this reason we have discussed various physical interpretations 
of this contribution, all of them involving the vacuum electromagnetic field. 

It is obviously of interest to determine the effect of higher order correc-
tions to the Bethe log. One correction is to go beyond the dipole approx-
imation in which the factors e ± , K x in the field are dropped. This results 
in the replacement of (3.19) by 

A E n =
 2™2 1 y 1 y ^ < ^ | p e k A e i k x l m ) < m | e - - > k x p . e k A | n ) 

m 2 y Ζ ^ ω Z-J ω _ Uk 

kx m 

(3.54) 
which, unlike (3.19), is logarithmically divergent without mass renormal· 
ization (Au and Feinberg, 1974). We can see this by writing 

E P e k À e ' k X l m ) ( m l e t k x P ' e k À * V ^ .kx^r ■ w i 
' ' — = fc£p-ek,e Gn |m)(m| 

x c - " k * x p · ekx (3.55) 

in (3.54), where the operator Gn = (En — p2/2m — V — TtUk) *, with 
( p 2 / 2 m + V)\m) = Em\m). Then the general identity 

e , k xF(p)e"ik x = F ( p - /ik) (3.56) 

gives 

e»k x G „ e - k * = [En - ^ ( p - ftk)2 - V - ft«*]-1 . (3.57) 

The effect of the retardation, i.e., of not making the dipole approximation, 
is then to replace a; by a;2 for large frequencies in the denominator of the 
integrand in (3.20). This leads to logarithmic rather than linear divergence. 

Physically, the effect of retardation is to give recoil of the electron in 
photon emission and absorption. The replacement of p by p — hk in the 
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intermediate electron momenta then reflects the conservation of linear mo-
mentum in the interaction between electrons and photons. 

We can aproach the free-particle self-energy with retardation included 
by taking En — p2/2m and V = 0 in (3.57), and ignoring the term k · p in 
order to obtain from (3.56) a contribution proportional to p 2 for small p . 
Then (3.54) gives 

A ^ e e = _ 2 ^ 1 Σ ±(n\(p^m = _ ^ L ( n | p > ) ) ( 3 . 5 8 ) 
n m2 V ^ uk uk + ΤιωΙ 2mc2 2m2 N ' ' " v ' 

where 
4e2 f°° άωω 

S m = ^ " ^ / l f c 2/Θ 2 > ( 3 · 5 9 ) 

which is logarithmically divergent as opposed to the linear divergence of 
the result (3.33) obtained without retardation. 

Using a momentum representation of Gn (Schwinger, 1964; see also 
Lieber, 1968), Au and Feinberg (1974) have numerically computed the 
mass-renormalized shifts AEn — (<$m/2m2)(n|p2|n), with ΔΕη and 8m 
given by (3.54) and (3.59), respectively, for the 2s and 2p levels of hydrogen 
with retardation. Each term diverges logarithmically, and the difference is 
finite without any high-frequency cutoff. They obtained AE2s = 931.1 
MHz and AE2s-AE2p = 950.3 MHz. (When the k · p term was kept 
in the denominator of (3.58) in the evaluation of Δϋ?£Γ6β, they obtained 
AE2s = 1330 MHz and AE2s-AE2p = 996.6 MHz.) The nonrelativistic 
computation of the Lamb shift with retardation included, therefore, gives a 
finite value, but this value is significantly different from the experimentally 
observed Lamb shift (see also Grotch, 1981). 

The nonrelativistic theory with retardation as just described, of course, 
involves photon frequencies at which nonrelativistic theory breaks down. In 
this sense the theory is inconsistent. However, it does show that retardation 
is important in the numerical value of the Lamb shift, and furthermore 
it provides some insight into why the nonrelativistic, nonretarded Bethe 
log with a high-frequency cutoff works so well (Au and Feinberg, 1974): 
the dominant contribution to the Bethe log comes from frequencies that 
are too small for retardation to be important, while, for high frequencies, 
where Bethe introduced a cutoff, there is an effective cutoff resulting from 
retardation. 

It is worth noting that the AE2s—AE2p separation is convergent in the 
nonrelativistic theory with retardation even without mass renormalization. 



Another Look at the Casimir Force 97 

3.10 Another Look at the Casimir Force 

In Section 2.7 we obtained the Casimir force between two conducting plates 
in the conventional way, by calculating the difference between the zero-point 
field energies for finite and infinite plate separations. Having interpreted 
the Lamb shift in different ways based on vacuum field fluctuations, we now 
turn to an alternative interpretation of the Casimir force. 

