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a b s t r a c t

Suture interfaces with a triangular wave form commonly found in nature have recently

been shown to exhibit exceptional mechanical behavior, where geometric parameters

such as amplitude, frequency, and hierarchy can be used to nonlinearly tailor and

amplify mechanical properties. In this study, using the principle of complementary

virtual work, we formulate a generalized, composite mechanical model for arbitrarily-

shaped interdigitating suture interfaces in order to more broadly investigate the

influence of wave-form geometry on load transmission, deformation mechanisms,

anisotropy, and stiffness, strength, and toughness of the suture interface for tensile

and shear loading conditions. The application of this suture interface model is exempli-

fied for the case of the general trapezoidal wave-form. Expressions for the in-plane

stiffness, strength and fracture toughness and failure mechanisms are derived as

nonlinear functions of shape factor b (which characterizes the general trapezoidal shape

as triangular, trapezoidal, rectangular or anti-trapezoidal), the wavelength/amplitude

ratio, the interface width/wavelength ratio, and the stiffness and strength ratios of the

skeletal/interfacial phases. These results provide guidelines for choosing and tailoring

interface geometry to optimize the mechanical performance in resisting different loads.

The presented model provides insights into the relation between the mechanical

function and the morphological diversity of suture interface geometries observed in

natural systems.

& 2013 Published by Elsevier Ltd.
1. Introduction

A diversity of geometrically structured interfaces and joints is found in biology (Fig. 1), for example bone and armored
exoskeletons (Ji and Gao, 2004; Gao, 2006; Barthelat et al., 2007; Tang et al., 2007; Song et al., 2010, Dunlop et al., 2011),
the cranium (Pritchard et al., 1956; Persson et al., 1978; Hubbard et al., 1971; Jaslow, 1990; Herring, 2008), the turtle
carapace (Krauss et al., 2009) and algae (Gebeshuber et al., 2003; Spaulding et al., 2009; Potapova and English, 2010;
Garcia et al., 2011). In such systems, geometry is a key determinant of mechanical and biological functions such as growth,
respiration, locomotion, penetration resistance, load transmission, and energy absorption (Pritchard et al., 1956; Jaslow,
1990; Herring, 2008; Dunlop et al., 2011). For example, the roles of the dove-tailed thickness profile of the platelets
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Fig. 1. Various geometries of suture interfaces in biological systems: (a) sinusoidal waveform (scale bar: 1 mm): sutures of diatom Aulacoseira lirata

(http://westerndiatoms.colorado.edu); (b) triangular waveform(scale bar: 1 mm): stickleback (Gasterosteus aculeatus) pelvic suture (Song et al., 2010);

(c) trapezoidal waveform (scale bar: 1 mm): suture of diatom (Ellerbeckia arenaria) (Gebeshuber et al., 2003); (d) anti-trapezoidal waveform scale bar: 1 mm):

suture of diatom (Aulacoseira ambigua); (e) complex random waveform (scale bar: 1 cm): cranial suture of white tail deer (Odocoileus virginianus).
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in nacre-inspired composites (Barthelat et al., 2007; Tang et al., 2007; Espinosa et al., 2011; Barthelat and Zhu., 2011),
the intricate geometries of the turtle suture (Krauss et al., 2009), the triangular waveform of the pelvic suture of
Gasterosteus aculeatus (Li et al., 2011), and the hierarchical fractal-like waveform of the Ammonite septal suture (Li et al.,
2012) have each been found to have significant ramifications on mechanical performance. Such structures can often be
described as a composite material composed of two stiff interdigitating components (‘‘teeth’’) joined by a thinner,
relatively compliant interfacial layer along a seam line.

The characterization of the geometry of various natural suture interfaces has been reported (Jaslow, 1990; Long and
Long, 1992; Saunders et al., 1999) along with a number of experimental (Hubbard et al., 1971; Jaslow, 1990; Krauss et al.,
2009) and numerical studies on these systems (Li et al., 2011; Li et al., 2012; Garcia et al., 2011). For example, cranial bone
sutures were found to absorb more energy per unit volume during impact loading than monolithic cranial bone (Jaslow,
1990). In addition, the bending strength of cranial bone sutures was found to increase with an increase in interdigitation
(Jaslow, 1990; Jasinoski et al., 2010). A numerical study of a lizard skull with fused and unfused sutures found that suture
interfaces can reduce local strain by distributing strain around the skull (Moazen et al., 2009). Studies of ammonites show
a trend toward increased septal suture complexity driven by hydrostatic and/or predatory load pressures (Daniel et al.,
1997; Saunders et al., 1999; Hassan et al., 2002; De Blasio, 2008). However, a comprehensive and systematically
quantitative understanding of the underlying role of geometry on the mechanical behavior and mechanisms is still lacking.
Recently, we formulated a scale-independent composite, elastic mechanical model (Li et al., 2011) of a periodic triangular
sawtooth suture geometry and showed that suture interfaces with triangular teeth subjected to tension (normal to the
suture seam) exhibit a spatially homogeneous stress distribution within both the teeth and interfacial layers, and thus
provide an advantage in load transmission, weight, stiffness, strength, energy absorption, and fatigue. We also showed in a
second study that increasing the number of hierarchies (hierarchical sutures consist of a superposition of waveforms) in a
triangular suture interface resulted in amplification of mechanical properties by orders of magnitude (Li et al., 2012), thus
increasing the design parameter space for a given limited material set. These studies addressed a core aspect of the roles of
suture geometry in enhancing mechanical performance; however, the scope was limited to a single model system of
triangular geometry and the loading case was limited to tension normal to the suture seam.

The goal of the present study is to formulate a generalized suture interface model with arbitrary geometry and, for all
in-plane loading cases, to comprehensively explore the role of geometry on the mechanical behavior of suture interfaces.
This general theoretical formulation will allow for the interrogation of the functional consequences of the diversity of
structural geometries observed in nature and, hence, will provide insights into evolutionary processes. Additionally,
guidelines for any specific geometry can be derived to design bio-inspired engineered systems. This paper is organized as
follows: in Section 2, the general mechanical model of a suture interface is formulated using the principle of
complementary virtual work; in Section 3, the geometric definition of a general trapezoidal suture interface is given;
in Section 4, based on the general formulation, the in-plane stiffness tensor, tensile and shear strength and fracture toughness
of a periodic general trapezoidal suture interface model are derived and further supported by finite element analysis; in
Section 5, using the results in Section 4, the effects of tooth shape on the mechanical properties of the general trapezoidal
suture interfaces are compared. Finally, in Section 6, the main conclusions are summarized and potential applications and the
relevance to natural systems are discussed.
2. General formulation of the mechanics of the suture interface

2.1. Principle of complementary virtual work

Many biological suture joints and interfaces can be represented as composite materials including at least two phases:
a relatively stiff phase ‘1’ and a relatively compliant phase ‘0’, as shown schematically in Fig. 2. The two interdigitating
components1 (phase ‘1’) are joined by a thin, relatively compliant interfacial layer (phase ‘0’) along a suture seam. As the
joining zone of two relatively stiff parts located on either a flat or curved surface, the suture interface is often subjected to
1 In this general formulation, the two interdigitating components are not necessary to be the same material, which means the ‘i’ in Eqs. (2) and (3) is

not limited to only ‘0’ and ‘1’, for example, the materials can be different (‘phase 1’ and ‘phase 2’) on the two sides of the interfacial layer.

http://westerndiatoms.colorado.edu


Fig. 2. Schematics of the mechanics of a suture interface with arbitrary geometry showing load transmission and compatibility at the interface.
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a far-field traction r¼ sx,sy,sxy

