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Q1.  Vector Calculus  
 
(a)  Given the vector fields   𝐺⃗ = 2𝑦𝑥' + 2𝑥	𝑦' − 𝑧!𝑧̂  in cartesian coordinates and 𝐹⃗ = 	𝜙/ in 
cylindrical coordinates. Determine whether these vector fields are solenoidal, 
conservative, both  solenoidal and conservatives or neither of these.  

 [5 marks]  
 

(b)  For the vector field 𝐴 = 3𝜙𝜙& + 2𝑟̂  given in cylindrical coordinate system.  
 
(i) Calculate  ∇ × 𝐴.                    [5 marks]  

 
(ii) Calculate the line integral of  𝐴  (∫ 𝐴 ∙ 𝑑𝑙777⃗"  ) in the contour C shown in figure Q1. 

The contour is traverse in the counter-clockwise direction. 
[15 marks] 

   
 

 
 

Figure Q1. The contour C (in red) is formed by two semicircles plus two horizontal 
segments of length r2-r1 and it is traverse counter-clockwise as indicated in the 

figure. The semicircles span a 90 degrees angle (Pi in radians). 
 
 
 

(Total 25 marks) 
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Q2.  Electrostatics.  
 
The spherical capacitor shown in Figure Q2 is formed by two concentric spherical 
conducting shells, the inner with radius a and outer with radius b. The capacitor is 
filled with two dielectrics of permittivities 𝜀# and 𝜀!. The dielectric with permittivity ε1 
fills 1/4 of the volume as shown in Figure Q2, the remaining region is filled by the 
other dielectric. An applied voltage V between the spheres produces a charge +Q in 
the inner sphere and a charge -Q in the outer sphere.  

(a) Derive expressions for the electric field 𝐸7⃗ 	and displacement field 𝐷77⃗ 	in each 
dielectric as a function of Q, 𝜀# and 𝜀!. Assume that both fields are radial. Hint:  
Make use of Gauss’s law and the boundary conditions for 𝐸7⃗ 	and  𝐷77⃗ .  

[15 marks] 
 

(b)  Derive an expression for the capacitance as a function of a, b, 𝜀# and 𝜀!. 
                 

[10 marks] 
 

 
 

 
 
 

Figure Q2. (A) Spherical capacitor with two dielectrics. The capacitor is filled with 
dielectrics of permittivities 𝜀# and 𝜀! as shwn in the figure. The dielectric of permittivity 
𝜀# fills a quarter of the volume between the shells. The remaining region is filled by 
dielectric 𝜀!. (B) Depicts a x-z plane (z=0) view of the capacitor showing the different 
dielectric filling. 
 

        
 
      (Total 25 marks) 
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Q3. Magnetostatics. 
 

The coaxial inductor shown in figure Q3.1 is formed by two concentric conducting 
cylinders of length L. The inner cylinder has a radius a and the outer cylinder a radius 
b. The inductor is filled with three non-conducting magnetic materials of permeability 
𝜇#, 𝜇!  and 𝜇$. The material of permeability 𝜇$ fills half of the volume and materials  𝜇# 
and  𝜇! one quarter of the volume as indicated in the cross section in figure Q3.1. If a 
current I circulates in the outer conductor from left to right and in the inner conductor 
from right to left: 

  
 

(a) Derive expressions for the “magnetic” field vectors  𝐵7⃗  and 𝐻77⃗   in the three 
materials inside the inductor as a function of the distance r from the axis, the 
permeabilities and the current I. Assume that the fields are axials (in the 
direction of the cylindrical vector 𝜙/ ). Hint: Make use of the boundary condition 
for 𝐵7⃗  , 𝐻77⃗  and Ampere’s law.  

[15 marks] 
 

(b)  Derive an expression for the inductance as a function of a, b, L, 𝜇#, 𝜇! and 𝜇$ 
by using the expression of the magnetic field  𝐵7⃗  calculated in (a). 

               
 
[10 marks] 

 
 
 

Figure Q3.1. Coaxial inductor indicating geometry, dimension and cross section.  
 
 
 
                                                                                                        (Total 25 marks) 
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Q4. Electromagnetic Waves.  

 

In a non-conducting medium with  𝜀 = !"!
#

 and µ =5µ0, the magnetic field of a 

plane polarized electromagnetic wave is given by:  𝐸7⃗ (𝑧, 𝑡) = 𝐸%𝑠𝑖𝑛(𝜔𝑡 − 𝑘𝑧 + 𝜋)𝑦' 
 

(a) Determine the phasor 𝐸H(𝑧) of  𝐸7⃗ (𝑧, 𝑡).                                                   
   [5 marks] 

                
(b) Determine the phasor  𝐻I(𝑧)  using Maxwell’s phasor equations. 

                                                                                                                               
  [9 marks] 

(c) Determine the magnetic field 𝐻77⃗ (𝑧, 𝑡). 
[5 marks] 

 
(d) Express k (wavenumber) as a function of w and c (the speed of light). 