The idea here is that the virtual photons of the vacuum carry linear 
momentum ^ftk; recall equation (2.60). Then the reflections off the plates 
of the zero-point field outside the plates act to push the plates together, 
while reflections of the field confined between the plates push them apart. 
Loosely speaking, there are more field modes outside the plates than inside, 
since only certain discrete frequencies are allowed between the plates. The 
net effect of the zero-point radiation pressure is then to push the plates 
together. We shall now show that the force calculated in this way is exactly 
the Casimir force (Milonni, Cook, and Goggin, 1988). 

Consider the radiation pressure exerted by a plane wave incident nor-
mally on a plate. This pressure is twice the energy u per unit volume of 
the incident field (Section 1.2). If the wave has an angle of incidence 0, 
however, the radiation pressure is reduced to P = F/A = 2u cos2 Θ. There 
are two factors of cos Θ here because (1) the normal component of the linear 
momentum imparted to the plate is proportional to cos0, and (2) the ele-
ment of area A is increased by (cos0)_1 compared with the case of normal 
incidence. 

Between the plates the modes formed by reflections off the plates obvi-
ously act to push the plates apart. A mode of frequency ω contributes a 
pressure 

P = 2(l-)(1-hu,)V-Uos>e = ^ £ , (3.60) 

where, as usual, k = ω/c and V is a quantization volume. A factor 1/2 
has been inserted because the zero-point energy of each mode is divided 
equally between waves propagating toward or away from each plate. For 
large plates, kx and ky take on a continuum of values, whereas kz = nf /d , 
where n is a positive integer. Adding the contributions from all modes of 
the space between the plates, we have the total outward pressure 

Pout = 4& Σ Γ dk* f dky^^uZ'(
d?u^n <3·61) 

*2dZriJo Jo "[kl + tf + inn/d)2]1/2 

on each plate. In writing this expression a factor of 2 has been included to 
allow for the two independent polarizations. The replacement of sums by 
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integrals over kx and Jky brings in a factor (L/π)2 = V/w2dy as in Section Vy 

2.7. 
The field outside the "resonator" formed by the plates has a continuum 

of allowed frequencies. These modes obviously act to push the plates to-
gether by reflections off the plates. The total inward pressure exerted by 
these modes may be obtained from (3.61) by replacing Ση by (d/π) f dkz: 

*°yf^jfa>f%î+.jtU-/'· (3·62) 

Both Po u t and Pm are infinite, but it is only their difference that is phys-
ically meaningful. After some simple algebra we can write this difference 
as 

_ 7T2ftc v* 2 r dx f°° 2 r dx 
Σ > / 0 (ΓΜ?)Ϊ7Ϊ-70

 duu J0 jxTWi /2 

(3.63) 
Application of the Euler-Maclaurin summation formula as in Section 2.7 
then leads to the Casimir result 

* " * - P " = - ^ (3 · 6 4) 

for the force per unit area between the plates. 
We can therefore regard the Casimir force as a consequence of the radi-

ation pressure associated with the zero-point energy ~hu per mode of the 
field. This interpretation is directly connected to the conventional one (Sec-
tion 2.7) through the Maxwell stress tensor for the quantized field (Milonni 
et al., 1988).8 

3.11 Van der Waals Forces 

In order to account for observed deviations from the ideal gas law, in 1873 
J. D. van der Waals proposed the equation of state 

(P+^)(V-b) = RT (3.65) 

for 1 mole of a gas at temperature T. P and V are as usual the pressure 
and volume, R is the universal gas constant, and a and 6 are now called the 
van der Waals constants, obtained by fitting (3.65) to experimental data. 

8See also A. E. Gonzalez, Physica 131A, 228 (1985). 
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Van der Waals interpreted the constant 6 as the volume excluded by 
two atoms. If the atoms were imagined to be spheres of radius r0, then 6 = 
16*TQ/3 . The constant a was associated with an attractive force between 
two atoms. Van der Waals later suggested an interaction potential of the 
form V(r) = —Ar~1e~Br, where A and B are constants. 

Much later Keesom obtained the potential V(r) = —p\p\fôkTr% for two 
polar molecules, i.e., molecules with permanent dipole moments. Here p\ 
and p2 are the dipole moments of the two molecules and V(r) is obtained as 
a consequence of molecular rotations. There is an attractive force because 
attractive orientations are statistically favored over repulsive ones. 