� �
along the far-field boundaries S. The profile of the interfacial line l is a function of x in the

global coordinate system x�y, y¼ f ðxÞ, as shown in Fig. 2.
For a virtual far-field traction dr¼ dsx,dsy, dsxy

� �
, the external complementary virtual work of the system shown in

Fig. 2 can be expressed as

dWn

e ¼

Z
S

uUdr dS, ð1Þ

where u is the displacement vector at the boundary S. The variation in the complementary strain energy dU*can be
expressed in terms of the strain tensor e and the stress tensor r as

dUn
¼

Z
V
e : dr dV ¼

X
i

Z
Vi

ei : dri dVi , ð2Þ

where the constitutive equations of each phase, i, are

ri ¼ Ci : ei i¼ 0,1, 2. . .ð Þ, ð3Þ

where, Ci is the stiffness tensor of phase i, which can be either linear or non-linear.
The principle of complementary virtual work yieldsZ

S
uUdr dS�

Z
V
e : dr dV ¼ 0: ð4Þ

Thus, if we can solve the boundary value problem and find the relationship between the prescribed boundary traction
dr and the virtual responsive stress tensor in each phase dri, the closed form solution of the components of the in-plane
stiffness tensor can be derived. In order to solve this boundary value problem, a self-contained system of equations is
formulated as follows.
2.2. Load transmission

First, loads are transmitted across the interface through normal and/or tangential tractions s(l) along the interface
(Fig. 2). Force equilibrium gives

syL0 ¼�
R

lsðlÞUêy dl,

sxyL0 ¼�
R

lsðlÞUêx dl,

(
ð5Þ

where L0 is the straight end-to-end length of the suture axis, êx and êy are the unit vectors in the global coordinate
x�y. The surface traction s(l) along the interface can be decomposed in the local coordinate system t–n along the interface
line l as

sðlÞ ¼ tt êtþtn ên, ð6Þ
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where êt and ên are the unit vectors in the local coordinate t–n and where êt is tangent to the suture interface line l and
where

êtUêy ¼�ênUêx ¼�
f 0 ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ f 0 ðxÞ2
p

ênUêy ¼ êtUêx ¼�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1þ f 0 ðxÞ2

q :

8><
>: ð7Þ

Thus, by substituting Eqs. (6) and (7) into Eq. (5), we find

sy ¼�
1
L0

R
l½ttêtUêyþtnênUêy� dl¼ 1

L0

R
l tt

f 0 ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 ðxÞ2
p þtn

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 0 ðxÞ2

q� �
dl

sxy ¼�
1
L0

R
l½ttêtUêxþtnênUêx� dl¼ 1

L0

R
l tt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ f 0 ðxÞ2

q
�tn

f 0 ðxÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f 0 ðxÞ2
p

� �
dl
:

8>>><
>>>:

ð8Þ

Eq. (8) shows how the interdigitating interface profile governs the translation of the far-field normal and tangential
traction into local normal and tangential traction along the interface. The composition of normal and tangential traction
along the interface is determined by the local tangent and the degree of interdigitation of the interface profile.
2.3. Boundary conditions and interface compatibility

At the interface, the two phases satisfy displacement compatibility

u0ðlÞ ¼ u1ðlÞ, ð9Þ

where u1(l) and u1(l) are displacements along the interface line l.
Also, equilibrium provides the tangential and normal components of the stress tensor, si

nt and si
nn (i¼0 or 1), across the

interface to be equal

s0
nt ¼ s1

nt ¼ tt

s0
nn ¼ s1

nn ¼ tn
:

(
ð10Þ

The system of Eqs. (5)–(10) formulates a self-contained boundary value problem for a suture interface with an arbitrary
interface profile of finite thickness. For an arbitrary interface profile y¼ f (x), the mechanical response of the interface can
be solved.

One of the main goals of the present study is to explore how to adjust f(x) and f0(x), as shown in Eq. (8), and therefore
the coupling between tn and tt to quantitatively tailor the mechanical performance of an interface layer with a finite
thickness. To explain the application of this general formulation, in the next section, we will use Eqs. (1)–(10) to derive a
mechanical model of a specific type of interface profile where f (x) is a periodic single (first-order) wave with a general
trapezoidal shape.
3. Non-dimensional geometric definition of general trapezoidal suture interfaces

A single-wave triangular suture interface can be described by: the wavelength l, amplitude A, and the width of
interface layer g (Fig. 3). Stiffness and strength can be derived from a scale-independent model (Li et al., 2011) and found to
be a function of two independent non-dimensional geometrical parameters, tooth tip angle y and volume fraction of teeth
fv. These two non-dimensional geometric parameters are related to two other equivalent non-dimensional geometric
parameters, the amplitude/wavelength ratio A/l and the interface width/wavelength ratio g/l, via

f v ¼ 1� 2g
l

tany¼ f vl
2A

:

8<
: ð11Þ

Eq. (11) also holds for all general trapezoidal suture interfaces2 with the same g, l, and A.

For a general trapezoidal suture interface (Fig. 3), one additional geometric parameter b is introduced to quantify the
shape of the sawteeth; thus b is referred to as the shape factor. Taking y as the direction normal to the suture axis, b is
defined as the angle from y to the tooth edge, as shown in Fig. 3a, being positive when the rotation is clockwise and
negative when the rotation is counterclockwise. When wavelength l, amplitude A, and the volume fraction of teeth fv are
fixed, b can only vary in the range of (–y, y ], as shown in Fig. 3a, where y is a function of l, A, and fv, as shown in Eq. (11).
2 For all general trapezoidal sutures with the same g, l, and A, the volume/area of the interface in a RVE is 2gA, and the volume/area of the RVE is lA,

thus the volume fraction of teeth in a RVE is fv¼1�(2g/l). This relation was shown in the literature of triangular suture interfaces (Li et al., 2011, 2012).

It holds for all other general trapezoidal shapes as well. As shown in Fig. 3a and c, considering the width g of interface, the width of the root of the

triangular teeth is t¼l�2g¼lfv, thus tan y¼ fvl/2A.



Fig. 3. Schematics of the geometries of general trapezoidal suture interfaces with the same interfacial width g, wavelength l, and amplitude A:

(a) definition of b; (b) representations of four types of general trapezoidal suture interfacial waveform profile; (c) and (d) different geometries for each

waveform obtained by varying the wavelength to amplitude ratio l/A (or y, when fv is fixed).

y

x

A

A(tan -tan ) O

Fig. 4. Geometry of the interface profile of general trapezoidal suture.
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The general trapezoidal suture interfaces are categorized into four types according to different ranges of b as shown
in Fig. 3b and c: (1) triangular (e.g. Fig. 1b), when b¼y, 2y is the tip angle; (2) trapezoidal (e.g. Fig. 1c), when 0oboy;
(3) rectangular, when b¼0; and (4) anti-trapezoidal (e.g. Fig. 1d), when �y obo0.

Therefore, the geometry of a general trapezoidal suture interface is determined by four independent parameters: the
wavelength l, the amplitude A, the width of the interface g, and the shape factor b. In the local coordinate system (as
shown in Fig. 3a) with the origin located at the tip of the triangular wave, the profile of the slant segment of general
trapezoidal interface (Fig. 4) is expressed as3 :

w yð Þ ¼ y tanbþA tanj�tanb
� �

, 0ryrA, 0rw yð Þo
lf v

2
, ð12Þ

where tan f¼(tan yþtan b)/2. For the entire range of xA(�N,þN), waveform functions w(y) of triangular and
trapezoidal suture interfaces are single-valued functions, and that of an anti-trapezoidal suture interface is a multi-valued
function. The multi-valued anti-trapezoidal shape can provide a mechanical interlocking mechanism even during tension
normal to the suture whereas the trapezoidal, rectangular, and triangular only provide interlocking during lateral tension
and shear.
3 x¼w(y) is the inverse function of y¼ f(x).
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The scale-independent geometry of the general trapezoidal suture interfaces is determined by three nondimensional
parameters: the shape factor b, the volume fraction of teeth fv (fv is directly related to the ratio of interface width to
wavelength g/l, as shown in Eq. (11)), and the tip angle of a triangular suture interface 2y (for an arbitrary shape, y,
describes the ratio of the amplitude to wavelength A/l when the tooth volume fraction fv is fixed, as shown in Eq. (11)).
Schematics of representative geometries obtained by varying these parameters at fixed fv are shown in Fig. 3c. Geometries
with various fv can be easily obtained by changing the width of the interface of those shown in Fig. 3c while keeping two
other parameters fixed. The geometry-dependent mechanical properties of general trapezoidal suture interfaces, including
stiffness, strength and fracture toughness, will be studied in the following sections.

