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Q1. Vector Calculus

(a) Given the vector fields G = 2y% + 2x § — z22 in cartesian coordinates and F = ¢ in
cylindrical coordinates. Determine whether these vector fields are solenoidal,
conservative, both solenoidal and conservatives or neither of these.

[5 marks]
(b) For the vector field A= 3¢¢ + 27 given in cylindrical coordinate system.

(i) Calculate V x A. [5 marks]

(ii) Calculate the line integral of A (fC A-di ) in the contour € shown in figure Q1.

The contour is traverse in the counter-clockwise direction.
[15 marks]

Figure Q1. The contour C (in red) is formed by two semicircles plus two horizontal
segments of length r2-r1 and it is traverse counter-clockwise as indicated in the
figure. The semicircles span a 90 degrees angle (Pi in radians).

(Total 25 marks)
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Q2. Electrostatics.

The spherical capacitor shown in Figure Q2 is formed by two concentric spherical
conducting shells, the inner with radius a and outer with radius b. The capacitor is
filled with two dielectrics of permittivities &; and &,. The dielectric with permittivity €1
fills 1/4 of the volume as shown in Figure Q2, the remaining region is filled by the
other dielectric. An applied voltage V between the spheres produces a charge +Q in
the inner sphere and a charge -Q in the outer sphere.
(a) Derive expressions for the electric field E and displacement field D in each
dielectric as a function of Q, &; and ¢,. Assume that both fields are radial. Hint:
Make use of Gauss’s law and the boundary conditions for E and D.
[15 marks]

(b) Derive an expression for the capacitance as a function of a, b, ¢; and ¢,.

[10 marks]

(A) (B)

Figure Q2. (A) Spherical capacitor with two dielectrics. The capacitor is filled with
dielectrics of permittivities &; and &, as shwn in the figure. The dielectric of permittivity
g, fills a quarter of the volume between the shells. The remaining region is filled by
dielectric €,. (B) Depicts a x-z plane (z=0) view of the capacitor showing the different
dielectric filling.

(Total 25 marks)
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Q3. Magnetostatics.

The coaxial inductor shown in figure Q3.1 is formed by two concentric conducting
cylinders of length L. The inner cylinder has a radius a and the outer cylinder a radius
b. The inductor is filled with three non-conducting magnetic materials of permeability

Uy, Uz and ps. The material of permeability 5 fills half of the volume and materials p,
and u, one quarter of the volume as indicated in the cross section in figure Q3.1. If a

current / circulates in the outer conductor from left to right and in the inner conductor
from right to left:

(a) Derive expressions for the “magnetic” field vectors B and H in the three
materials inside the inductor as a function of the distance r from the axis, the
permeabilities and the current /. Assume that the fields are axials (in the
direction of the cylindrical vector ¢ ). Hint: Make use of the boundary condition
for B, H and Ampere’s law.

[15 marks]

(b) Derive an expression for the inductance as a function of @, b, L, u,, u, and pus
by using the expression of the magnetic field B calculated in (a).

[10 marks]

X

Figure Q3.1. Coaxial inductor indicating geometry, dimension and cross section.

(Total 25 marks)
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Q4. Electromagnetic Waves.

9¢
In a non-conducting medium with € = ?0 and p =5u0, the magnetic field of a

plane polarized electromagnetic wave is given by: E(z,t) = Eysin(wt — kz + )9

(a) Determine the phasor E(z) of E(z,t).

[5 marks]
(b) Determine the phasor H(z) using Maxwell’s phasor equations.

[9 marks]
(c) Determine the magnetic field H(z, t).

[5 marks]

(d) Express k (wavenumber) as a function of @ and ¢ (the speed of light).
[1 mark]

(e) Sketch a diagram of the electromagnetic wave at {=0 and indicate the direction
of propagation. Show the electric and magnetic field direction.

[5 marks]

(Total 25 marks)

END OF EXAM
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Formulae Sheet

FUNDAMENTAL PHYSICAL CONSTANTS

CONSTANT SYMBOL VALUE
speed of light in vacuum c 2.998 x 108 ~ 3 x 103 m/s
gravitational constant G 6.67 x 10~ N-m? /kg?
Boltzmann’s constant K 1.38 x 10723 J/K
elementary charge e 1.60 x 1071 C
permittivity of free space &0 8.85 x 10712 ~ =L x 107 F/m
permeability of free space Lo 47 x 1077 H/m
electron mass Me 9.11 x 1073 kg
proton mass myp 1.67 x 10?7 kg
Planck’s constant h 6.63 x 10734 J.s
intrinsic impedance of free space 1o 376.7 ~ 120 @
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Gradient of a scalar field V in Cartesian coordinates:

VV=ﬂfc+ﬂ§)+ﬂ2
ox ady 0z

The Laplacian v? of a scalar quantity V is given in Cartesian coordinates by:

