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University calculators permitted only 
 
Translation dictionaries are not permitted, but an English dictionary may be borrowed from the 
invigilator on request. 
 
 
Time allowed:  xxxx hours 
    Answer the FOUR questions 

 
Formulae Sheet given after the last question page.    

  
   

 
   

Units     
              Henry H= kg m 2 s -2 A -2  ;           Farads  F= s4⋅A2⋅m−2⋅kg−1 

Joule     J=kg m2 s-2 
 
 

 
 
 
 
 
 
 
 



 
 

Important: the student should be familiar with the calculation of capacitance of 
parallel plates capacitor, spherical capacitor, cylindrical capacitor and 
capacitors with different dielectrics inside. 
 In addition, he/she should be familiar with the calculation of inductances for 
long solenoid, coaxial line, and toroidal coils among other structures.  
The student should be also familiar with the electric and magnetic field 
configuration inside and outside of capacitors and inductors mentioned above.  
Students should be able: 
-to calculate div and curl of a vector field in cartesian, cylindrical and spherical 
coordinate system 
- to calculate line integral for circles, straight lines and surface integrals on 
planes, cylinders, spheres and other high symmetry surfaces.  
- to calculate volume integrals for cylindrical, spherical and rectangular volume 
pieces. 
 
 
 
Q1 (covering chapter 3 of the Ulaby’s book) 
 
(a) A vector field 𝐷##⃗ = 𝑟!𝑟̂	 (given in cylindrical coordinate system) exist in a region between 
two concentric cylindrical surfaces defined by r=1 and r=2, with both cylinders extending 
between z=0 to z=5. Verify Divergence theorem by evaluating the following: 

 
    (i)  ∮ 𝐷##⃗ ∙ 𝑑𝑆" 		in the surface S enclosing the volume between the two cylinders.  

  
                                                                                                                 [10 marks] 
 
    (ii)  ∭ ∇ ∙ 𝐷##⃗ 𝑑𝑉#    over the volume V enclosed by the two cylinders. 

 
 

 [10 marks] 
 

 
   

   (b) Determine if the vector field   𝐴 = $%

$
   ( given in spherical coordinate system) is 

solenoidal, conservative, or both.    
 

                                [5 marks] 
 
 
 
 
Suggested training: Example 3.11, exercise 3.14-3.17, problems 3.47 to 3.56. example 
3.12, exercise 3.18, 3.19. and problems solved in lecture slides and scan notes. 
 
 



 
 
 
 
Q1. (a)  Solution 
 
(i) 
 

 
 
(ii) 

 
 
(b) Solution, the field A is conservative as its curl is zero, please verify by using the curl 
formula in spherical.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.48 A vector field D = r̂r3 exists in the region between two concentric cylindrical
surfaces defined by r = 1 and r = 2, with both cylinders extending between z = 0 and
z = 5. Verify the divergence theorem by evaluating:

(a) !

∫

S
D ·ds,

(b)

∫

V

∇ ·D dV .

Solution:

(a)

∫∫
!D ·d!s = Finner + Fouter + Fbottom + Ftop,

Finner =
∫ 2π

φ=0

∫ 5

z=0

((
r̂r3
)
· (−r̂r dz dφ)

)∣∣
r=1

=
∫ 2π

φ=0

∫ 5

z=0

(
−r4 dz dφ

)∣∣
r=1

= −10π,

Fouter =
∫ 2π

φ=0

∫ 5

z=0

((
r̂r3
)
· (r̂r dz dφ)

)∣∣
r=2

=
∫ 2π

φ=0

∫ 5

z=0

(
r4 dz dφ

)∣∣
r=2

= 160π,

Fbottom =
∫ 2

r=1

∫ 2π

φ=0

((
r̂r3
)
· (−ẑr dφ dr)

)∣∣
z=0

= 0,

Ftop =
∫ 2

r=1

∫ 2π

φ=0

((
r̂r3
)
· (ẑr dφ dr)

)∣∣
z=5

= 0.