4. Mechanical model of general trapezoidal suture interfaces

4.1. In-plane elastic moduli of general trapezoidal suture interfaces

Suture interfaces act to join two relatively flat or low curvature regions. As a major joining mechanism in the assembly of
biological systems, suture interfaces often accommodate local motion such as respiration or growth to enable the daily motion
of the whole biological system, and provide support as well as flexibility, distributing load and absorbing energy. Thus, the
loads acting on suture interfaces are primarily quasi-static and in-plane for physiological functions in the elastic regime,
although sometimes bending or occasional impact loading can be out-of-plane (Jaslow, 1990). In this paper, we address the
mechanical behavior within the plane focusing first on the in-plane elastic moduli of suture interfaces. Of particular interest is
the effective mechanical properties of the interdigitating area. Therefore, the far-field boundary in the general formulation now
becomes the boundary of this area; thus the traction at the boundary is r¼ sx, sy, sxy

� �
as shown in Fig. 3c.

If two phases, the skeleton and the interface, are assumed in the suture area, Eqs. (2) and (4) yieldZ
S

uUdr dS¼

Z
V0

e0 : dr0 dV0þ

Z
V1

e1 : dr1 dV1: ð13Þ

By alternately prescribing r¼ sx, 0, 0ð Þ , r¼ 0, sy, 0
� �

, and r¼ 0, 0, sxy

� �
, the corresponding in-plane stiffness

components (Ex, Ey, Gxy) of the general trapezoidal suture interfaces can be derived, respectively, as shown in the
following subsections. The analytical derivations make the following assumptions:
(1)
 The flat tip region of the suture is taken to be unbonded. (In the current paper, we primarily focus on sutures where the tip
region is unbonded and evaluate the contributions of the slant interfacial segment of the general trapezoidal suture interface
to stiffness, strength and toughness. The role of the tip region is briefly discussed and left for more detailed examination in a
future work. Lin et al. (in preparation).)
(2)
 The slant interfaces are taken to be perfectly bonded to the teeth.

(3)
 Both phases are taken to be homogeneous, linear elastic and isotropic.
4.1.1. In-plane tensile (and compressive) moduli

4.1.1.1. Analytical derivation. A virtual longitudinal normal traction (tensile or compressive) (0,dsy, 0) is assumed along the
tooth base (loading edge) resulting from far-field loading dsy ¼ dsy t=l

� �
(t is the width of the tooth base, as shown in Fig. 5a)

dsy ¼ dsy
t

l
¼ dsyf v

tanj
tany

� �
: ð14Þ

This traction transmits across the interdigitating suture seam, generating a virtual normal traction dtn and tangential
traction dtt, along the interface, as shown in Fig. 5a.

Force equilibrium of an isolated tooth (Eqs. (8) and (11)) yields a relation between dsy, dtn and dtt

dtt ¼ dsy tan j cos2 b
dtn ¼ dtt tan b¼ dsy tan j sin b cos b:

(
ð15Þ

Similarly, when the suture interface is subjected to a lateral virtual normal traction dsx, the load is transmitted through the virtual
interfacial normal traction dtn and tangential traction dtt, as shown in Fig. 5b. Force equilibrium of an isolated tooth yields

dtn ¼ dsx cos2 b
dtt ¼ dtn tan b¼ dsx sin b cos b

:

(
ð16Þ

If we assume that the teeth are deformable, the total complementary deformation energy dU* of the suture interfaces is from both
the interface and the teeth

dWn

e ¼
Alsy

Ey
dsy ¼

Z
V0

e0 : dr0 dV0þ

Z
V1

e1 : dr1 dV1 ¼ dUn, ð17Þ



Fig. 5. Free body diagrams of representative volume elements (RVE) of a general trapezoidal suture interface model and its corresponding isolated tooth:

(a) under longitudinal tension and (b) under lateral tension (‘lighter gray’ trapezoid represents the top row of teeth, ‘darker gray’ trapezoids represents

the lower row of teeth, ‘pink’ rectangles represents the interfacial layer). (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)
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where Ey is the effective longitudinal tensile stiffness of the suture interface

ds0 ¼
dtn dtt

dtt v0dtn

 !

(in the local coordinate t–n) is the position-dependent stress tensor of the interface layer; r1 is the position-dependent
stress tensor of the teeth, which we can approximate as

dr1 ¼
dsyyðyÞ 0

0 0

� �

(in the global coordinate x–y), where syy (y) is derived in the Appendix A; V0 is the volume of the interface material in the
representative volume element (RVE), and (V0/V)¼1� fv, V1 is the volume of the teeth in an RVE.

If we assume the stress and strain along the interface is uniform, we have

R
V0

e0 : dr0 dV0 ¼ 1�f v

� �
Al tn

EPS
0

dtnþ
tt
G0
dtt

h i
R

V1
e1 : dr1 dV1 ¼ 4

R A
0
syyðyÞ

2

E1
f yð Þdsyy yð Þ dy

,

8><
>: ð18Þ

where EPS
0 and G0 are the plane strain modulus4 and shear modulus of the interfacial material, respectively. By substituting

Eqs. (14) and (15) into Eqs. (17) and (18), the effective tensile stiffness of general trapezoidal suture interfaces, Ey,
is obtained

Ey ¼ f v

1

f v

�1

� �
tan2 y

cos2 b sin2 b
EPS

0

þ
cos4 b

G0

 !
þ
zðb,yÞ

E1

" #�1

, ð19aÞ

where

z b, yð Þ ¼

1 if b¼ y
2
3

tany
tanj if b¼ 0

2 tany
tanj 0:5�aþa2 ln 1þ 1

a

� �	 

if b 2 �y, 0ð Þ [ 0, yð Þ

,

8>><
>>: ð19bÞ

and where

a¼
tanj
tanb

�1: ð19cÞ

If we assume the teeth are rigid and the strain energy only comes from the deformation of the interface layer, the
stiffness of the rigid tooth model can be obtained simply by taking z(b,y)¼0 in Eq. (19a). When b¼y, Eq. (19b) reduces to
the longitudinal tensile stiffness of a triangular suture interface (Li et al., 2011).
4 EPS
0 ¼ E0=1�v2

0

� �
, E0 and v0 are Young’s modulus and Poisson’s ratio of the interface material.
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Similarly, the lateral tensile stiffness of a general trapezoidal suture interface, Ex is obtained as

Ex ¼ 1�f v

� � cos2 b sin2 b
G0

þ
cos4 b

EPS
0

 !
þ

f v

E1

" #�1

: ð20aÞ

If we assume the teeth are rigid, the stiffness becomes

ERTM
x ¼ 1�f v

� � cos2 b sin2 b
G0

þ
cos4 b

EPS
0

 !" #�1

: ð20bÞ

From Eqs. (19) and (20), it can be seen that both Ey and Ex depend on the material properties of the two phases,EPS
0 , G0,

E1, and the volume fraction of teeth fv. However, Ey depends on geometry through both b and y and on geometry only
through b. Results will be shown together with supporting finite element simulations below.