O’V oV oV
= ot ot
ox~  dy" 0z

ViV

For a vector field A in Cartesian coordinates, given in component form as:
A= AX + A, + A,Z we have the following expressions for the divergence and
the curl:

A, A, 0A.
. 0A A

ox dy 0z

V-A=

~ 0A, ) . . [0A, R
Vx i[04 94 x+(an_aAz)y+ y A,
dy 0z Jdz  ox ox  dy

The Laplacian v? of a vector field A is given in Cartesian coordinates by:

- OPA

92A 2
VA X -“+aA~“

YR ay’ Y P

(4) Vector calculus identity for a vector field A:

Vx (VxA)=V(V-4) - V24
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Gradient of a scalar field V in cylindrical coordinates:

VV=aV

laVA
or ot

raq)

av .
—7Z
0z

For a vector field A in cylindrical coordinates, given in component form as:

A=AF+ A¢g$ +AZ , we have the following expressions for the divergence and the

curl:
- 14 0A,
V- A———(A) t——A +
ror rog 0z
-~ (10A. 0A,). (0A 0A 1 dA,
VxA=|-—=-—2|/+ ’—Z¢—
ragp 0z dz  Or r 6¢
\\\ z =z plane -
Z N ’,”
Ar > P
. ) ;1\‘,—"’ P=(r, 1,21
dz ds, =1Zrdrdd JEPELI I
dsg = & dr dz R/
dv =rdr d dz |/ N\
dz (P r = ry cylinder 5 : E ¥
ds, =trdpdz RN , ]
¢ :/ ¢ = ¢y plane
0) > ) ! .
¢
r
2 dr I"d(P
Fig. 1. Differential areas and volume in Fig. 2. Coordinate unit vectors in cylindrical.

cylindrical coordinates.

Coordinate system. Surfaces, in which one

of the coordinates is constant, are also

shown.
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Gradient of a scalar field V in spherical coordinates:

VV=ﬂf<’+lﬂé+ 1 Al
R RdO  Rsinf dg

For a vector field A in spherical coordinates, given in component form as:
A= ARI§+A99+A¢q3 , we have the following expressions for the divergence and the
curl:

0A
i(RZAR)+ ! a(Aasinl9)+ 1 —
0 Rsin® d¢

V~A=L2 ——
R° 0R Rsinf o

Uxd=—" <a(A no) aAe)ml L 9% _ 9 pay)a
X = —_— _— - —
Rsing \ag \ > ) T 34 R\sin6 ¢ RV ¢

R sin 6 dp

\ dV =R%sin O dR db do
’ 0=0
R conical

dR
2 surface
0 //
\ =
(A

P=(Ry, 01, 1)

Fig. 1. Spherical coordinate system Fig. 2. Coordinate unit vectors in spherical
showing line and volume elements coordinates



Table 3-1: Summary of vector relations.
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Cartesian Cylindrical Spherical
Coordinates Coordinates Coordinates
Coordinate variables X, y,Z rg,z R,0,¢
Vector representation A = Ay +FAy + 24, FA, + $A¢ +ZA, RAR +604, + $A¢
Magnitude of A |A| = HAZ + A% + A2 +HAZ + Aé + A2 by A%? + Ag + Aé
— N
Position vector OP; = x|+ ¥y1 + 274, try + 7z, RRy,
for P = (x1,y1, 21) for P = (r1,¢1,21) for P = (R1.01.¢1)
Base vectors properties XX=¥y-¥y=2-2=1 f'-f'=$-$=i z=1 ﬁ-ﬁzé-f):@-q;:]
X §y=92=2-%=0 | t-¢=0-2=2-F=0 R-6=0-¢=6¢-R=0
Ixy=1 Pxé=12 Rx0=¢
Ixi=x% dxi="F Oxd=R
ixk=7§ ixi=6¢ dxR=6
Dot product A-B= AxBx +AyBy +A;B; | ArBr +ApBp +AzB, ARBR + ApBg + Ay By
Xy oz Poé i R 6 ¢
Cross product A x B = Ay Ay Az Ar Ay Az Ap Ag Ap
Bx By B; B, By By Br By By
Differential length dl = Rdx+¥dy+1idz fdr+&rdp+i2dz | RdR+OR d0 +Rsind do
Differential surface areas dsy =%dydz ds, =trd¢ dz dsp = RR%sin6 do d¢
dsy =¥ dx dz dsy = drdz dsg =ORsinf dR d¢
ds, =i dx dy ds, =ir dr d¢ dsy =R dR do
Differential volume dV = dxdydz rdrdpdz R%sin0 dR do do

Table 3-2: Coordinate transformation relations.