Therefore,
∫∫

!D ·d!s = 150π .
(b) From the back cover, ∇·!D = (1/r)(∂/∂ r)(rr3) = 4r2. Therefore,

∫∫∫
∇·!D dV =

∫ 5

z=0

∫ 2π

φ=0

∫ 2

r=1
4r2r dr dφ dz =

(((
r4
)∣∣2

r=1

)∣∣∣
2π

φ=0

)∣∣∣∣
5

z=0

= 150π.
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)∣∣
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)∣∣
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)∣∣
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)∣∣
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)∣∣
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)∣∣
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)∣∣∣∣
5

z=0

= 150π.



 
 
 
Q2 (covering chapter 4 of Ulaby’s book) 

 
The parallel plate capacitor shown in figure Q2 is formed by two perfect metal plates of area 
A separated by a distance d, the space between the plates contains two adjacent dielectrics, 
one with permittivity ε1 and area A1 and another with  ε2 and A2. An applied voltage V 
between the plates develops a charge +Q in the top plate and a charge -Q in the bottom plate.  

 
(i) Derive an expression for the electric field in the dielectric. Hint: Make 

reasonable approximations for the field and use Gauss’s law.  
[9 marks] 

 
(ii) Derive an expression for the electrical potential V between the      

                              plates as a function of Q, ε1, ε2, d, A1 and A2. Use the expression of the  
                              electric field derived from (i). 

[6 marks] 
 

(iii) Derive an expression for the capacitance as function of ε1, ε2, d, A1 and 
A2. 

[6 marks] 
 

(iv) Calculate the electrostatic energy inside the capacitor if V, ε1, ε2, d, A1 
and A2 are equal to 2V, 10ε0, 3ε0 1mm, 0.3cm2 0.5cm2   respectively. 

 
                             [4 marks] 

  
 

 
 
Figure Q2. Parallel plate capacitor with two different dielectrics between the plates. 

 
 
 
Suggested training: 
Exercises and examples in the lecture notes (slides + Scan) 
Problems from book 
Capacitance: 4.55,4.56,4.57,4.58,4.60 
Boundary Conditions D,E: 4.48,4.49,4.50, 4.51 
Electrical potential: 4.32,4.36 
Gauss’s Law 4.23, 4.24, 4.25, 4.26, 4.27, 4.28, 4.29. 

d
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Q3 (covering chapter 5 of Ulaby’s book) 

 
1. A solenoid (Figure Q3.1) of length c and circular cross section A has a core of 

non-conductive material of permeability µ.  A current I flows through the winding 
as indicated in figure Q3.1. Assume that the length c of the solenoid is much 
longer than the radius and that the number of turns is N. 

 
(i) Derive an expression of the magnetic field B inside the solenoid as a 

function of the current I and N.  Use Ampere’s law and reasonable 
arguments to simplify the expression of the H field.  

[5 marks] 
(ii) Calculate the flux of B,   through a cross section of the core 

through a rectangular area shown in Figure Q3.  
           [10 marks] 

 
(iii) Derive an expression for the inductance L as a function of   A, c and µ. 

           
           
                                                                              [5 marks] 

(iv) Calculate the magnetic energy stored inside the solenoid if I, A, c, N and µ are 
equal to 1A, 2cm2, 100cm, 100 and 3µ0 respectively. 

 
[5 marks] 

 

 
 
 
Figure Q3.1 Solenoid with core of permeability µ, area A and N turns. The arrows 

indicate the current direction.   
 
Suggested training to similar questions (chapter 5): 
Problems from book 

Φ =
!
B ⋅d
!
S

S
∫

I I

!

A

c



Ampere’s law: 5.21, 5.22, 5.23. 
Boundary conditions H, B: 5.32, 5.33 
Inductance and magnetic energy: 5.35,5.36,5.37,5.38, 5.39, 5.40 
 
 

 
 
Q4 (covering chapter 5 of  Ulaby’s book)  

  
 

 (a) In a non-conducting medium with e = 2e0 and µ =3 µ0, the electric field intensity of an 
electromagnetic wave is given by: 𝐸#⃗ (𝑧, 𝑡) = 𝐸& sin(𝜔𝑡 − 𝑘𝑧 − 𝜋) 𝑥? 
 