Debye and others recognized that more general attractive forces must 
exist between molecules, since gases of nonpolar molecules have non van-
ishing values of the van der Waals constant a. Moreover a temperature-
independent potential was needed. Debye noted that many molecules have 
a permanent quadrupole moment, which can induce a dipole moment in a 
second molecule, and the resulting dipole-quadrupole force is temperature 
independent. Such an "induction force" occurs also if the first molecule has 
a permanent dipole moment. However, neither case is sufficiently general 
to account for the van der Waals equation of state. 

London (1930) employed fourth-order quantum-mechanical perturba-
tion theory to derive the interaction potential9 

m = -*&?■ (3.66) 
between two identical atoms (or molecules) with transition frequency ω0 be-
tween the ground and first excited levels, with a the static (zero-frequency) 
polarizability. London's result, which was considered a major accomplish-
ment of the new quantum mechanics, showed that there is a general force of 
attraction between two molecules even if neither has a permanent moment; 
it is necessary only that a dipole moment can be induced in each molecule, 
i.e., that each molecule is polarizable (α φ 0). And London's result, unlike 
Keesom's, is temperature independent. 

Since it involves the polarizability, which in turn is related to the re-
fractive index and dispersion [cf. (3.53)], London's force is often called the 
dispersion force. Dispersion forces, together with the orientation and induc-
tion forces of Keesom and Debye, are now regarded as three general types 
of van der Waals forces. In this section we will consider the origin of the 
dispersion force between two neutral polarizable particles, and show that 
this type of van der Waals force may be attributed to zero-point energy. 

9Before the work of London, S. C. Wang [Phys. Zs. 28, 663 (1927)] presented 
somewhat indirect quantum-mechanical arguments for a n r " 6 interaction between two 
hydrogen atoms. 
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In fact London originally proposed such an interpretation. The essence 
of the argument is as follows. Consider two identical dipole oscillators of 
frequency ω0 coupled through their near fields. For this system we write 
the equations of motion 

ϊι+ω2
0χ1 = Κχ2) (3.67) 

x2 + ω^ζ2 = Κχι, (3.68) 
with K = qe2/mr3, q being the dipole-dipole orientation factor, 3(μι s)(ß2· 
s) — ß\ · ß2, where βχ,βι are unit vectors in the directions of the dipole 
moments and s is a unit vector pointing from one dipole to the other. Two 
points about these equations are worth noting. First, since atoms that 
remain with high probability in their ground states are accurately repre-
sented for many purposes as harmonic oscillators, these equations provide 
a reasonable qualitative description of the coupling between two ground-
state atoms.10 Second, we are not assuming permanent dipole moments; 
equations (3.67) and (3.68) can be thought of as operator equations, with 
the expectation values (#i) = (x2) = 0 implying a vanishing permanent 
dipole moment. In fact the only thing of interest for the present discussion 
is that the normal mode frequencies of this coupled oscillator system are 
given by 

ω± = (ω2
0 ± K)1'2 . (3.69) 

The quantum-mechanical ground-state energy of the system is 

£ 7 = i f t ( « + + w - ) S £ ^ e - ^ (3.70) 

to lowest order in Κ/ω2. This implies an interaction energy 

K(r) = -R^J =—8̂ -' (3J1) 

where a = e2/πιω2 is the classical static polarizability. Now if we use the 
fact that a quantum-mechanical evaluation of q2 gives an average value of 
2, and multiply by 3 to account for the three-dimensionality of the atoms, 
then (3.71) yields V(r) = -3hu)0a

2/4r6
y which is London's result (3.66).n 

1 0See, for instance, M. Cray, M.-L. Shih, and P. W. Milonni, Am. J. Phys. 50, 1016 
(1982). 

11 If the two induced dipoles are parallel to each other and perpendicular to the axis 
joining them, q2 = 1, whereas if they are parallel and aligned along the axis, ςτ = 4. 
The orientationally averaged value of q2 is then (2 /3) ( l ) + ( l /3) (4) = 2. See also P. W. 
Milonni and P. L. Knight, Phys. Rev. A10, 1096 (1974); A l l , 1090 (1975). 
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We saw in Section 2.6 that the vacuum field is required to maintain 
the commutation relation, and therefore the zero-point energy, of a dipole 
oscillator. This suggests that the r"""6 van der Waals interaction might be 
attributed physically to the fluctuating vacuum electromagnetic field. That 
this is so may be seen from the following argument. 

