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Introduction to Electromagnetics
LEVEL 1

University calculators permitted only

Translation dictionaries are not permitted, but an English dictionary may be borrowed from the
invigilator on request.

Time allowed: xxxx hours
Answer the FOUR questions

Formulae Sheet given after the last question page.

Units
Henry H=kgm?2?s2 A2 ; Farads F=s*A?m2-kg!
Joule J=kg m®s?




Important: the student should be familiar with the calculation of capacitance of
parallel plates capacitor, spherical capacitor, cylindrical capacitor and
capacitors with different dielectrics inside.

In addition, he/she should be familiar with the calculation of inductances for
long solenoid, coaxial line, and toroidal coils among other structures.

The student should be also familiar with the electric and magnetic field
configuration inside and outside of capacitors and inductors mentioned above.
Students should be able:

-to calculate div and curl of a vector field in cartesian, cylindrical and spherical
coordinate system

- to calculate line integral for circles, straight lines and surface integrals on
planes, cylinders, spheres and other high symmetry surfaces.

- to calculate volume integrals for cylindrical, spherical and rectangular volume
pieces.

QI (covering chapter 3 of the Ulaby’s book)

(a) A vector field D = r3f (given in cylindrical coordinate system) exist in a region between
two concentric cylindrical surfaces defined by r=1 and r=2, with both cylinders extending
between z=0 to z=5. Verify Divergence theorem by evaluating the following:

(1) gﬁs D - dS in the surface S enclosing the volume between the two cylinders.

[10 marks]

@ fff, v- DdV over the volume V enclosed by the two cylinders.

[10 marks]

(b) Determine if the vector field A=
solenoidal, conservative, or both.

R . . . . .
= ( given in spherical coordinate system) is

[5 marks]

Suggested training: Example 3.11, exercise 3.14-3.17, problems 3.47 to 3.56. example
3.12, exercise 3.18, 3.19. and problems solved in lecture slides and scan notes.



Q1. (a) Solution
1)
/ D -ds = Finner + Fouter + Fbottom + Ftopy
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Therefore, [[D-ds = 150x.

(ii)
From the back cover, V-D = (1/r)(d/dr)(rr?) = 4r2. Therefore,

5 21 2 2r
S 2 _ 4\ |2
// V.Ddy_/zo/M [ arrdrdgdz = (((r )\ril) ¢_O>

(b) Solution, the field A is conservative as its curl is zero, please verify by using the curl
formula in spherical.
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= 1507.
z=0




Q2 (covering chapter 4 of Ulaby’s book)

The parallel plate capacitor shown in figure Q2 is formed by two perfect metal plates of area
A separated by a distance d, the space between the plates contains two adjacent dielectrics,
one with permittivity &; and area 4; and another with ¢; and 4,. An applied voltage V'
between the plates develops a charge +Q in the top plate and a charge -Q in the bottom plate.

(1) Derive an expression for the electric field in the dielectric. Hint: Make

reasonable approximations for the field and use Gauss’s law.
[9 marks]

(i1))  Derive an expression for the electrical potential V between the
plates as a function of Q, €1, €2, d, A1 and A2. Use the expression of the

electric field derived from (i).
[6 marks]

(iii))  Derive an expression for the capacitance as function of €1, €2, d, A; and
As.
[6 marks]

(iv)  Calculate the electrostatic energy inside the capacitor if V, €1, €2, d, Al
and A2 are equal to 2V, 10gy, 3¢9 Imm, 0.3cm? 0.5cm? respectively.

[4 marks]

d I & &2
-Q

Figure Q2. Parallel plate capacitor with two different dielectrics between the plates.

Suggested training:

Exercises and examples in the lecture notes (slides + Scan)
Problems from book

Capacitance: 4.55,4.56,4.57,4.58,4.60

Boundary Conditions D,E: 4.48,4.49,4.50, 4.51

Electrical potential: 4.32,4.36

Gauss’s Law 4.23, 4.24, 4.25, 4.26, 4.27, 4.28, 4.29.



Q3 (covering chapter 5 of Ulaby’s book)

1. A solenoid (Figure Q3.1) of length ¢ and circular cross section A has a core of
non-conductive material of permeability p. A current / flows through the winding
as indicated in figure Q3.1. Assume that the length ¢ of the solenoid is much
longer than the radius and that the number of turns is V.