(i) Determine the magnetic flux 𝐵#⃗ (𝑧, 𝑡). Hint: convert E to phasor notation and then use 

the appropriate phasor equation given in the formulae sheet to find B 
                  [15 marks] 

(ii)       Express k (wavenumber) as a function of w and c (the speed of light). 
[5 marks] 

 
(ii) Sketch the diagram of the plane polarized electromagnetic wave of (i) at t=0 and 

indicate the direction of propagation.  Show the electric and magnetic field direction.                                                                                                                        
 

                                                                                                                                  [5 marks]  
 
Q4 (extra question) 
 

The electric field radiated by a short dipole antenna is given in spherical coordinates by:  
𝐸#⃗ (𝑟, 𝜃, 𝑡) = '!()*(,)

$
sin(𝜔𝑡 − 2𝜋𝑅) 𝜃D 

 
(iii) Determine the magnetic field  𝐻##⃗ (𝑅, 𝜃, 𝑡). Hint: convert E to phasor notation and then 

use the appropriate phasor equation given in the formulae sheet to find B.   
                  [20 marks] 

(ii)       Sketch the electrical and magnetic field of this electromagnetic wave. 
[5 marks] 

 
 
 
 
Suggested training to this type of question (chapter 6): 
 
Exercises and examples in the lecture notes (slides + Scan) 
Problems from book 
Faraday’s Law: 6.1, 6.2, 6.3,6.4,6.5, 6.8, 6.9, 6.10 
Displacement current: 6.15, 6.16 
Electromagnetic potential: 6.23,6.24, 6.25, 6.26, 6.27, 6.28  
 

   
 

 
 
 



 
 
 
 
 
 
 

Other type of exam questions 
 
Q2 Electrostatic 
 
The figure Q2 shows three charged metal spheres. The charges in each of them is given in 
units of Q, Q is assumed positive.  
(i) Sketch the electric field E around the charges. Indicate where are the sources or sink of 
electric field, or where the divergence of the electric field is positive, negative or zero. 
 

 
Figure Q2. Three charges in the plane. The magnitude of the charges is given in units of Q. 
(Q is a positive value). 
Solution:  The divergence of E is positive in the surface of the positive charges, negative in 
the surface of the negative charge and zero in free space where there are no charges.  
  

 
 
Figure Q2 with the sketch of the field 
 

+Q
+4Q

-3Q

-3Q

+4Q
+Q



 
 
 
 
 
 
 
 
 
 
Q2. Electrostatic 
 
Exercise 4.9: A spherical volume of radius a contains a uniform volume charge density 𝜌# 
. Use Gauss’s law to determine the vector  D  for (a) R<a and (b) R>a. 
 
In the figures that follows, the dashed circles are the chosen Gaussian spheres to calculate D 
for (a) and (b) 



 
 
 
 
 
 
Q2. Electrostatic 
 

Exercise 4.9 A spherical volume of radius a contains a uniform volume charge density rv. Use Gauss’s law to determine
D for (a) R a and (b) R� a.

Solution:

(a)

a

R

R < a

a

R

R < a

For R a,
n

Z

S
D ·ds = n

Z

S
Dr ds = Dr(4pR2)

Q within a sphere of radius R is

Q =
4
3

pR3rv

Hence,

4pR2DR =
4
3

pR3rv

Dr =
rvR

3
, D = R̂Dr = R̂

rvR
3

, R a.

(b)

R > a

a

R

R > a

a

R

Fawwaz T. Ulaby and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c�2015 Prentice Hall



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Exercise 4.8 A thin spherical shell of radius a carries a uniform surface charge density rs. Use Gauss’s law to determine E.

Solution:

R1

a

R2

R1

a

R2

ρs

n
Z

S
D ·ds = Q

Symmetry suggests that D is radial in direction. Hence,

D = R̂DR

ds = R̂ ds

n
Z

S
D ·ds = n

Z

S
DR ds = DR(4pR2) = Q

DR =
Q

4pR2

• For a Gaussian surface of radius R1 < a, no charge is enclosed. Hence, Q = 0, in which case E = 0.