4.1.1.2. Finite element simulations. Finite element simulations of four types of general trapezoidal suture interfaces (with
y¼21.81, and b¼21.81, 11.31, 01 and �11.31, respectively) under longitudinal, lateral tension and shear are processed.
Representative volume elements are identified and subjected to periodic boundary conditions consistent with the three
loading conditions. The periodic boundary conditions follow the general approach in Danielsson et al. (2002) and the
loading conditions can be found in Appendix B.

4.1.1.3. Case of bonded flat tip regions. We first briefly present results considering the tip region to be perfectly bonded
prior to the more detailed comparisons of cases with unbonded tips. In Fig. 6a, finite element simulation results for cases
considering the tip region to be perfectly bonded clearly show that the stress in the triangular teeth (i.e. when b¼y) is very
close to uniform (with an exception of a singularity at the very tip) and show the other three geometries (when bay) to
have stress gradients with concentrations at the base of the teeth, as expected. The degree of stress concentration increases
when b decreases, with the anti-trapezoidal shape having the strongest stress concentration.

Also, as expected and shown in Fig. 6b, the interface strain is highest in the interface regions across the flat tip, and the
tooth stress (Fig. 6a) is highest in the tooth base away from the flat tip, indicating that the first failure events will occur at
these flat tips (for triangular suture interface, the flat tip degenerates into a singular point). For completeness, Appendix C
compares the initial stiffness of general trapezoidal suture interfaces with bonded and those with unbonded flat tip
interfaces. As expected, the flat tip interface increases the initial effective stiffness of the suture interface (Table C1), but
would fail first due to the large strain concentration (Lin et al., in preparation). However, we note that the failure of the tip
material does not result in fatal failure of the suture interface. After flat tip interface failure, load is transmitted only
through the shear and normal stress along the angled interface. These slant interfaces then control the stiffness, the
strength and the toughness of the suture. In this paper, we focus on evaluating the role of the slant segments of the
interfaces and will report on the role of flat tips via simulations and experiments in Lin et al. (in preparation). Hence, the
analytical expressions given in Eqs. (19) and (20) coincide with finite element simulations conducted on the different
geometries with unbonded flat tips.

4.1.1.4. Cases of unbonded tip regions. Two-dimensional plane stress finite element simulations of longitudinal and lateral
tension were conducted for the four types of suture interfaces with unbonded tip regions taking the case of wavelength
l¼1.25 mm, amplitude A¼1.25 mm, and a volume fraction of teeth fv ¼80%. This geometry gives y¼21.81, and for the
Fig. 6. Stress/strain contours of trapezoidal suture interfaces of varying geometry subjected to longitudinal tension from finite element simulations

(E1 ¼ 10 GPa, E0 ¼ 100 MPa, f v ¼ 0:8Þ, (a) longitudinal stress contour and (unit: MPa) (b) strain contour.
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anti-trapezoidal, rectangular, trapezoidal and triangular geometries, the shape factors b are �11.31, 01, 11.31, and 21.81,
respectively. The stiffness ratio Rs between two phases is defined as Rs ¼E1/E0, and is varied from 10 to 1000 in the FE
simulations. The in-plane moduli are obtained from these FE simulations for comparison to the analytical results (Eqs. (19)
and (20)) in Fig. 7.

For longitudinal and lateral tension, Fig. 7 shows that the stresses in the teeth are uniform when b¼y; in contrast, when
bay, the stresses are not uniform (see Appendix A for the derivation of the stress distribution). For both cases, the
analytical results for trapezoidal suture interfaces are quite accurate in predicting the longitudinal and lateral stiffness for
all values of b. The triangular suture exhibits a longitudinal tensile stiffness that is maximum among the four types, while
its lateral stiffness is the minimum. However, it is opposite for rectangular suture interfaces. For rectangular suture
interfaces with rigid teeth, the interface is under pure shear in longitudinal tension and thus is the most compliant, while it
is under pure tension in lateral tension and thus is the stiffest. For all other shapes the interface is under a combined shear
and tension, as shown in Eq. (15).
Fig. 7. Comparison of finite element results (symbols) and analytical (lines) results of longitudinal and lateral tensile stiffness of general trapezoidal

suture interfaces, changing with b (�y oboy, y¼21.81, i.e. A/l¼1, and fv¼0.8), under (a) longitudinal tension, and (b) lateral tension.
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As can be seen in Eqs. (19), when the teeth are rigid (RS -þN), the longitudinal stiffnesses are symmetric about b¼0
because, physically, the stiffness of the rigid tooth model is governed by deformation of the interface and the stress distribution
in the interfaces is symmetric about b¼0. However, as shown in Fig. 7a, when the teeth are deformable, the longitudinal
stiffness is not symmetric about b¼0, because the stress distributions within the trapezoidal versus the anti-trapezoidal teeth
are different and hence their contributions to the overall stiffness differ (shown in Fig. 7a and the Appendix A). This is most
clear by noting the reduced net cross-sectional area of the anti-trapezoidal versus trapezoidal tooth root which results in very
different strain energy stored in the teeth for the two cases of b and –b. Furthermore, when b¼�y, the cross-sectional area of
the tooth root decreases to zero and hence the tensile stiffness is zero for all finite stiffness ratios, as shown in Fig. 7a.

As can be seen in Eqs. (20) and Fig. 7b, the lateral stiffness is always symmetric about b¼0, whether the teeth are rigid
or deformable. This is because, physically, for the cases of shape factors b and –b, the stress states in the interface layers
and in the teeth are the same, as shown in Eqs. (20) and the stress contours shown in Fig. 7b.

4.1.2. In-plane shear

4.1.2.1. Analytical derivation. A virtual tangential traction dsxy along the tooth base resulting from far-field tangential
traction dsxy transmits across the interdigitating suture seam and generates a responsive tangential traction dtt, and
normal traction dtn along the interface, as shown in Fig. 8a.

The effective far-field virtual tangential traction dsxy is related to the virtual tangential traction dsxy at the base of the
teeth via simple weighting of the load bearing areas (refer Figs. 3c and 8a)

dsxy ¼
t

l
dsxy ¼ f v

tanj
tany

� �
dsxy: ð21Þ

The force equilibrium of an isolated tooth (Eqs. (8) and (11)) yields the relation between dsxy and dtn and dtt as

dsxy ¼
dtt tanbþdtn

tanj : ð22Þ

Similar to the derivation of tensile stiffness, the shear modulus of a general trapezoidal suture is derived as (a detailed
derivation is given in Appendix D)

