
Derivation of the springback equation

In order to derive the springback equation, we start by considering a straight beam that, by applying a bending
force, is bent to a certain radius R as shown in figure 1.

Now, for the following calculations we consider that: i) the material obeys Hooke’s law (linear elastic material),
ii) the Young modulus, E, is the same for tension and compression and iii) the transverse fibers will remain plane
after bending.

On a straight beam, we have that the distance AB is the same as CD. Now, as shown in figure 1, the distance
AB remains unchanged after bending because this corresponds to the neutral surface which does not experience
strain. The distance C ′D′ corresponds to the distance CD under a tensile force (if it would be on the opposite
side of the neutral surface it would be under a compressive force). The longitudinal strain due to bending, εb, of a
surface that is at a y distance from the neutral surface can be calculated by:

εb =
C ′D′ − CD

CD
(1)

Before bending we have that AB = CD = Rθ. Then, after bending, the arc-length of C ′D′ is given by
C ′D′ = (R+ y)θ. By plugging these values in equation (1) we get:

εb =
(R+ y)θ −Rθ

Rθ
⇔ εb =

y

R
(2)

The longitudinal stress developed by bending is given by σb = Eεb, which by using equation (2) can now be
defined as:

σb =
Ey

R
(3)

Let’s now consider a cross-section of a generic beam as shown in figure 2 where it is shown the relationship
between the longitudinal stress and the bending moment.

The longitudinal bending stress distribution, σb, across the yy axis is displayed on the right side of the beam.
The distribution is such that it is zero at the neutral axis and follows a linear equation with slope ±E/R. The
force dF associated to an element of area dA (shaded area in figure 2) can be determined by dF = σbdA. The total
force, FT , can now be calculated by:

FT =

∫
dF =

∫
σbdA (4)

To calculate the bending moment, Mb, we need to multiply the force, FT , by the distance, y, to the neutral
surface of the beam, which leads to:

Mb = FT y =

∫
y σb dA =

E

R

∫
y2dA (5)

The part of the integral defined as
∫
y2dA corresponds to the moment of inertia of the beam, J , which leads to

a simplified version of the bending moment expression:

Mb =
EJ

R
(6)

A beam bent to a radius Rb will develop a bending moment Mb. If we overcome the yield stress of the material,
after unloading the beam, the elastic energy will be released and the final radius will be a bigger one, Rf . We can
define curvature as the inverse function of the radius, 1/R and then, if we plot the loading and the unloading of
the beam (assuming that the beam undergoes plastic deformation), we will get something similar to the plot in
figure 3.
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Figure 1: Strain development in beam bending.

Figure 2: Relationship between the longitudinal stress and the bending moment.
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Figure 3: Bending moment versus curvature of a bent beam.

From the schematic plot we see that after developing the bending moment Mb and undergoing plastic deforma-
tion, we reach a curvature of 1/Rb. Then, after unloading, the elastic energy is released and the curvature becomes
1/Rf , which is the final radius of the beam.

The ratio Mb/(1/Rb − 1/Rf ) corresponds to the slope of the unloading line, which then corresponds to the
elastic part of the whole bending process. The slope can be mathematically defined, in this case, by ∂Mb/∂(1/R),
and we can then write that:

∂Mb

∂(1/R)
=

Mb − 0

(1/Rb)− (1/Rf )

Which can be re-written as:

1

Rb
− 1

Rf
=

Mb

∂Mb/∂(1/R)
(7)

From equation (6), we see that Mb is a function of the curvature 1/R, which means that the partial derivative
that defines the slope is:

∂Mb

∂(1/R)
= EJ

∂

∂(1/R)

(
1

R

)
= EJ (8)

Resulting finally in the equation that characterizes the springback effect:

1

Rb
− 1

Rf
=
Mb

EJ
�
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