• For a Gaussian surface of radius R2 > a,
Q = rs(4pa2)

and

E =
D

e
=

R̂

e
Dr =

R̂Q
4peR2

2
= R̂

4prsa2

4peR2
2

= R̂
rsa2

eR2
2

.

Fawwaz T. Ulaby and Umberto Ravaioli, Fundamentals of Applied Electromagnetics c�2015 Prentice Hall



Q3. Magnetostatic 
 
(a) For each of the following contours denoted by C1, C2 , C3, C4 evaluate the ∮ 𝐻##⃗ ∙ 𝑑𝑙###⃗.  
using Ampere’s law, Ä represents a current going into the page, consequently ⨀ represents 
going out of the page. The magnitude of the current is indicated in units of I close to the 
corresponding current. Note that the sign (+ or -) of the answer depends on the orientation of 
the contour. Hint: use the hand right rule. 
 

Figure Q3.1 Contours C1, C2, C3 and C4 enclosing currents entering and leaving the page. 
 
Solution: C1: .-(5/4)I; C2: -I(1/2+1/4+2-1-1/3), C3:0, C4:I(1-1/3) 
 
(b) The infinite straight wire perpendicular to the page shown carries a current I pointing out 
of the page. 
 
(i) Sketch the magnetic field 𝐻##⃗  in the vicinity of the wire. 
 
(ii) Derive an expression for the magnetic field 𝐻##⃗  as a function of the distance r from the wire 
and the current I in the wire. Hint: make reasonable approximation for the field and use 
Ampere’s law. Solution in the lecture notes and scan  
 
 
 
 
 
 
 
 
 
 

⨀

⨀

⨀
⨀

⨂

⨂

⨂I/2

2I

I/3I/4

C1 I

C2

I

C3

2I

⨀

C4

I



 
 
 
Solution (i) 
 

 
 
H field is tangent to the circles with centre in the wire and follows the right-hand rule. 
 
Q3. Example 5.3 Magnetic field of a long wire. 
A long (practically infinite) straight  wire of radius a carries a steady current I that is 
uniformly distributed over its cross section. Determine the magnetic field H a distance r from 
the wire axis for (i) r<a (inside the wire) and (ii) r>a (outside the wire) 
 
Solution: in the lectures slides. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

⨀



 
 
 
 
 
 
 
Q4 this question is very similar that the extra question Q4 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.26 The electric field radiated by a short dipole antenna is given in spherical
coordinates by

E(R,θ ; t) =

θ̂θθ
2×10−2

R
sinθ cos(6π ×108t −2πR) (V/m).

Find H(R,θ ; t).

Solution: Converting to phasor form, the electric field is given by

!̃E (R,θ) = θ̂θθEθ = θ̂θθ
2×10−2

R
sin θ exp− j2πR (V/m),

which can be used with Eq. (6.87) to find the magnetic field:

!̃H (R,θ) =
1

− jωµ
∇×!̃E =

1

− jωµ

[
R̂

1

Rsinθ

∂Eθ

∂φ
+ φ̂φφ

1

R

∂

∂R
(REθ)

]

=
1

− jωµ
φ̂φφ

2×10−2

R
sinθ

∂

∂R
(exp− j2πR)

= φ̂φφ
2π

6π ×108 ×4π ×10−7

2×10−2

R
sin θ exp− j2πR

= φ̂φφ
53

R
sinθ exp− j2πR (µA/m).

Converting back to instantaneous value, this is

!H (R,θ ; t) = φ̂φφ
53

R
sinθ cos

(
6π ×108t −2πR

)
(µA/m).



 
END OF QUESTIONS       

 
 

 
 
 