Gxy y, bð Þ ¼
f 2

vE0E1C0ðbÞ
f vE0C0ðbÞCb

þE1 1�f v

� �
tan2 yþE1 tan y tan bCr

, ð23aÞ

where Cb and Cr are functions of y
Cb
¼

3E1
4Gs
þ 5

16 tanyð Þ
�2, Cr

¼
3G0
2Gs
þ 9

8
G0
E1

tanyð Þ
�2,which are consistent with Li et al. (2012); also, Cb is related to bending-

induced deflection Db via Cb
¼ f v Db=A

� �
E1=sxy

� �
, Cr is related to shear-induced angle change gb via Cr

¼ f vgb G0=sxy

� �
; and

C
0

ðbÞ ¼ G0=E0

� �
tanbð Þ

2
þ EPS

0 =E0

� �
:. When b¼y, Eq. (23a) reduces to the shear stiffness for a triangular suture interface, as

derived by Li et al. (2012). When the teeth are rigid, Cb
¼0 and Cr

¼0, so the shear modulus is simply

GRTM
xy ¼

f 2
vE0C 0ðbÞ

1�f v

� �
tan2 y

¼
f 2

v

1�f v

� � 1

tan2 y
EPS

0 þG0 tan2 b
� �

: ð23bÞ

4.1.2.2. Finite element simulations. The deformation mechanisms (including both bending and shear) of the teeth under
effective simple shear (Fig. 8b, right) at the boundary are visualized through finite element simulations of triangular suture
interfaces with various y. Fig. 9 depicts the deformation of teeth for sutures with different stiffness ratios. The combined
shear and bending of the teeth are clearly shown, with bending becoming more dominant as stiffness ratio increases
(Li et al., 2012). The local normal stress syy in the teeth reaches a maximum value at the corners of the tooth base for all
Fig. 8. Schematics of force equilibrium of a general trapezoidal suture interface model and the free body diagram of an isolated tooth under shear

loading, (a) when teeth are rigid, and (b) when teeth are deformable (coupling shear and bending effects, ‘blue’ represents the top row of teeth, ‘green’

represents the lower row of teeth, ‘pink’ represents the interfacial layer). (For interpretation of the references to color in this figure caption, the reader is

referred to the web version of this article.)



Fig. 9. Deformation of a tooth in triangular suture interfaces subject to simple shear for stiffness ratios of 10, 100 and 1000, and for y ¼2.91 and fv¼0.8

(the contour shown is at 1% overall shear strain, the deformation is amplified by a factor of 10).

Fig. 10. Comparison of finite element (symbols) and analytical (lines) results of effective shear moduli as a function of shape factor b, i.e. for four types of

general trapezoidal suture interfaces.
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stiffness ratios as a result of the bending moment being greatest at this location, as shown in Fig. 9.
Finite element simulations of the four types of general trapezoidal geometries under simple shear are processed for the

case of y ¼21.81, fv¼0.8 and for b¼�11.31, 01, 11.31, and 21.81, respectively. The finite element results and the analytical
results of the shear moduli for different b and RS are compared in Fig. 10.

It can be seen in Fig. 10 that when the teeth are rigid (RS -þN), the shear modulus is symmetric about b¼ 01.
The rectangular suture geometry gives the smallest shear stiffness because the interfaces are only under pure tension and
compression, while the interfaces for other shapes are under the same tension and compression as well as a component of
shear, and therefore the higher strain energy of deformation makes these interfaces stiffer.

When the teeth are deformable, the shear modulus monotonically increases with b, as can be seen in Fig. 10. At a
certain effective shear strain (D/A), when b increases, the strain energy in the teeth and the total strain energy of the suture
interface increase. When b is negative, the shear modulus is very sensitive to b, especially for high stiffness ratios. This is
because when b is close to –y, either the effective bending or shear resistance of the teeth approaches zero (since the tooth
end has the smallest net section and hence the least stiffness to bending and shear). On the other hand, when b is positive,
the shear modulus is much less sensitive to b.
4.1.3. Parametric study of the influence of tooth angle on stiffness components for various geometries and material compositions

Analytical expressions (Eqs. (19), (20)–(23)) of the in-plane components of the normal and shear stiffness components Ey,
Ex and Gxy were found as a function of material properties EPS

0 , G0, E1, G1 and geometric parameters b, fv and y. In this section,
the dependence of the non-dimensional effective stiffness components Ey/E0, Ex/E0, and Gxy/G0 on geometry and stiffness ratio
are examined. Ey/E0, Ex/E0, and Gxy/G0 are plotted in Fig. 11 as a function of tooth angle y by using Eqs. (19)–(23).



Fig. 11. Analytical results of the in-plane moduli and their relations to geometric and material parameters of single-waved suture interfaces,

(a) influences of the non-dimensional interface width, (b) influences of stiffness ratio, and (c) influence of y and b on the amplification of in-plane moduli.
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Fig. 11 shows that each of the three stiffness components is highly nonlinearly related to tooth tip angle. Generally, for
all types of general trapezoidal suture interfaces, the longitudinal stiffness Ey/E0 increases when the tip angle decreases, as
shown in Fig. 11 (left column). For very small tip angles, Ey/E0 increases very rapidly towards Voigt law when y approaches
zero. For relatively large y, the Ey/E0 predicted by the rigid tooth model and the deformable tooth model are close, as
shown in Fig. 11a and b, since the applied deformation is primarily accommodated by the interface. However, when y is
small, the rigid tooth model overestimates the stiffness and the deformation of teeth must be considered. The trends of
lateral stiffness Ex/E0 for relatively large and small tip angles are opposite to those of the longitudinal stiffness, as expected,
with Ex/E0 increasing rapidly when y increases towards p, as shown in Fig. 11 (right column). The lateral stiffness of
rectangular suture interfaces does not depend on y (where 2 tan y is the aspect ratio for rectangular teeth), and the lateral
stiffnesses of trapezoidal and anti-trapezoidal suture interfaces are the same.

The shear stiffness Gxy/G0 increases with decreasing y for the rigid tooth model (RTM) since shear deformation must be
fully accommodated by the interface layer. However, for the DTM, the suture shear stiffness exhibits a peak at a y that
depends on the stiffness ratio due to the relative contributions of shear and bending of the teeth to the overall
deformation. When the tip angle is either very small or very large, Gxy/G0 is very small, as shown in the middle figures of
Fig. 11 (center column). When RS or b increases, the peak of shear modulus shifts to the left (i.e. shift to smaller tip angles);
while when g/l decreases, the peak of shear modulus shifts to right (i.e. shifts to larger tip angles). Also, it can be seen from
Fig. 11 that when the interface width to wavelength ratio g/l decreases (i.e. the volume fraction increases), or when the
stiffness ratio RS increases, or when b increases, all three stiffness components increase.

4.1.4. Anisotropy ratio

As one measure of anisotropy, we take the anisotropy ratio Ey/Ex. Here, Ey/Ex for the triangular suture interfaces is
plotted as a function of y for various RS, fv and b as shown in Fig. 12a, b and c, respectively. As expected, the anisotropy
ratio is close to one in the middle range of y (y near 451) for all values of RS, fv and b since the interface will have the same



Fig. 12. Anisotropy ratio Ey/Ex vs. y for various tooth/interface stiffness ratio (a), volume fraction of teeth (b), and different types of general trapezoidal

suture interfaces.
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relative local shear and normal stress for both longitudinal and lateral loading when y ¼451. However, the anisotropy
ratios are large for very small or very large tip angles because, as can be seen from Eqs. (19) and (20), the difference
between Ey and Ex is positively related to the difference between sin2 b and cos2 b, and roughly speaking,
Ey(y)EEx(901�y). Fig. 12a shows that for either very small or very large y, the degree of anisotropy increases rapidly
when the stiffness ratio increases; while when y is around 901, the stiffness ratio has little influence on the anisotropy of
suture interfaces due to the more dominant role of interface deformation to overall deformation.
4.2. Strength and failure mechanisms

In this section, failure mechanisms, strength and fracture toughness of general trapezoidal suture interfaces are studied
for an idealized scenario of perfect bonding between the two phases, assuming a critical principal stress failure criterion
for each phase. Thus, two failure mechanisms are taken to be possible: tooth breakage and interface failure, each taken to
occur when the maximum principal stress reaches a critical value. The geometry dependence of the effective tensile and
shear strength, toughness, and failure mechanisms of suture interfaces are now explored.
4.2.1. Tension

The failure criterion for a suture interface is taken to be when the maximum principal stress in either teeth or interface
layer achieves a critical stress, the tensile strength, of the respective phase material. When the suture interface is under
tension, the maximum principal stress sP