Transformation

Coordinate Variables

Unit Vectors

Vector Components

Cartesian to r= vx2+y2 I =Xcos¢ + §sing Ar = Axcos¢ + Aysing
cylindrical ¢ =tan~(y/x) O = —Xsin¢ + ycos¢p Ap = —Ayxsing + Aycos¢
zZ=17 i=1 AZ = Az
Cylindrical to X =rcos¢ X =Tcos¢ — $Sin¢ Ay = Apcos¢p — Agsing
Cartesian y=rsing y ="rsing +¢cose Ay = Apsing + Ay cosd
zZ=1Z i = i AZ = Az
Cartesian to R= Yx2+y2+272 R = &sinf cos ¢ AR = Ay sinf cos ¢
spherical + ¥sin@ sing + Zcosd + Aysinfsing + Az cos6

0 = tan~ [ I/x2 +y2/z]

¢ =tan~! (y/x)

0= Xcosé cos ¢
+ ¥cosfsing — zsinf
O = —Xsin¢ + ycos¢p

Ap = Ay cosfcosg
+ Aycos@sing — A, siné
Ap = —Aysing + Ay cos ¢

Spherical to
Cartesian

x = Rsinf cos ¢

y = Rsinfsing¢

Z = Rcosf

X = Rsiné cos ¢
+0cos()cos¢—$sin¢
=Rs sin @ sin ¢
+0c05951n¢+$cos¢

7 =Rcosh —0Bsino

>

Ay = Apgsinécos ¢

+ Agcosfcosp — Ag sing
Ay = Agsinfsing

+ Agcosfsing + Ag cos ¢
Az = Agcosf — Agsinf

Cylindrical to

R = +\/r2+22

R = fsin + Zcos@

AR = A,sinf + Ay cosb

spherical 0 = tan~! (r/z) 0 = fcosh —2sinb Ag = A,cosf — A, sinf
$=9 o=¢ A=Ay

Spherical to r = Rsiné 1: f{ sinf + 6 cosd Ar = Agsinf + Agcosf
cylindrical ¢ =q o=¢ Ap = Ay

7z = Rcos@ 7 =Rcosd —Bsind Ay = Apcosf — Agsinf
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Divergence Theorem converts the integration over a volume to one over the surface
enclosing that volume and vice versa.

f(v-E)dV==f E-ds
S
|4
Stokes’s theorem converts the surface integral of the curl of a vector field on an

open surface S, into a line integral of the vector field along the contour C bordering
the surface S.

f(wﬁ)ﬁ:j; B-di

5 C

Maxwell’'s Equations (point form)

V-D= P
VXE = a8
at
V-B=0
Vxﬁ—*+aﬁ
=I5
Maxwell's Equations (integral Form)
fﬁwm=Q
S
c s Ot
f B-dS=0
S
§aa-| (1+2)®
c s ot
With
D = ¢E
B = uH

In vacuum: ¢ = g5 and u = p,
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Boundary conditions for E and D at the surface between two dielectrics:
D:n, — Dy, = ps Where pg is the free surface charge (excluding polarization charges)
Eir = Eor

Boundary conditions for B and H at the surface between two magnetic materials:

H,r — H,;r =] where Js is the free surface current (excluding magnetizing currents)
Bln = BZn

The electrical potential difference between a and b is given by:

- —

Vap =Vo = Vy = = |, E -l

Resistance
J,J-das [ oE-dS
Capacitance
_e_J E-dS
Vo _ fl E-dl
Energy stored in a capacitor
W, = %CVZ
Energy stored in inductor
W, = %le
Inductance L,
=2
I

Where A is the magnetic flux linkage and / is the current.

PAGE 12 OF 14



Euler’s identity
e/t = cos(wt) + j sin(wt)
A vector A(z,t) = B(z) cos(wt + ¢(z)) can be written in phasor notation as:

A(z,t) = real(b(z) e/*t)
where b(z) = b(2)e/*@ is the phasor, ¢(z)is a function of z and b(z) a real vector.

Maxwell’s equations for phasors

VxH=jweE
VX E=—joul

Speed of light as a function of permeability 10 and permittivity o of the vacuum
1

v Ho€o

Derivatives and Integrals (all the integrals are defined up to an additive constant)

Cc =

—x™ = nx(®D
dx

d
asin(x) = cos(x)

d
acos(x) = —sin (x)

n+1’
f sin(x) dx = —cos (x)

fcos (x)dx = sin(x)
(sin(x))?
2

xn+1
fx"dx = n+-1

f cos(x) sin(x) dx =

fldx = In (x)
—dx =



Area and volume of sphere
A = 4nr?

Sine and cosine table angles

4mr3

3
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X 0 /6 /4 /3 /2 T 3n/2 2n
sin(x) 1/2 /2 [V3/2 |1 0 -1 0
cos(x) | 1 N3/2 [ 1/N2 |12 0 -1 0 1

sin(x) = cos (x — %)
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