As in Section 3.8 we begin with the formula for the Stark shift of 
an atomic energy level, but now without the assumption that the field 
is isotropic: 

WA = - 4 5 > A K ) E ^ ( X A , 0 (3.72) 
S A 

for an atom A located at XA with polarizability αχ(ω). The total field in 
mode (k, λ) acting on A is assumed to be the zero-point field plus the field 
at A produced by a second atom B: 

Ek A(xA,<) = E O i k A (x A ,0 + E B i k A (xA,0 · (3-73) 
Then the part of Wx due to the interaction between the two atoms is 

WAß = - ^ Σ « Α ( ω * ) [ Ε kA(*A,0-E B > k A (x A ,0 

+ E B | k À ( x A ) < ) E o k A ( x A > i ) ] . (3.74) 

This is the only part of Wx that will involve the distance r between the 
atoms. We have seen in Section 3.8 that E2 i (XA>*)> f°r instance, will 
contribute to the Lamb shift in atom A. 

Now actually the right side of (3.74) should be a vacuum expectation 
value involving field operators. Let us write the operator EQ ^ λ as E ^ + 
E V . where 

ο,Κλ 

* ? k > A . O = i ( ^ ) 1 / 2 « k A ( 0 ) e - * - (
e

< k X A e k A (3.75) 

and 

■=ii( .̂') = -.(^)'/i4A(0)e-"e-k"-etA 

are called the positive- and negative-frequency parts, respectively, of E u*. 

Since E^j^(x A ,*) l v a c ) = (v a c |E(~kA(xA,0 = 0, (3.74) is equivalent to 

WAB = - ^ « A ( ^ 0 [ ( E ^ ( x A , O E B ) k A ( X A , 0 ) 
\LX 

(3.76) 
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+ <ΕΒ*λ(*Α,<) · E^ A (x A ,<) )J (3.77) 

when a vacuum expectation value is taken. 
The field from atom B has the same form as the classical field of an 

electric dipole pß = £ B P B ( 0 > where as before μΒ is the unit vector in the 
direction of pß : 

1 r 
E B ( X A , 0 = -\PB - ( £ B · s)s]—pB(* - - ) + [3(μΒ · s)s - μΒ] 

c*r c 
χ ά ρ Β ( < - 7 ) + Λ ρ Β ( < - 7 ) ] · (3.78) 

r° c cr* c 
Here s is the unit vector pointing from atom B to atom A and now Εβ 
and PB are quantum-mechanical operators.12 The dipole moment ρβ has 
zero expectation value for an atom in a stationary state (the ground state 
in the situation of interest here), but this does not of course mean that the 
dipole moment of atom B is identically zero. Rather, this dipole moment 
fluctuates about zero mean due to the influence of the vacuum field at Xß: 

p B ( 0 = 5 > B ( " * ) [ Ε ^ λ ( χ β , * ) + Ε ^ λ ( χ Β , θ ] · (3-79) 
kx 

Since E ^ Jvac) = 0, only the negative-frequency (creation) part of 

E B ] ς λ (χβ, ί ) , determined by E ^ (xß, t ) , will contribute to the first term 
in brackets in (3.77). This is easily read off from (3.78) and (3.79): 

Ε & ( Χ Α . Ο = ^ ^ ( « ^ - " ' { [ β Ι , Λ - ί β ^ · . ) . ] ^ 

+ [3(ekÀ · s)s - e k J 

t ( ^ + ^ } Î k > > 0 , (3.80) 

where ^ A ( X B , 0 = ^χ ■ E ^ ( x B , * ) . Similarly, only E ^ A ( x A , t ) will 
contribute to the second term in brackets in (3.77). Then, using the fact 
that 

(ν&ε|α^(0)α[λ(0)|ναο) = 1, (3.81) 

we obtain from (3.77) the expression 

WAB = ν(Γ) = -^Κβ^2^^αΑ(ωί0)αΒ(ω^β-^βί^ 

kx 
12 See Chapter 4 for a discussion of the correspondence between classical and quantum 

solutions of the Maxwell equations. 