0 in the interface layer is approximated as

sP
0 ¼

1þv0ð Þtn

2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v0ð Þtn

2

h i2
þ ttð Þ

2

r
:

By using Eq. (15), sP
0 is expressed as

sP
0 ¼ s B j, b

� �
, ð24aÞ

where

B j, b
� �

¼
tan j cos b

2
1þv0ð Þsin bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v0ð Þ

2 sin2 bþ4 cos2 b
q� �

, ð24bÞ

and where s is the maximum principal stress in the teeth.
The failure mechanism that will occur is determined by whether sP

0 reaches the tensile strength sf
0 of the interfacial

material first or if s reaches the tensile strength sf
1of the tooth material first. Therefore, the effective strength sf of the

suture interface can be expressed as

sf
¼ f vs

f
1 min ½sI , sII�, ð25aÞ

where sI is the effective suture strength considering tooth failure, and sII is the effective suture strength considering
interface failure. sI and sII are derived as functions of the strength ratio sf

1=s
f
0

� �
, y and b

sI ¼
tanj
tany tooth failure : s¼ sf

1

� �
sII ¼

sf
0

sf
1

tanj
tanyB j, bð Þ

interface failure : sP
0 ¼ s

f
0

� � :
8>><
>>: ð25bÞ



Fig. 13. (a) Optimal y1 in maximizing the effective strength of general trapezoidal suture interfaces vs. strength ratio of the two phases for various

b (y1Zb), (b) non-dimensional strength vs. nondimensional slantness b/y.
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When sI ¼ sII , the teeth and interface fail simultaneously. Hence, we can derive the tip angle y1 corresponding to the
failure mechanism transition as a function of the strength ratio ðsf

1=s
f
0Þ and b

yo
¼ tan�1 4sf

0

sf
1

1

cos b ½ 1þv0ð Þsin bþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v0ð Þ

2sin2 bþ4 cos2 b�
q �tan b

8><
>:

9>=
>;: ð25cÞ

When b¼0, yo
¼ tan�1 2sf

0=s
f
1

� �
, which is consistent with the tip angle for failure mechanism transition of rectangular

suture interfaces derived using the maximum shear strength criteria for the interfacial material by Li et al. (2011). This is
because in this case, the interface is only under shear, hence, the shear stress of the interface equals to the maximum
principal stress. When yoy1, tooth failure occurs; when y4y1, the interface fails; and when y¼y1, the teeth and interface
fail simultaneously.

Eq. (25c) is plotted in Fig. 13(a). It can be seen that for all b values, i.e. for all wave forms, y1 decreases when ðsf
1=s

f
0Þ

increases. When b40, there is a maximum strength ratio, beyond which y1 does not exist, which means the suture
interfaces only fail by interface failure; when bo0, y1 exists for all values of ðsf

1=s
f
0Þ, however, y1 is asymptotic to 9b9 when

ðsf
1=s

f
0Þ increases. According to Eqs. (25a) and (25b), the nondimensional effective strength of the suture interfaces

sf =f vs
f
1

� �
is plotted as a function of y, and the nondimensional slantness of the slant interfaces (defined as b/y), as shown

in Fig. 13b. It can be seen that sf =f vs
f
1

� �
increases monotonically with b/y.

Eqs. (25) show that under tension, when tooth failure occurs, the effective strength is only determined by the geometry
and the strength of teeth, independent of strength of the interface; while when interface failure occurs, the effective
strength depends on geometry and the strength ratio of the tooth material and interface material ðsf

1=s
f
0Þ. By decreasing

the strength ratio ðsf
1=s

f
0Þ (i.e. by increasing the interface strength/tooth strength ratio), the effective strength of suture

interfaces which exhibit interface failure can be improved significantly.

4.2.2. Shear

Similarly, when the suture interface is subjected to simple shear, the maximum principal stress in the interface layer is
approximated as

sP
0S ¼

1þv0ð Þtn

2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�v0ð Þtn

2

h i2
þ ttð Þ

2

r
:

By using Eqs. (21)–(23), tt and tn are related to the effective far-field shear stress t via

tt ¼
sxyD1

f v

tn ¼
sxyD2

f v

,
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>: ð26Þ
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and

D2 ¼
EPS

0

tany
f 2

v

1�f v

� �
Gxy
�

f v

1�f v

Cb

E1

" #

¼
EPS

0 tanyþEPS
0 tanbCr

E0C0
:

When the suture interface is subjected to simple shear, the stress distribution in the teeth is no longer uniform and the
maximum principal stress sP

1S is located at the corner of the tooth base, as shown in Fig. 14.
The stress tensor has two main components: the shear component t and a normal component sb due to bending.

Therefore, sP
1S is expressed as

sP
1S ¼

sb

2
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sb

2

� �2
þt2

r
:

By employing the theory of beam bending, sb is related to sxy by

sb ¼
sxyD3

f v

, ð27Þ

where

D3 ¼
f v6lA

t2
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12 tany
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2
:

Consequently, the effective shear strength of suture interfaces is derived as functions of sf
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f
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� �
, y and b :
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where the effective strength corresponding to the two failure mechanisms, tI and tII are
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Similar to the case of tension, when tI ¼tII , the teeth and interface fail simultaneously. Hence, the tip angle yo
S

corresponding to the failure mechanism transition can be determined. The yo
S for shear failure mechanism transition is not

only determined by the strength ratio and geometry sf
1=s

f
0

� �
, y and bÞ

�
, but also determined by the stiffness ratio of the

two phases, because D1 and D2 are functions of stiffness ratio. However, the y1 for tensile failure mechanism transition
does not depend on the stiffness ratio.

Eqs. (28) show that under simple shear, when tooth failure occurs, the effective strength is only determined by the
geometry and the strength of teeth, independent of the strength of the interface; while when interface failure occurs, the
effective strength depends on geometry and the strength ratio of the interface material and tooth material. By decreasing
the strength ratio, the effective strength of suture interfaces which exhibit interface failure can be improved significantly.
However, interface failure will not lead to the catastrophic failure of the suture interface due to the interlocking of teeth
during shear, which means the suture interfaces still can take shearing load even after the interface fails.
Fig. 14. Distribution of maximum principal stress sP
max , stress component due to bendingsyy and that due to shear sxy, for a case of (a) small tip angle,

y¼2.91, and (b) a case of relatively large tip angle, y¼21.81.



Y. Li et al. / J. Mech. Phys. Solids 61 (2013) 1144–1167 1159
4.3. Fracture toughness

The non-dimensional tensile fracture toughness G
f

and shear fracture toughness G
f

S of a suture interface are defined as

G
f
¼ s f

sf
1

� �2 E1

Ey

G
f

S ¼
tf

sf
1

� �2 G1

Gxy

,

8>>>><
>>>>:

ð29Þ

where expressions for sf and tf were given in Eqs. (25) and (28), respectively. G
f
and G

f

S are highly nonlinear functions of y
and fv, monotonically decreasing with an increase in fv and exhibiting a non-monotonic dependence on y. The non-
dimensional tensile fracture toughness is expected to reach an optimum at y1 (shown in Eq. (25c)) dependent on b and the
strength ratio, which corresponds to a simultaneous failure of the interface and teeth, i.e. at the point of failure mechanism
transition, because the strength of both materials are fully utilized.

Quantitative plots of the analytical solutions derived in this section will be presented in the next section.

5. Effect of tooth shape on stiffness, strength, and toughness

Based on the analytical derivations in Section 4, comparisons of both tensile and shear stiffness, strength, failure
mechanisms and fracture toughness for four general trapezoidal suture interfaces of different y are now presented.
The four types of general trapezoidal suture interfaces are represented by taking b¼ y (triangular), b¼ 0.5y (trapezoidal),
b¼ 0 (rectangular), and b¼ �0.5y (anti-trapezoidal), respectively.