(1) Derive an expression of the magnetic field B inside the solenoid as a
function of the current / and N. Use Ampere’s law and reasonable
arguments to simplify the expression of the H field.

[5 marks]

(i1) Calculate the flux of B, ® = f B-dS through a cross section of the core
S

through a rectangular area shown in Figure Q3.
[10 marks]

(i)  Derive an expression for the inductance L as a function of A4, c and p.
[5 marks]
(iv)  Calculate the magnetic energy stored inside the solenoid if 7, 4, ¢, N and p are

equal to 14, 2cm?, 100cm, 100 and 3 uy respectively.

[5 marks]

[ I I
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Figure Q3.1 Solenoid with core of permeability u, area 4 and N turns. The arrows
indicate the current direction.

Suggested training to similar questions (chapter 5):
Problems from book



Ampere’s law: 5.21, 5.22, 5.23.
Boundary conditions H, B: 5.32, 5.33
Inductance and magnetic energy: 5.35,5.36,5.37,5.38, 5.39, 5.40

Q4 (covering chapter 5 of Ulaby’s book)

(a) In a non-conducting medium with € = 2g9 and p =3 po, the electric field intensity of an
electromagnetic wave is given by: E(z,t) = E, sin(wt — kz —m) X

(i) Determine the magnetic flux B (z,t). Hint: convert E to phasor notation and then use
the appropriate phasor equation given in the formulae sheet to find B
[15 marks]
(i)  Express k (wavenumber) as a function of @ and c (the speed of light).
[5 marks]

(i))  Sketch the diagram of the plane polarized electromagnetic wave of (i) at =0 and
indicate the direction of propagation. Show the electric and magnetic field direction.

[5 marks]
Q4 (extra question)

The electric field radiated by a short dipole antenna is given in spherical coordinates by:
E(r6,t) = E"Ln(e)sin(wt —2nR) 6

(i)  Determine the magnetic field H (R, 8,t). Hint: convert E to phasor notation and then
use the appropriate phasor equation given in the formulae sheet to find B.
[20 marks]
(i))  Sketch the electrical and magnetic field of this electromagnetic wave.
[5 marks]

Suggested training to this type of question (chapter 6):

Exercises and examples in the lecture notes (slides + Scan)
Problems from book

Faraday’s Law: 6.1, 6.2, 6.3,6.4,6.5, 6.8, 6.9, 6.10
Displacement current: 6.15, 6.16

Electromagnetic potential: 6.23,6.24, 6.25, 6.26, 6.27, 6.28



Other type of exam questions
Q2 Electrostatic

The figure Q2 shows three charged metal spheres. The charges in each of them is given in
units of Q, Q is assumed positive.

(1) Sketch the electric field E around the charges. Indicate where are the sources or sink of
electric field, or where the divergence of the electric field is positive, negative or zero.

+4Q

® °
@

-3Q

Figure Q2. Three charges in the plane. The magnitude of the charges is given in units of Q.
(Q is a positive value).

Solution: The divergence of E is positive in the surface of the positive charges, negative in
the surface of the negative charge and zero in free space where there are no charges.
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Figure Q2 with the sketch of the field



Q2. Electrostatic

Exercise 4.9: A spherical volume of radius a contains a uniform volume charge density py
. Use Gauss’s law to determine the vector D for (a) R<a and (b) R>a.

In the figures that follows, the dashed circles are the chosen Gaussian spheres to calculate D
for (a) and (b)



Solution:

()

ForR <a,

Q within a sphere of radius R is

Hence,

(b)

Q2. Electrostatic

7£D~ds = jéD, ds = D,(47R?)
S S

0= i7rR3
g 3 pV




Exercise 4.8 A thin spherical shell of radius a carries a uniform surface charge density ps. Use Gauss’s law to determine E.

Solution:

~
SN e ==

7§D-ds:Q

Symmetry suggests that D is radial in direction. Hence,

D = RDg
ds =R ds
%D«ds: %DRdS:DR(MrRZ):Q
N N
Y
Dp=-——
R 4nr2

e For a Gaussian surface of radius R; < a, no charge is enclosed. Hence, Q = 0, in which case E = 0.

e For a Gaussian surface of radius R, > a,

0 = ps(4na®)
and N N 5 5
D R R L4 -
E———-D,— QZZR ﬂpsazszsaz'
€ 4mER; 4mER; ER;



Q3. Magnetostatic

(a) For each of the following contours denoted by C1, C2 , C3, C4 evaluate the gﬁc H-di

using Ampere’s law, ® represents a current going into the page, consequently © represents
going out of the page. The magnitude of the current is indicated in units of / close to the
corresponding current. Note that the sign (+ or -) of the answer depends on the orientation of
the contour. Hint: use the hand right rule.