Formulae Sheet 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

F U N D A M E NT A L P HY S I C A L C O N ST A NT S
CONSTANT SYMBOL VALUE

speed of light in vacuum c 2.998 × 108 " 3 × 108 m/s

gravitational constant G 6.67 × 10−11 N·m2/kg2

Boltzmann’s constant K 1.38 × 10−23 J/K

elementary charge e 1.60 × 10−19 C

permittivity of free space ε0 8.85 × 10−12 " 1
36π × 10−9 F/m

permeability of free space µ0 4π × 10−7 H/m

electron mass me 9.11 × 10−31 kg

proton mass mp 1.67 × 10−27 kg

Planck’s constant h 6.63 × 10−34 J·s

intrinsic impedance of free space η0 376.7 " 120π $

M A XW E L L ’S E Q U AT I O N S

Gauss’s law ∇ · D = ρv

Faraday’s law ∇ ××× E = −∂B
∂t

Gauss’s law for magnetism ∇ · B = 0

Ampère’s law ∇ ××× H = J + ∂D
∂t

M U LT I P L E & S U B M U LT I P L E P R E F I X E S
PREFIX SYMBOL MAGNITUDE PREFIX SYMBOL MAGNITUDE

exa E 1018 milli m 10−3

peta P 1015 micro µ 10−6

tera T 1012 nano n 10−9

giga G 109 pico p 10−12

mega M 106 femto f 10−15

kilo k 103 atto a 10−18



 
 
 

 
 
Gradient of a scalar field V in Cartesian coordinates: 
 

  

 
The Laplacian  of a scalar quantity V is given in Cartesian coordinates by: 
 

 

 
 For a vector field  in Cartesian coordinates, given in component form as:                                  
𝐴 = 𝐴/𝑥? + 𝐴0𝑦? + 𝐴1𝑧̂ we have the following expressions for the divergence and the curl: 
 

 

 
 

  

 
 
The Laplacian  of a vector field  is given in Cartesian coordinates by: 
 

 

 
 
(4) Vector calculus identity for a vector field 𝐴: 
 

∇ × L∇ × 𝐴M = ∇L∇ ∙ 𝐴M − ∇2𝐴 
 
 
 
 
 
 
 

 
 
 

∇V =
∂V
∂x

x̂ + ∂V
∂y

ŷ+ ∂V
∂z

ẑ

2Ñ

∇2V =
∂2V
∂x2

+
∂2V
∂y2

+
∂2V
∂z2

!
A

∇⋅
!
A = ∂Ax

∂x
+
∂Ay

∂y
+
∂Az
∂z

∇×
!
A = ∂Az

∂y
−
∂Ay

∂z
%

&
'

(

)
* x̂ +

∂Ax

∂z
−
∂Az
∂x

%

&
'

(

)
* ŷ+

∂Ay

∂x
−
∂Ax

∂y
%

&
'

(

)
* ẑ

2Ñ
!
A

∇2
!
A = ∂

2Ax

∂x2
x̂ +

∂2Ay

∂y2
ŷ+ ∂

2Az
∂z2

ẑ



 
 

 
 
 
 
Gradient of a scalar field V in cylindrical coordinates: 
 

  

 
  For a vector field  in cylindrical coordinates, given in component form as: 
   , we have the following expressions for the divergence and the curl: 
 

 

 

  

 
 
 
 
 

 

 

Fig. 1.  Differential areas and volume in 
cylindrical coordinates. 

Fig. 2. Coordinate unit vectors in cylindrical. 
Coordinate system. Surfaces, in which one of the 
coordinates is constant, are also shown. 
 

 
 
 

                                                  

∇V =
∂V
∂r

r̂ + 1
r
∂V
∂φ

φ̂ +
∂V
∂z

ẑ

!
A!

A = Arr̂ + Aφφ̂ + Azẑ

∇⋅
!
A = 1

r
∂
∂r
(rAr )+

1
r
∂
∂φ

Aφ +
∂Az
∂z

∇×
!
A = 1

r
∂Az
∂φ

−
∂Aφ
∂z

%

&
'

(

)
* r̂ +

∂Ar
∂z

−
∂Az
∂r

%

&
'

(

)
*φ̂ +

1
r

∂
∂r
(rAφ )−

∂Ar
∂φ

%

&
'

(

)
* ẑ

dv = r dr dφ dz

drr dφ dsφ = ϕ dr dz

dsr = r r dφ dz

dz

dz

φ
r

dr r dφ

z

y

x

O

dsz = z r dr dφˆ

ˆ

ˆ

Figure 3-10 Differential areas and volume in
cylindrical coordinates.

x

φ1

φ

z

r

R1

z

yO

φ = φ1 plane

r = r1 cylinder

ˆ

ˆ
ˆr1

R1

P = (r1, φ1, z1)

z = z1 plane

z1

Figure 3-9 Point P(r1,φ1,z1) in cylindrical coordinates; r1 is the radial distance from the origin in the x–y plane, φ1 is the
angle in the x–y plane measured from the x axis toward the y axis, and z1 is the vertical distance from the x–y plane.