5.1. Tension

Schematics of the two failure mechanisms of the four types of general trapezoidal suture interfaces under tension are
shown in Fig. 15a. Stiffness, strength and fracture toughness of these four types of suture interfaces are plotted and
compared in Fig. 15b, c and d, respectively.

Fig. 15b–d shows that the tensile stiffness, strength and fracture toughness of all the general trapezoidal wave-forms
are significantly improved with a flat interface, especially for relatively small y. When y is small, the stiffness, strength and
fracture toughness are strongly dependent on b. However, when y increases, these differences diminish and the stiffness,
strength and fracture toughness asymptote to those of flat interfaces.

When y is small, Fig. 15b, c and d shows that the stiffness, maximum strength and maximum toughness of the four
types of general trapezoidal suture interfaces follow a ranking of triangular4trapezoidal4rectangular4anti-trapezoidal.
The reduced net load-bearing section of the tooth base leads to higher stress in the anti-trapezoidal teeth and hence
reduced strength; the differences in the stress distribution also correspond to the reduced energy stored in the anti-
trapezoidal teeth and hence stiffness decreases. Interestingly, as shown in Fig. 15d, a cusp forms at the point of failure
mechanism transition and the peak tensile fracture toughness is achieved when the failure mechanism transition occurs.
The fracture toughness reduces rapidly on both sides of the cusp, which indicates an optimal design parameter for
maximizing fracture toughness density.

The failure mechanism transition is governed by only two parameters, the strength ratio, ðsf
1=s

f
0Þ, and y. An increase in

strength ratio gives a transition in tensile failure mechanism at a smaller y, as shown in Fig. 15e. The effective tensile fracture
toughness is a function of the strength ratio and the stiffness ratio. A decrease in strength ratio or an increase in stiffness ratio
gives an increase in the non-dimensional tensile fracture toughness, as shown in Fig. 15f and g. The rectangular and trapezoidal
suture interfaces are more likely to fracture by interface failure, whereas the anti-trapezoidal suture interface is more likely to
fracture by tooth breakage. Fig. 15d shows that the value of y corresponding to the failure mechanism transition decreases when
b increases, and for relatively large y, suture interfaces of all shapes fail by interface failure.

Additionally, although anti-trapezoidal shapes show the lowest stiffness, strength and fracture toughness among all
general trapezoidal shapes, anti-trapezoidal shapes have an advantage over other shapes. The interlocking of anti-
trapezoidal teeth is beneficial because interface failure of anti-trapezoidal suture interfaces will not lead to catastrophic
failure of the suture interfaces, while for the other three types, interface failure is fatal. This advantage becomes more
superior when y is large and the differences in stiffness, strength and fracture toughness due to geometry are diminishing.

5.2. Shear

Schematics of the two failure mechanisms of the four types of general trapezoidal suture interfaces under shear are
shown in Fig. 16a. The predicted stiffness, strength and fracture toughness of the four general trapezoidal suture interfaces
under simple shear are shown in Fig. 16b, c and d, respectively. Fig. 16b–d shows that when y is in the middle range, the
stiffness, strength and fracture toughness dependence on geometry is the greatest. However, when y is very small, the
geometry dependence is much smaller.

For almost the entire range of y, the shear stiffness, strength and fracture toughness follow the ranking of
triangular4trapezoidal4rectangular4anti-trapezoidal, as shown in Fig. 16b–d. Fig. 16b–d shows that for all shapes,



Fig. 15. Mechanical properties of four types of general trapezoidal suture interfaces under longitudinal tension (in (b), (c) and (d), the solid symbols ‘ ’,

‘ ’, ‘’’ and ‘c’ represent the tooth breakage mechanisms of triangular, trapezoidal, rectangular and anti-trapezoidal suture interfaces respectively; the

hollow symbols ‘D’, ‘ ’, ‘&’, and ‘ ’ represent the interface failure mechanisms of triangular, trapezoidal, rectangular and anti-trapezoidal suture

interfaces respectively (in (e), (f) and (g), the solid symbols ‘m’ and the hollow symbols ‘D’ represent the mechanisms of tooth breakage and interface

failure respectively). (a) Schematics of two failure mechanisms, (b) nondimensional effective tensile stiffness, (c) strength and (d) fracture toughness as a

function of 2y and b, (e) nondimensional effective tensile strength (b¼y) as a function of 2y and strength ratio, (f) nondimensional effective tensile

fracture toughness (b¼y) as a function of 2y and strength ratio, and (g) nondimensional effective tensile fracture toughness (b¼y) as a function of 2y and

stiffness ratio.
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the shear stiffness strength and fracture toughness show maximum values when the value of y is in the middle range, and
the y corresponding to a maximum decreases when b increases. Fig. 16d and e shows that the maximum strength and
fracture toughness for all shapes occur at the point of failure mechanism transition.

By comparing Figs. 15d and 16d, it can be seen that for the same strength ratio ðsf
1=s

f
0Þ, suture interfaces of all shapes

have lower shear resistance than tensile resistance and are more likely to fail by tooth breakage under shear than tension.
Again, the failure mechanism transition under shear is governed by two parameters, the strength ratio ðsf

1=s
f
0Þ and y.

A higher strength ratio corresponds to a shear failure mechanism transition at smaller y, as shown in Fig. 16e. The effective
shear fracture toughness is a function of the strength ratio and the stiffness ratio. A decrease in strength ratio or an
increase in stiffness ratio gives an increase in the non-dimensional shear fracture toughness, as shown in Fig. 16f and g.

Furthermore, although when y is large, the anti-trapezoidal shape gains tensile strength due to interlocking without
sacrificing tensile and shear stiffness, the shear strength and fracture toughness are sacrificed significantly.
6. Conclusions and discussion

Nature, through the evolutionary process, employs both ‘‘inherent’’ material properties and geometry to produce
mechanically functional designs (e.g. Gao, 2006; Ortiz and Boyce, 2008; Garcia et al., 2011; Espinosa et al., 2011).
Constraints such as limited availability of materials and energetic costs for fabrication together with the desired functional



Fig. 16. Mechanical properties of four types of general trapezoidal suture interfaces under simple shear(in (b), (c) and (d), the solid symbols ‘ ’, ‘ ’, ‘’’

and ‘c’ represent the tooth breakage mechanisms of triangular, trapezoidal, rectangular and anti-trapezoidal suture interfaces respectively; the hollow

symbols ‘D’, ‘ ’, ‘&’, and ‘ ’ represent the interface failure mechanisms of triangular, trapezoidal, rectangular and anti-trapezoidal suture interfaces

respectively; in (e), (f) and (g), the solid symbols ‘m’ and the hollow symbols ‘D’ represent the mechanisms of tooth breakage and interface failure

respectively) (a) schematics of two failure mechanisms; (b) nondimensional effective shear stiffness, (c) strength, and (d) fracture toughness as a function

of 2y and b; (e) nondimensional effective shear strength (b¼y) as a function of 2y and strength ratio; (f) nondimensional effective shear fracture

toughness (b¼y) as a function of 2y and strength ratio; and (g) nondimensional effective shear fracture toughness (b¼y) as a function of 2y and

stiffness ratio.
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performance govern the tailoring of geometry as an effective design strategy. The evolutionary diversity of morphometry,
in particular at macroscopic length scales, has been studied for many years (e.g. Curry, 1987; Wainwright, 2007). Over the
past decade, there has been much focus on identifying and understanding the micro- and nanostructural design principles
of biomaterials that lead to mechanical property amplification (Ortiz and Boyce, 2008), but evolutionary diversification in
material properties is just beginning to be explored (Blackledge, 2011). Detailed quantitative knowledge and a
fundamental understanding of material–geometric design coupling and its functional consequences offer opportunities
and insights for design of material systems, especially under design and processing constraints (Gao, 2006; Espinosa et al.,
2011; Bruet et al., 2008; Li et al., 2011, 2012). Here, we explore this topic by modeling a biomechanical structure found
throughout biology, suture interfaces, which employs both material and geometric design. Of particular interest is the role
of geometry in tailoring and amplifying mechanical behavior, providing new and advantageous deformation mechanisms,
expanding the design space, and yielding insights into the evolutionary origins and functional consequences.