C2

Figure Q3.1 Contours C1, C2, C3 and C4 enclosing currents entering and leaving the page.
Solution: CI1: .-(5/4)I; C2: -I(1/2+1/4+2-1-1/3), C3:0, C4:1(1-1/3)

(b) The infinite straight wire perpendicular to the page shown carries a current / pointing out
of the page.

(1) Sketch the magnetic field H in the vicinity of the wire.

(i1) Derive an expression for the magnetic field H as a function of the distance r from the wire
and the current / in the wire. Hint: make reasonable approximation for the field and use
Ampere’s law. Solution in the lecture notes and scan



Solution (i)

bd ~
e N
e A Y
7 N
7 \
’ \
’ \
’ ( \
’ - T~ \
/’ \\ \
/ ) N
/ , N \
1 Vi \ \
1 ’ \
1 ; \
1 1 \
1 I 1
1
l' !
1
1
\ 1
\\ , ,
\ \ / I}
N /

\ N ’ /
\ N _’ ’
\ ~o ~ ’

\ ~ = ’

\ ’

N 4
N 7/

N 4
~ 7

H field is tangent to the circles with centre in the wire and follows the right-hand rule.

Q3. Example 5.3 Magnetic field of a long wire.

A long (practically infinite) straight wire of radius a carries a steady current / that is
uniformly distributed over its cross section. Determine the magnetic field H a distance  from
the wire axis for (i) r<a (inside the wire) and (ii) r>a (outside the wire)

Solution: in the lectures slides.



Q4 this question is very similar that the extra question Q4

6.26 The electric field radiated by a short dipole antenna is given in spherical
coordinates by

E(R,0;t) =

A 2x1072
0 ><Tsine cos(6m x 108 —27xR)  (V/m).

Find H(R, 6;1).

Solution: Converting to phasor form, the electric field is given by

= A ~2x 1072
E(R,0)=08E, = e% sin@exp— 2R (V/m),

which can be used with Eq. (6.87) to find the magnetic field:

= 1 = A 1 8E9 ~1 0
H(R, )= —VXE = R — — (RE
(R.6) —jou 8 —jou | Rsin@® J¢ Jr(I’R 8R( o)
1 .2x1072 0
= —ion ¢ XR sin 6 3R (exp—j2mR)
. 21 2% 1072
_ 0 exD— 2R
O I xdnx 107 R Snoexp—jm

~ 53
=0 = sin @ exp —j2nR (LA/m).

Converting back to instantaneous value, this is

H(R,0:1) =6 % sin @ cos (67 x 10 — 27R) (LA/m).



END OF QUESTIONS

Formulae Sheet

FUNDAMENTAL PHYSICAL CONSTANTS

CONSTANT SYMBOL VALUE
speed of light in vacuum c 2.998 x 108 ~ 3 x 108 m/s
gravitational constant G 6.67 x 10~ N-m?/kg?
Boltzmann’s constant K 1.38 x 10723 J/K
elementary charge e 1.60 x 1071 C
permittivity of free space &0 8.85 x 10712 ~ =L x 107 F/m
permeability of free space no 47 x 1077 H/m
electron mass Me 9.11 x 1073 kg
proton mass mp 1.67 x 10727 kg
Planck’s constant h 6.63 x 10734 J.s
intrinsic impedance of free space 10 376.7 ~ 1207 2




Gradient of a scalar field V in Cartesian coordinates:

VV=§K£+§K§+QK2
ox dy 0z

The Laplacian V? of a scalar quantity V is given in Cartesian coordinates by:

0V 'V 9V
= + +

VvV
xt oy’ 97

For a vector field A in Cartesian coordinates, given in component form as:
A= AyX + A,y + A,Z we have the following expressions for the divergence and the curl:

- 0A
V-A=%+_y+a_Az
ox dy 0z

= (0A, 0A\. (0A, 0A\. (0A, 09A ),
VxA=|—-——2|x+]| —- 2 y+ Y _ x |2
dy 0z dz  ox ox dy