[1 mark] 
 

(e) Sketch a diagram of the electromagnetic wave at t=0 and indicate the direction 
of propagation.  Show the electric and magnetic field direction.                                                                                                                        

 
  [5 marks] 

 
 

(Total 25 marks) 
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F U N D A M E NT A L P HY S I C A L C O N ST A NT S
CONSTANT SYMBOL VALUE

speed of light in vacuum c 2.998 × 108 " 3 × 108 m/s

gravitational constant G 6.67 × 10−11 N·m2/kg2

Boltzmann’s constant K 1.38 × 10−23 J/K

elementary charge e 1.60 × 10−19 C

permittivity of free space ε0 8.85 × 10−12 " 1
36π × 10−9 F/m

permeability of free space µ0 4π × 10−7 H/m

electron mass me 9.11 × 10−31 kg

proton mass mp 1.67 × 10−27 kg

Planck’s constant h 6.63 × 10−34 J·s

intrinsic impedance of free space η0 376.7 " 120π $

M A XW E L L ’S E Q U AT I O N S

Gauss’s law ∇ · D = ρv

Faraday’s law ∇ ××× E = −∂B
∂t

Gauss’s law for magnetism ∇ · B = 0

Ampère’s law ∇ ××× H = J + ∂D
∂t

M U LT I P L E & S U B M U LT I P L E P R E F I X E S
PREFIX SYMBOL MAGNITUDE PREFIX SYMBOL MAGNITUDE

exa E 1018 milli m 10−3

peta P 1015 micro µ 10−6

tera T 1012 nano n 10−9

giga G 109 pico p 10−12

mega M 106 femto f 10−15

kilo k 103 atto a 10−18



 
 
 
 
Gradient of a scalar field V in Cartesian coordinates: 
 

  

 
The Laplacian  of a scalar quantity V is given in Cartesian coordinates by: 
 

 

 
 For a vector field  in Cartesian coordinates, given in component form as:                          
         𝐴 = 𝐴&𝑥' + 𝐴'𝑦' + 𝐴(𝑧̂ we have the following expressions for the divergence and 
the curl: 
 

 

 
 

  

 
 
The Laplacian  of a vector field  is given in Cartesian coordinates by: 
 

 

 
 
(4) Vector calculus identity for a vector field 𝐴: 
 

∇ × J∇ × 𝐴K = ∇J∇ ∙ 𝐴K − ∇!𝐴 
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Gradient of a scalar field V in cylindrical coordinates: 
 

  

 
  For a vector field  in cylindrical coordinates, given in component form as: 
   , we have the following expressions for the divergence and the 
curl: 
 

 

 

  

 
 
 
 
 

 

 

Fig. 1.  Differential areas and volume in 
cylindrical coordinates. 

Fig. 2. Coordinate unit vectors in cylindrical. 
Coordinate system. Surfaces, in which one 
of the coordinates is constant, are also 
shown. 
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Figure 3-10 Differential areas and volume in
cylindrical coordinates.
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Figure 3-9 Point P(r1,φ1,z1) in cylindrical coordinates; r1 is the radial distance from the origin in the x–y plane, φ1 is the
angle in the x–y plane measured from the x axis toward the y axis, and z1 is the vertical distance from the x–y plane.
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Gradient of a scalar field V in spherical coordinates: 
 

  

 
 
  For a vector field  in spherical coordinates, given in component form as: 
   , we have the following expressions for the divergence and the 
curl: 
 

 

 
 

∇ × 𝐴 =
1
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Fig. 1. Spherical coordinate system 
showing line and volume elements 

Fig. 2. Coordinate unit vectors in spherical 
coordinates  
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Divergence Theorem converts the integration over a volume to one over the surface 
enclosing that volume and vice versa.  

TJ𝛁 ∙ 𝑬77⃗ K
𝑽

𝒅𝑽 = Y 𝑬77⃗ ∙ 𝒅𝑺77777⃗
𝑺

 

Stokes’s theorem converts the surface integral of the curl of a vector field on an 
open surface S, into a line integral of the vector field along the contour C bordering 
the surface S. 
 

TJ𝛁 × 𝑩77⃗ K ∙
𝑺

𝒅𝑺77777⃗ = Y 𝑩77⃗ ∙ 𝒅𝒍7777⃗
𝑪

 

 
Maxwell’s Equations (point form) 

𝛁 ∙ 𝑫77⃗ = 𝝆 
 

𝛁 × 𝑬77⃗ = −
𝝏𝑩77⃗
𝝏𝒕  

 
𝛁 ∙ 𝑩77⃗ = 𝟎 

 

𝛁 × 𝑯777⃗ = 𝑱⃗ +
𝝏𝑫77⃗
𝝏𝒕  

 
Maxwell’s Equations (integral Form) 
 

Y 𝐷77⃗ ∙ 𝑑𝑆7777⃗
0

= 𝑄 

 

Y 𝐸7⃗ ∙ 𝑑𝑙777⃗
"