Van der Waals Forces 103 

(3.82) 

Note that this expression is symmetric in A and B, as it should be. 
Now as usual JZlcA ~* (^/^71"3) f dkk2 £^Λ / ^ Ω ^ , and the sum over 

polarizations plus the integration over solid angles about k are easily carried 
out, using the identity Σ λ ( ^ λ * s ) 2 — 1 ~ (k ' s)2> >vith k = k/fc: 

Ç / j H k « * - ' {[1 - (β1λ S ) ' ] i + [3(etA . ) ' - Dlj j lp + j j i j ] } 

= / « * . * - {ii+(£ . n± + [ i - 3(k ,η^,+(j^]} 
(3.83) 

This integral is easily performed by choosing the polar (z) axis to lie along 

-?- / άφ [ d0sineeixcose[(l + cos 2 0 ) - + ( l - 3 c o s 2 0 ) 
8π y0 y0 x 
> 1 i x, / s i n x isinx 

<(pï + - F ) ] = ( — - — + 
cos a: 2 sinx 3icosx 

3isinx 3cosx 3 s i n x \ , Λ Λ ,ν 
+ — *- + —)> (3·84) 

with x = kr. Then (3.82) gives 

V(r) = " Λ / ° ° ^ ω 6 α Α ( ω ) α Β ( ω ) ο ( — ) , (3.85) 
TTC JQ \ C / 

_, x sin2x 2cos2x 5sin2x 6cos2x 3sin2x 
G(*) = — + - P p p - + - p r - · (386 ) 

For small r the dominant contribution to V(r) comes from the last term 
in (3.86): 

Q+- roo 

= T / duaA(iu)a^{iu)e"2urlc 

7ΓΓ6 J0 

^ ' m p 

f°° due-2ur'c 

Χ7θ («a+ü*„)(«a+ «£.)' (3·87) 
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where we have used equation (3.51) for the polarizability of an atom in state 
n and assumed for simplicity that the two atoms are identical. The change 
in the path of integration implied by the second line of (3.87), where we 
replace an integral along the real axis by an integral along the imaginary 
axis plus a (vanishing) contribution along a large quarter-circle, assumes 
that we do not need to concern ourselves with poles of α(ω). This is in 
fact the case because, at a resonance frequency c j m n , the real part of the 
polarizability is found to vanish when the m «-► n transition linewidth 
is accounted for.13 If r —► 0, or more precisely if r < < c/|u>mn| for all 
transitions m +-» n, we may replace e~2urlc by 1 in (3.87), and this gives 
the r~6 form of the van der Waals potential derived by London. In fact 
if we assume furthermore that one particular transition m *-*· n makes a 
dominant contribution to (3.87), then 

V{r) = - ^ \M) J ' h («2+ω0
2)2 " ^ " ' (388) 

where ω0 and d are respectively the transition frequency and dipole matrix 
element of this transition and a = (2/37i)|d|2/u;0 is the static (ω = 0) 
polarizability of a ground-state atom in the two-state approximation in 
which the one transition is assumed to be dominant. This result is exactly 
that derived by London. 

However, the r~6 van der Waals potential does not apply in the "re-
tarded" regime of large interatomic separations. In a study of the stabil-
ity of certain (lyophobic) colloidal systems, Verwey and Overbeek (1948) 
found that the interatomic potential must fall off faster than r~6 at large 
distances in order for theory and experiment to be consistent. They sug-
gested that at large atomic separations — that is, at separations large 
compared with atomic transition wavelengths — the London theory must 
be modified to account for retardation. Such a modification was worked out 
by Casimir and Polder in 1948. They derived an expression equivalent to 
(3.85) and showed that, for large r, V(r) oc r~7. The simplest way to obtain 
the Casimir-Polder result is to argue that for distances large enough for 
retardation to be important, (3.85) may effectively be replaced by14 

V(r) S — ^ a A a B Γ du>u6G (—) , (3.89) 
7TC° JQ \ C / 

13See, for instance, P. W. Milonni and J. H. Eberly, Lasers, Chapter 3. 
14 This may be justified quantitatively by making the same change in the path of inte-

gration in (3.85) as in (3.87). Then it can be seen that the zero-frequency polarizability 
makes the dominant contribution for \u>mn\r/c > > 1, i.e., when retardation is important. 
This condition is roughly equivalent to r > > 137a0, where aQ is the Bohr radius. 
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-Xu · . 4 8 c ? 

e Xu sin 2u = —=-

where C*A, <*B a r e the static polarizabilities. The integral may be evaluated 
by introducing a cutoff function e~Àu;r/c, A > 0, and taking the limit λ —► 0 
after integrating. For instance, 