The Laplacian V2 of a vector field A is given in Cartesian coordinates by:

- QA . PA . A
V2A=af§‘x+ Ly+—12
0x ay 0z

(4) Vector calculus identity for a vector field A

Vx (VxA)=v(V-4) - V24



Gradient of a scalar field V in cylindrical coordinates:

vw=Y5, lﬂ(ﬁ +—7
ar rag 0z

For a vector field A in cylindrical coordinates, given in component form as:
A= AF+A ¢q3 +A_Z , we have the following expressions for the divergence and the curl:

- 6 0A
VA-——(A) A+
ror 8¢ 0z
- (10A. 0A,). [0A 0A 1 04,
VxA=|-—2-—L|py| "= ¢ -
ragp 0z dz  dr r 8¢
z=1z] plane -
P .-
A ez
NN LA P=(ry, b1, 21)
. ds, = ir dr do i s
dsg = b dr dz Wik
dv =rdrdo dz |/ _: NS
dz (]5 r=r; cylinder o : i ¥
dS,~:f'l”d¢dZ 1 'tz :
A‘P \—— & =) plane
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¢
,
X
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Fig. 1. Differential areas and volume in

cylindrical coordinates.

Fig. 2. Coordinate unit vectors in cylindrical.
Coordinate system. Surfaces, in which one of the
coordinates is constant, are also shown.



Gradient of a scalar field V in spherical coordinates:

VV=ﬂIA3+lgé+ ! ﬂA
oR R 06 Rsinf d¢

For a vector field A in spherical coordinates, given in component form as:
A= ARI% + Aeé +A ¢q3 , we have the following expressions for the divergence and the curl:

- 0A
V-A=L21(R2AR)+41(Agsin6)+ 1 —
R OR Rsin6 00 Rsin® d¢
.1 /8, 94\ . 1( 1 94z @ _
VA= g (5 (hesind) = 55) R+ 7 <—sm9 3% oR (RA¢)> 0
LI VI
+R<6R( 2 ae)qb

R sin 0 do

dV =R2sin  dR db dop i
X ~——~P=(Ry, 01, 1)
0=0,

dR conical
R X surface

N ’/

/
(A

Fig. 2. Coordinate unit vectors in spherical

Fig. 1. Spherical coordinate system showing
coordinates

line and volume elements



Table 3-1: Summary of vector relations.

Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X, v, 2 rg.z R.0,¢

Vector representation A =

RAx +FAy +24,

PA; +0Ay + 1A,

RAR +6045 + 64,

Magnitude of A |A| = A% + A3 + A2 +/A%+A3,+A§ +/A%3+A3+Ai
—_ .
Position vector OP; = Xx] + ¥y + 271, try + 27y, RRy,
for P = (x1,y1,21) for P = (r1, ¢1, 21) for P = (R1,61,¢1)
Base vectors properties Rek=§-§=2-2=1| i-P=¢-¢=02-2=1 R-R=60-6=¢-0=1
X §y=§-2=2-8=0 | i-¢=¢-2=2-F=0 R6=06-¢=0¢-R=0
Ixy=1 ixp=12 Rx6=9
¥xz=% dxz="# Oxd=R
ixk=§ ixi=¢ OxR=6
Dot product A-B= AxBy +AyBy +A;B, | ArBr +ApBy + AzB; ARBR + ApBg + Ay By
SO S R 6 ¢
Cross product A x B = Ay Ay Az Ar Ay Az AR Ap Ay
By By B; B, By By Br By By

Differential length dl =

Xdx+¥dy+1idz

fdr+6rdp+idz

RdR +OR do +§Rsinb do

Differential surface areas dsy =Xdydz dsy =trd¢ dz dsp = RR?sin 0 db d¢
dsy =Y dx dz dsy =¢ drdz dsg =ORsin6 dR d¢
ds; =7dx dy ds; =12r dr d¢ dsgy = oi)R dR db

Differential volume dV = dxdy dz rdrd¢dz R%sin® dR do do




Table 3-2: Coordinate transformation relations.