 
 
 
 
 
 
 

 
Gradient of a scalar field V in spherical coordinates: 
 

  

 
 
  For a vector field  in spherical coordinates, given in component form as: 
   , we have the following expressions for the divergence and the curl: 
 

 

 
 

∇ × 𝐴 =
1

𝑅𝑠𝑖𝑛𝜃 R
𝜕
𝜕𝜃 L𝐴3𝑠𝑖𝑛𝜃M −

𝜕𝐴,
𝜕𝜙 U𝑅

D +
1
𝑅 V

1
𝑠𝑖𝑛𝜃

𝜕𝐴4
𝜕𝜙 −

𝜕
𝜕𝑅 L𝑅𝐴3MW𝜃

D

+
1
𝑅 R

𝜕
𝜕𝑅

(𝑅𝐴5) −
𝜕𝐴4
𝜕𝜃 U𝜙

D 
 

 
 

 
 

 

Fig. 1. Spherical coordinate system showing 
line and volume elements 

Fig. 2. Coordinate unit vectors in spherical 
coordinates  

 
 
 

∇V =
∂V
∂R

R̂+ 1
R
∂V
∂θ

θ̂ +
1

Rsinθ
∂V
∂φ

φ̂

!
A!

A = ARR̂+ Aθθ̂ + Aφφ̂

∇⋅
!
A = 1

R2
∂
∂R
(R2AR )+

1
Rsinθ

∂
∂θ
(Aθ sinθ )+

1
Rsinθ

∂Aφ
∂φ



 
 

 
 
 

 
 
 



 
 

 
Divergence Theorem converts the integration over a volume to one over the surface 
enclosing that volume and vice versa.  

XL𝛁 ∙ 𝑬##⃗ M
𝑽

𝒅𝑽 = ] 𝑬##⃗ ∙ 𝒅𝑺#####⃗
𝑺

 

Stokes’s theorem converts the surface integral of the curl of a vector field on an open surface 
S, into a line integral of the vector field along the contour C bordering the surface S. 
 

XL𝛁 × 𝑩##⃗ M ∙
𝑺

𝒅𝑺#####⃗ = ] 𝑩##⃗ ∙ 𝒅𝒍####⃗
𝑪

 

 
Maxwell’s Equations (point form) 

𝛁 ∙ 𝑫##⃗ = 𝝆 

𝛁 × 𝑬##⃗ = −
𝝏𝑩##⃗
𝝏𝒕  

 
𝛁 ∙ 𝑩##⃗ = 𝟎 

 

𝛁 × 𝑯###⃗ = 𝑱⃗ +
𝝏𝑫##⃗
𝝏𝒕  

 
Maxwell’s Equations (integral Form) 
 



] 𝐷##⃗ ∙ 𝑑𝑆####⃗
"

= 𝑄 

 

] 𝐸#⃗ ∙ 𝑑𝑙###⃗
.

= −X
𝜕𝐵#⃗
𝜕𝑡"

∙ 𝑑𝑆####⃗  

 

] 𝐵#⃗ ∙ 𝑑𝑆####⃗
"

= 0 

 

] 𝐻##⃗ ∙ 𝑑𝑙###⃗
.