/ duo)6—. r-^r- — — I duu4 sin2u 
Jo (ur/c)2 r 7 J0 

c7 f°° 
—► -=■ lim / duu4e 

r7 A-.0 J0 

(3.90) 

We find in this limit, for large r, 

v<r> - -τ£ α Α α Β · ( 3 · 9 1 ) 

which is the Casimir-Polder result. 
In either the retarded (Casimir-Polder) or nonretarded (London) limit 

the van der Waals interaction may be regarded as a consequence of the 
fluctuating vacuum electromagnetic field. Our derivation leading to (3.82) 
shows that the van der Waals interaction results from the fact that 

{vacl^ixA.Oi^ixB.Oilvac) φ 0. (3.92) 

In other words, the van der Waals interaction results from correlations of 
the vacuum field over distances on the order of |XA — XB| = r. In more 
physical terms, the vacuum field induces fluctuating dipole moments in 
the two atoms, and the dipole-dipole interaction of these zero-mean but 
correlated moments is the van der Waals interaction. 

At the conclusion of their paper Casimir and Polder argued that the 
simple form of (3.91) might allow it to be derived "by more elementary 
considerations" than the perturbation-theoretic approach they employed 
and that "This would be desirable since it would also give a more physical 
background to our result, a result which in our opinion is rather remarkable. 
So far we have not been able to find such a simple argument." Not long 
thereafter Casimir (1949) gave a derivation based on the fluctuating zero-
point field, and the derivation given in this section follows closely the spirit 
of his insightful analysis.15 The following section is also based on Casimir's 
work. 

See also Boyer (1972,1980) and Renne (1971). 
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3.12 Force on an Atom near a Conducting 
Wall 

Casimir and Polder (1948) also considered a simpler problem in their study 
of long-range, retarded interactions; namely, the interaction between an 
atom and a perfectly conducting wall. For short distances d of the atom 
from the wall the attractive potential V(d) may be obtained from the 
dipole-dipoleole interaction of the atom with its image in the wall, and 
varies as d~3. For large d, however, V(d) falls off as d~A\ as in the case of 
the van der Waals force, the effect of retardation is to weaken the interaction 
by a factor oc d~l. 

Consider first an atom located at the point R = (L/2, L/2, d) inside the 
rectangular parallelepiped described by the mode functions (2.91)-(2.93). 
The energy (3.72) in this case is 

-§J>rM|AkA(R)|2 = 
kx 

— -j--V(2ifta;)[e? cos2 -kxLsin2 -fcyZ,sin2 kzd 

+ e?x sin2 --kxLeos2 -kvLsin2 kzd 

KXy 2 2 
+ e? sin2 - kx L sin2 — ky L cos2 kz d\ 

- - (nr)Ew*KeL,+eLF)sin2**d+eLJcoe2**<i. 
kx 

(3.93) 

where, as in the preceding section, we have replaced the polarizability α(ω) 
by the static polarizability α(ω) = a, arguing that only the value of α(ω) 
at ω = 0 contributes at large distances d of the atom from one of the 
(conducting) walls of the parallelepiped. In the last expression we have 
also replaced sin2 ^kyL, cos2 \kyL, etc. by their average value, 1/2. We 
now define the potential V(d) describing the interaction of the atom with a 
conducting wallas the difference between (3.93) for d finite and for d —► oo. 
In the latter limit we replace sin2 kzd, cos2 kzd by 1/2. Thus 

nd) = - ( ^ ) Σ « » [ 4 Λ . + 4 Λ , - 4 Λ . ] [ » 8 Μ - | ] 
v y kx 
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= (^)Ew*c o s 2 J f e^(2 J f c'A2) 

= ( ^ ) Γ dkk3 [ desm0cos2ecos(2kdcose) 

fahc\ f°° 3 / s in2W 2cos2ihi 2sin2ifc<A 

~ \~)Jo \~2kT+ 4k2d2 8*3<ί3 J · 
(3.94) 

Evaluating the integral using the procedure exemplified by (3.90), we obtain 
the Casimir-Polder result 

l ; 8π<ί4 

In Chapter 8 we discuss experimental evidence for the Casimir-Polder force. 

3.13 The Magnetic Moment of the Electron 

In order to explain the spectra of atoms in magnetic fields, Uhlenbeck 
and Goudsmit (1926) postulated that the electron has an intrinsic (spin) 
angular momentum h/2 and a magnetic dipole moment eh/2mc = μ0) the 
Bohr magneton. Both properties of the electron were later found by Dirac 
(1928) to be consequences of relativistically invariant quantum mechanics. 