Transformation Coordinate Variables Unit Vectors Vector Components
Cartesian to r= yx2+y?2 I =Xcos¢ + ¥sing Ayr = Ay cos¢ + Aysing
cylindrical ¢ =tan~!(y/x) ¢ = —Xsing + Jcos¢ Ap = —Ayxsing + Ay cos¢
zZ=Z i=1 AZ = Az
Cylindrical to X =rcos¢ X =Tcos¢p — 43 sin ¢ Ay = Arcos¢ — Ag sing
Cartesian y=rsing ¥ =rsing +dcose Ay = Apsing + Ag cos
z=1z i=1 Ay = A,
Cartesian to R= Yx2+y2+22 R = Xsin# cos ¢ AR = Axsinf cos ¢
spherical + ¥siné sing + Zcos f + Aysinfsing + A cos6
0 =tan~ [ F/x2 + y2/z] | @ = kcosf cosp Ap = Ay cosBcosd
+ ¥ cos@sing — Zsinf + Ay cos@sing — A, sind
¢ = tan~!(y/x) & = —Xsing + ycos¢ Ap = —Aysing + Ay cos¢
Spherical to x = Rsinfcos¢ % = Rsiné cos ¢ Ay = Apsinfcos ¢
Cartesian +0cosfcosp — 6 sin ¢ + Agcosfcosp — Ay sing
y = Rsinfsin¢g ¥ = Rsinfsin ¢ Ay = Agsinfsing
+Ocosesin¢+$cos¢ + Ag cosfsing + Ag cos
z = Rcosé Z=Rcosf —0Osind Az = Apcosf — Agsinf
Cylindrical to R= Vr2+22 R = fsin@ + Zcos 6 AR = Aysinf + A, cosf
spherical 0 =tan~!(r/2) 0 =tcosd —Zsind Ag =A,cosf — A,sinf
p=¢ o=¢ Ap = Ay
Spherical to r = Rsin® i = Rsind +6cosd Ar = Agsinf + Agcosf
cylindrical ¢=q 6 =¢ Ay = Ay
7z = Rcosé 7Z=RcosH —0sinb Az = Apcosf — Agsiné

Divergence Theorem converts the integration over a volume to one over the surface
enclosing that volume and vice versa.

f(v-ﬁ)w:i E-dS

4
Stokes’s theorem converts the surface integral of the curl of a vector field on an open surface

S, into a line integral of the vector field along the contour C bordering the surface S.

f(wﬁ)-d—sef B-di
5 C

Maxwell’s Equations (point form)
V-D= P

Maxwell’s Equations (integral Form)



fB dS =0
S
§ - <i+65> PR
c s ot
With
5 of
B — uif

In vacuum: € = ¢y and u = Y,

Boundary conditions for E and D at the surface between two dielectrics:
Dy, — D,, = ps where pg is the free surface charge (excluding polarization charges)
Eir = Err

Boundary conditions for B and H at the surface between two magnetic materials:

Hyr — Hyr = J¢ where Js is the free surface current (excluding magnetizing currents)
Bln = BZn
The electrical potential difference between a and b is given by:

Vap =Vo—Vp=—[E-dl

Resistance



Capacitance
_Q_ L EdS
Ve[ Eal
Energy stored in a capacitor
1
VVe = E C V2
Energy stored in inductor
1
Wy = 5 LI?
Inductance L,
L= A
1

Where A is the magnetic flux linkage and / the current.

Euler’s identity
e/t = cos(wt) + j sin(wt)
A vector A(z,t) = B(z) cos(wt + ¢(z)) can be written in phasor notation as:

A(z,t) = real(b(z) e/*?)

where B(z) = b(2)e/?® is the phasor, ¢(z) is a function of z and b(z) a real vector.

Maxwell’s equations for phasors
VxH=jweE

VX E=—jouH

Speed of light as a function of permeability £ and permittivity €o of the vacuum



1

v Ho€o

Derivatives and Integrals ( all the integrals are defined up to an additive constant)

CcC =

—x" = nx(@D

dx
asin(x) = cos(x)
%cos(x) = —sin (x)

sin(x) dx = —cos (x)
fcos (x)dx = sin(x)
f cos(x) sin(x) dx = (sm;—x))z

fldx = In (x)
Zdx =

Area and volume of sphere

3
A = 4dmr? V="
Sine and cosine table angles
X 0 /6 /4 /3 /2 T 3n/2 2n
sin(x) | 0 172 /\2 [V3/2 |1 0 -1 0
cos(x) | 1 \N3/2 | 1/N2 |12 0 -1 0 1

sin(x) = cos (x — %)