= X j𝐽 +
𝜕𝐷##⃗
𝜕𝑡 l"

∙ 𝑑𝑆####⃗  

With 
 

𝐷##⃗ = 𝜀𝐸#⃗  
𝐵#⃗ = 𝜇𝐻##⃗  

 
In vacuum: 𝜀 = 𝜀& and 𝜇 = 𝜇& 
 
 
 
 
 
 
 
 
 
 
Boundary conditions for 𝐸#⃗  and 𝐷##⃗  at the surface between two dielectrics: 
 
𝐷9: − 𝐷2: = 𝜌"   where 𝜌"	is the free surface charge (excluding polarization charges) 
 
 	𝐸9; = 𝐸2; 
 
Boundary conditions for 𝐵#⃗  and   𝐻##⃗  at the surface between two magnetic materials: 
 
 
𝐻9; − 𝐻2; = 𝐽"   where 𝐽"	is the free surface current (excluding magnetizing currents) 
 
 	𝐵9: = 𝐵2: 
 
The electrical potential difference between a and b is given by:  
 
 𝑉<= = 𝑉< − 𝑉= = −∫ 𝐸#⃗ ∙<

= 𝑑𝑙###⃗  
 
 
Resistance 
  



𝑅 =
𝑉
𝐼 =

−∫ 𝐸#⃗ ∙> 𝑑𝑙###⃗

∫ 𝐽 ∙ 𝑑𝑆####⃗?

=
−∫ 𝐸#⃗ ∙> 𝑑𝑙###⃗

∫ 𝜎𝐸#⃗ ∙ 𝑑𝑆####⃗?

 

 
Capacitance 
   

𝐶 =
𝑄
𝑉 =

∫ 𝐸#⃗ ∙? 𝑑𝑆####⃗

− ∫ 𝐸#⃗ ∙ 𝑑𝑙###⃗>

 

 
 Energy stored in a capacitor 

𝑊@ =
1
2𝐶𝑉

2 
 
Energy stored in inductor 

𝑊A =
1
2𝐿𝐼

2 
 

 
Inductance L,   
 

𝐿 =
Λ
𝐼  

 
Where Λ is the magnetic flux linkage and I the current. 
 
 
 
 
 
Euler’s identity 
 

𝑒BCD = 𝑐𝑜𝑠(𝜔𝑡) + 𝑗	sin(𝜔𝑡) 
 
A vector  𝑨##⃗ (𝑧, 𝑡) = 𝒃##⃗ (𝑧) cos(𝜔𝑡 + 𝜙(𝑧)) can be written in phasor notation as:  
 

𝑨##⃗ (𝑧, 𝑡) = 𝑟𝑒𝑎𝑙L𝒃�(𝒛)	𝑒BCDM 
 
 
where  𝒃�(𝒛) = 𝒃##⃗ (𝒛)𝑒B3(1) is the phasor,  𝜙(𝑧)	is a function of z and  𝒃##⃗ (𝒛) a real vector. 
 
 
Maxwell’s equations for phasors 
 

∇ × 𝐻� = 𝑗𝜔𝜀𝐸�  
 
 

∇ × 𝐸� = −𝑗𝜔𝜇𝐻� 
 
 
Speed of light as a function of permeability µ0 and permittivity e0 of the vacuum  



 

𝑐 =
1

�𝜇&𝜀&
 

 
Derivatives and Integrals ( all the integrals are defined up to an additive constant) 
 

𝑑
𝑑𝑥 𝑥

: = 𝑛𝑥(:E9) 
 

𝑑
𝑑𝑥 sin(𝑥) = cos(𝑥) 

 
𝑑
𝑑𝑥 cos

(𝑥) = −sin	(𝑥) 
 

X𝑥:𝑑𝑥 =
𝑥:F9

𝑛 + 1 , 𝑛 ≠ −1 

Xsin(𝑥) 𝑑𝑥 = −cos	(𝑥) 

Xcos	(x)𝑑𝑥 = sin(𝑥) 

Xcos(x) sin(𝑥) 𝑑𝑥 =
(sin(𝑥))2

2  

 
 

X
1
𝑥 𝑑𝑥 = ln	(𝑥) 

 
 
 
 
 
 

Area and volume of sphere 

𝐴 = 4𝜋𝑟2             𝑉 = !"#!

$
 

 
 
 
Sine and cosine table angles 
  
x 0 p/6 p/4 p/3 p/2 p 3p/2 2p 
sin(x) 0 1/2 1/ Ö2 Ö3 / 2 1 0 -1 0 
cos(x) 1 Ö3 / 2 1/ Ö2 1/2 0 -1 0 1 

 
sin(𝑥) = cos �𝑥 −

𝜋
2� 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 