Recall that a curent loop enclosing a plane area A has a magnetic dipole 
moment μ = IA/cy where / is the current. For a charge e moving in a 
circular orbit of radius r, μ — (nr2)(eu)/c = (e/2mc)L, where v and L are, 
respectively, the orbital frequency and angular momentum. Therefore the 
gyromagnetic ratio μ/L = e/2mc. For the electron magnetic dipole moment 
and spin angular momentum, however, / i , /L5 = /i0/(ft/2) = 2(e/2mc). 
That is, the Lande p-factor for electron spin is 2, as predicted by the Dirac 
theory without coupling of the electron to the radiation field. 

As in the case of the Lamb shift, radiative corrections give small depar-
tures from this prediction. Just prior to the first accurate measurements 
by Kusch et al. (see Kusch and Foley, 1948), Schwinger (1948) calculated 
for the "anomaly" (g — 2)/2 the value α/2π = .00116; the experimentalists 
reported a value .00119 ± .00005. 

(3.95) 
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And like the Lamb shift, the anomalous moment of the electron provides 
one of the most sensitive tests of QED. Recent experiments by Dehmelt et 
al.16 give a value of (g — 2)/2 more accurate than all previous measurements 
by a factor of nearly 1000: 

Ζ-γ^ = .001159652188(4) . (3.96) 

A QED calculation up to fourth order in the fine-structure constant a 
yields (Kinoshita, 1989) 

^ - ^ = .001159652192(74) . (3.97) 

Here the theoretical "error" is due mainly to the uncertainty in the fine-
structure constant. Such a comparison of theory and experiment explains 
the cliché that QED is "the best theory we have!" 

As in our discussion of the Lamb shift, we will focus our attention here 
on the nonrelativistic theory of the anomalous moment of the electron. 
state 

From the interaction Hamiltonian —(eh/2mc)a · B describing the cou-
pling of electron spin to a magnetic field B, and the commutation relations 
for the Pauli spin—1/2 operators <τχ,σν,σ2) we obtain the Heisenberg equa-
tion of motion 

^ = — B x σ (3.98) 
at mc 

for σ = (σχ,σν,σ2). If B = Ο,σ is constant in time. However, in QED B 
is an operator which, like E, has zero expectation value but non vanishing 
variance in the vacuum state of the field. Thus, for an electron in free space, 

f = £Σ(^Γ^(·>·-^-4»(·>^··-4*Ι 
x (k x e k J x σ(ί) , (3.99) 

where we have used equation (2.57). In writing this equation we are ignoring 
the part of the magnetic field that depends on σ. That is, we are including 
the effect of the vacuum B field, but not the radiation reaction B field. 

In the lowest order of approximation we use a(t) = 0"(O), the zero-
coupling solution, on the right side of (3.99). Then 

σ(,) « , ( „ ) - ; £ - | : (^)" î J - | a t A (0 )e - .V'" 

16 See Dehmelt (1990) and references therein, and Chapter 6, where the experiments 
are briefly described. 
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+ alx(°)eiWkte'ik rKk x eju) x *(») i (3.100) 

where in the second term we ignore a contribution from the artificial switch-
on at t = 0 of the interaction. Using the vacuum expectation values 

<α1α(°Η<λ'(°)> = (°[λ(°Η<λ'(°)> = ° and («kAeLv(°)> = 6k,k'6xx'' 
we obtain 

with Ασ = σ(ί) - σ(0). Now 

£ [ ( k x e k À ) x < r ( 0 ) ] 2 = ^ k K 0 ) e k A ) - e k A ( k ^ ( 0 ) ) ] 2 

λ λ 

= *25>(0).ek ; i)
2 + (k.,7(0))2£(l) 

λ λ 

= * V ( 0 ) - (k · <r(0))2 + 2(k · <r(0))2 

= * V ( 0 ) + (k · σ(0))2 , (3.102) 

and the integration over all solid angles about k of this expression is 

/ 
<ft}k[jfc2 + (k-<r(0))2] = 4 x * V ( 0 ) + ^ * V ( 0 ) = ^ - i f c V ( O ) . (3.103) 

3 w 3 

The replacement £ k -> (V/8ir3) f dkk2 / <ffik in (3.101) then yields 

(Δσ2) A~ / t. \ 2 

<«r»(0)) 3π \mcj J 3π \mc) 

when, in this nonrelativistic approach, we introduce an upper limit K in 
the integration over k = ω/c in order to avoid a divergence. 