= −T
𝜕𝐵7⃗
𝜕𝑡0

∙ 𝑑𝑆7777⃗  

 

Y 𝐵7⃗ ∙ 𝑑𝑆7777⃗
0

= 0 

 

Y 𝐻77⃗ ∙ 𝑑𝑙777⃗
"

= T g𝐽 +
𝜕𝐷77⃗
𝜕𝑡 i0

∙ 𝑑𝑆7777⃗  

With 
 

𝐷77⃗ = 𝜀𝐸7⃗  
𝐵7⃗ = 𝜇𝐻77⃗  

 
In vacuum: 𝜀 = 𝜀% and 𝜇 = 𝜇% 
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Boundary conditions for 𝐸7⃗  and 𝐷77⃗  at the surface between two dielectrics: 
 
𝐷#1 − 𝐷!1 = 𝜌0   where 𝜌0	is the free surface charge (excluding polarization charges) 
 
 	𝐸#2 = 𝐸!2 
 
Boundary conditions for 𝐵7⃗  and   𝐻77⃗  at the surface between two magnetic materials: 
 
 
𝐻#2 − 𝐻!2 = 𝐽0   where 𝐽0	is the free surface current (excluding magnetizing currents) 
 
 	𝐵#1 = 𝐵!1 
 
The electrical potential difference between a and b is given by:  
 
 𝑉34 = 𝑉3 − 𝑉4 = −∫ 𝐸7⃗ ∙3

4 𝑑𝑙777⃗  
 
 
Resistance 
  

𝑅 =
𝑉
𝐼 =

−∫ 𝐸7⃗ ∙5 𝑑𝑙777⃗

∫ 𝐽 ∙ 𝑑𝑆7777⃗6

=
−∫ 𝐸7⃗ ∙5 𝑑𝑙777⃗

∫ 𝜎𝐸7⃗ ∙ 𝑑𝑆7777⃗6

 

 
Capacitance 
   

𝐶 =
𝑄
𝑉 =

∫ 𝐸7⃗ ∙6 𝑑𝑆7777⃗

−∫ 𝐸7⃗ ∙ 𝑑𝑙777⃗5

 

 
 Energy stored in a capacitor 

𝑊7 =
1
2𝐶𝑉

!	
 
Energy stored in inductor 

𝑊8 =
1
2𝐿𝐼

! 
 

 
Inductance L,   
 

𝐿 =
Λ
𝐼  

 
Where Λ is the magnetic flux linkage and I is the current. 
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Euler’s identity 
 

𝑒9:; = 𝑐𝑜𝑠(𝜔𝑡) + 𝑗	sin(𝜔𝑡) 
 
A vector  𝑨77⃗ (𝑧, 𝑡) = 𝒃77⃗ (𝑧) cos(𝜔𝑡 + 𝜙(𝑧)) can be written in phasor notation as:  
 

𝑨77⃗ (𝑧, 𝑡) = 𝑟𝑒𝑎𝑙J𝒃I(𝒛)	𝑒9:;K 
 
 
where  𝒃I(𝒛) = 𝒃77⃗ (𝒛)𝑒9)(() is the phasor,  𝜙(𝑧)	is a function of z and  𝒃77⃗ (𝒛) a real vector. 
 
 
Maxwell’s equations for phasors 
 

∇ × 𝐻I = 𝑗𝜔𝜀𝐸H 
 
 

∇ × 𝐸H = −𝑗𝜔𝜇𝐻I 
 
 
Speed of light as a function of permeability µ0 and permittivity e0 of the vacuum  
 

𝑐 =
1

�𝜇%𝜀%
 

 
Derivatives and Integrals (all the integrals are defined up to an additive constant) 
 

𝑑
𝑑𝑥 𝑥

1 = 𝑛𝑥(1>#) 
 

𝑑
𝑑𝑥 sin(𝑥) = cos(𝑥) 

 
𝑑
𝑑𝑥 cos

(𝑥) = −sin	(𝑥) 
 

T𝑥1𝑑𝑥 =
𝑥1?#

𝑛 + 1 , 𝑛 ≠ −1 

Tsin(𝑥) 𝑑𝑥 = −cos	(𝑥) 

Tcos	(𝑥)𝑑𝑥 = sin(𝑥) 

Tcos(𝑥) sin(𝑥) 𝑑𝑥 =
(sin(𝑥))!

2  

 

T
1
𝑥 𝑑𝑥 = ln	(𝑥) 
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Area and volume of sphere 

𝐴 = 4𝜋𝑟!             𝑉 = !"#!

$
 

 
 
 
Sine and cosine table angles 
  
x 0 p/6 p/4 p/3 p/2 p 3p/2 2p 
sin(x) 0 1/2 1/ Ö2 Ö3 / 2 1 0 -1 0 
cos(x) 1 Ö3 / 2 1/ Ö2 1/2 0 -1 0 1 

 
sin(𝑥) = cos �𝑥 −

𝜋
2� 
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