In the absence of any coupling to the vacuum magnetic field, the electron 
spin has a fixed direction. Following Welton (1948), we define the mean-
square fluctuation angle 

r A g 2 v _ (Δσ2) 2a(hK\2 

V / - ( < r 2 ( 0 ) ) 3w\mcJ 

and consider the expectation value 

;<<r)Bext = -7^-|(<r)|Bextcos0 (3.106) 
2mc 2mc 

(3.101) 

(3.105) 
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of the potential energy of the spin in an external magnetic field, where Θ is 
the angle between σ and the direction of B e x t . The effect of the fluctuating 
vacuum B field is to replace cos Θ by 

(cos(0 + ΔΘ)) S cos Θ .-!,«>>]-«.[i-£(£)]. (,.!«> 
so that 

eh 
2mc 

or, in effect, 

This implies 

«•»---£i«iMi-cG=f)1· <3io8> 

(3.109) 

(3.110) 

to first order in a. 
The problem with this result is that it has the wrong sign: experiment 

shows that (g — 2)/2 is positive. We can rectify this situation starting 
from the observation that radiation reaction has been ignored. Although 
it turns out that radiation reaction does not affect the potential energy 
—(eh/2mc)a · B to first order in a, it does contribute to the electron mass 
at this order [Equation (3.33)]. Since we have left out radiation reaction in 
the calculation leading to (3.109), the mass in that expression must actually 
be the bare mass m0. What is measured experimentally, of course, involves 
the observed mass m = m0 + Sm. Therefore we should express (3.109) in 
terms of the observed mass. This is accomplished by the replacement 

eh 
2m0i 

_a_ fhK 
3π \ mc 

hK\2 eh 
2mc 

eh 
2mc 

eh 
2mc 

eh 
2mc 

(rn0 + 6m\ a (hK\ 
\ m0 J 3π \mcj 

I 3TT \ mc ) 

_a_ (HK\ 
3π \ mc J Zirmc2 

1 + 
4a (hl<\ a (hKY 
3π \ mc J 3π \ mc J 

(hKc) 

(3.111) 
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where we have used (3.33) with a cutoff E = HKc in the upper limit of 
integration. This implies 

2 3π \mc) 3π \mc) 

which is positive for any cutoff K < Amc/h. Thus the predicted anomaly 
in the nonrelativistic theory is positive for all cutoffs for which the nonrel-
ativistic theory is sensible. The choice K — 0A2mc/h yields (g — 2)/2 = 
α/2π, which is the relativistic QED result to first order in a (Grotch and 
Kazes, 1977). 

We conclude therefore that, as in spontaneous emission, both vacuum 
field fluctuations and radiation reaction are important for the anomalous 
magnetic moment of the electron (Grotch and Kazes, 1977; Dupont-Roc, 
Fabre, and Cohen-Tannoudji, 1978). 

However, the reader is warned not to take these calculations too seri-
ously, for the result (g — 2)/2 = α/2π could be obtained by retaining only 
the first (radiation reaction) term in (3.112) and choosing K = 3mc/8ft. 
It should also be noted that the solution K = 0A2mc/h of (3.112) with 
(g — 2)/2 = α/2π is not unique. 

3.14 Summary 

We have shown in this chapter how some basic QED effects may be under-
stood physically as consequences of the fluctuating vacuum electromagnetic 
field. These effects include such commonplace phenomena as spontaneous 
emission and van der Waals forces and also the Lamb shift and the anoma-
lous moment of the electron, which provide the most important tests of 
QED. Consideration of these vacuum effects leads us to the concept of 
renormalization as a means of obtaining finite results from otherwise infi-
nite quantitites. Vacuum fluctuations and renormalization are two of the 
most important features of modern physics. 

It is hoped that this chapter has convinced (or reminded) the reader 
that the vacuum — or the electromagnetic vacuum, at least — is a quantum 
state with observable physical consequences. 

These physical explanations of various QED vacuum effects have con-
siderable esthetic appeal and seem to offer compelling evidence for the "re-
ality" of vacuum field fluctuations. And yet the vacuum field fluctuations 
are not the only physical basis for understanding these phenomena. There 
is another basis — source fields — upon which we can construct physical 
interpretations of QED vacuum effects. This point is pursued further in 
the following chapters. 

(3.112) 
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