A general linear elastic composite formulation was developed for an arbitrary suture interface under in-plane loading (i.e.
longitudinal tension, lateral tension and simple shear) using the principle of complementary virtual work. Based on this
formulation, analytical solutions for stiffness, strength, failure mechanisms, and fracture toughness were derived for general
trapezoidal suture interfaces characterized by non-dimensional material properties (tensile and shear stiffness ratios (E1/E0) (G1/
G0) and strength ratio of the materials ðsf

1=s
f
0Þ and a set of independent non-dimensional geometric parameters (y, b and fv).

Finite element simulations further support the results and provide visualization of the stress and strain and corresponding
deformation mechanisms.
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6.1. Major results
�

�

Nonlinear sensitivity: The mechanical properties of the suture systems exhibit a highly nonlinear dependence on
geometry. For example, when y is small (2yo�301), the longitudinal stiffness Ey increases dramatically when y
decreases; while when y is large (2y4�1501), the lateral stiffness Ex increases dramatically when y increases, as
shown in Fig. 11. Also, when y is small, the tensile and shear stiffness, strength and fracture toughness are very
sensitive to the shape factor b, as shown in Figs. 15 and 16.

�
 Anisotropy: The structural geometry of the suture waveform results in overall anisotropic mechanical properties.

The mechanical anisotropy ratios can be tailored over a range of orders of magnitude by selecting the geometric
parameters and the material composition of the suture, as shown in Fig. 12. Anisotropy is one goal of design to allow for
optimal use of materials when the prevalent loading and functional requirements are directional.

�
 Tailorability and amplification: The stiffness, strength and fracture toughness of an interface with general trapezoidal

wave-forms provide significant enhancements in the mechanical properties when compared to a flat interface (Fig. 15),
especially for relatively small y (where y is determined by the amplitude to wavelength ratio A/l for any given volume
fraction of tooth material, as shown in Eq. (11)).
Particular findings include:
J Stiffness: For general trapezoidal suture interfaces,5 the triangular shape shows the highest stiffness compared to the

other three waveforms (trapezoidal, rectangular and anti-trapezoidal) in both tension and shear. The anti-
trapezoidal waveform exhibits the lowest stiffness due to its smallest net section at the tooth root and the
corresponding non-uniform stress distribution in the teeth which significantly reduces the energy storage
capability. The rectangular and trapezoidal waveforms exhibit intermediate properties. When the stiffness ratio
increases, shape effects diminish more rapidly with increasing y since all deformation occurs in the interfacial
material. For all shapes, the tensile stiffness increases when y decreases. In contrast, the shear stiffness reaches a
peak when y reaches a critical value yn

S (by taking Gxy’¼0, in Eq. (23a), where yn

S is strongly dependent on b and the
stiffness ratio RS; yn

S decreases with increasing RS and is smallest for the triangular waveform and largest for the anti-
trapezoidal, as shown in Fig. 16b. These shear stiffness dependencies are directly related to the bending and shearing
deformation mechanisms of the teeth and corresponding stress distributions which all depend on b.

J Strength: General trapezoidal suture interfaces have two failure mechanisms: tooth breakage and interface failure.
Under tension, a critical y1 exists: when y oy1, tooth breakage occurs, and when y 4y1, interface failure occurs.
When the failure mechanism of tooth breakage occurs, the triangular shape shows the highest strength in both
tension and shear due to its uniform stress distribution which provides the most efficient usage of the materials. The
anti-trapezoidal suture interface shows the lowest strength due to the smallest net section area of the tooth root
giving a large stress concentration which means the macroscopic stress at which the suture fails is lowest for this
geometry. The strengths of the rectangular and trapezoidal interfaces lay in between.
When the failure mechanism is interface failure instead of tooth breakage, the anti-trapezoidal suture interface
offers an advantage in tension due to the interlocking between the teeth. Under shear loading, interlocking between
teeth occurs for all shapes and thus interface failure under shear does not correspond to catastrophic failure for any
of these shapes. For all shapes, the tensile strength increases when y decreases and is constant after y¼ y1. In
contrast, the shear strength reaches a peak when y reaches a critical value yo

S which is not only strongly dependent
on b and the strength ratio ðsf

1=s
f
0Þ, but also dependent on the stiffness ratio, as shown in Figs. 15g and 16g.

J Fracture toughness: Fracture toughness of general trapezoidal suture interfaces shows a cusp at the point of failure
mechanism transition for both tension (when y¼y1, Eq. (25c)) and shear (when y ¼yo

S): for yoy1 (tension) or y oyo
S

(shear), the fracture toughness increases rapidly when y increases; for y4y1 (tension) or y 4yo
S (shear), the fracture

toughness decreases rapidly when y increases. Therefore, y1 (tension) and yo
S (shear) each provides an optimal

geometry which maximizes the fracture toughness. y1 is governed by the strength ratio of the two phases, where an
increase in strength ratio gives a smaller y1, as shown in Fig. 15f, because the suture interfaces will fail by interface
failure since the stress levels in the teeth do not reach magnitudes large enough to cause tooth breakage. However,
y1 does not depend on the stiffness ratio, while yo

S does, as shown in Fig. 16g, where an increase in stiffness ratio
gives a larger yo

S . Again, when the failure mechanism of tooth breakage occurs, the triangular shape shows the
highest fracture toughness over the other three types in both tension and shear. The anti-trapezoidal suture
interface shows the lowest fracture toughness, as shown in Figs. 15d and 16d.
5 T
Optimization: The triangular tooth geometry shows the optimal longitudinal tensile strength due to the remarkable
uniform normal stress distribution in the teeth and uniform shear stress in the interfacial layer (Li et al., 2011). In fact,
triangular suture interfaces show the maximum tensile and shear stiffness, strength, and fracture toughness among all
general trapezoidal shapes as shown in Figs. 15 and 16. The rectangular geometry exhibits the optimal lateral strength
as shown in Fig. 7b. Tensile stiffness for all waveforms increases with decreasing y. Also, optimal tip angles were found
for maximizing the tensile strength (yo, Eq. (25c)), the shear strength (yo

SÞ and also the fracture toughness, and were
found to be strongly dependent on the mechanical property ratios and the waveform (b). These optimal values are a
he slant segments of interfaces are dominant and the influences of the flat segments of interface are small.
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direct result of the stress distribution and strain energy in the different waveforms for the different loading conditions.

�
 Advantageous deformation mechanisms: Generally, non-single valued interfacial profiles normal to the loading

condition can provide interlocking mechanisms which resist the loading and can provide a damage tolerance to
overall suture failure once interface failure has occurred. For example, the interlocking mechanism of dove-tail
shaped building blocks in nacre-inspired composites were demonstrated through experiments, simulations, and a
model material in the literature (Barthelat et al., 2007; Tang et al., 2007; Espinosa et al., 2011; Barthelat and Zhu,
2011)). Also, the out-of-plane interlocking mechanism of turtle suture were shown via experiments and analytical
modeling (Krauss et al., 2009), and the in-plane interlocking mechanisms of ammonite-inspired hierarchical suture
interface were explored analytically via a deterministic fractal model (Li et al., 2012). Furthermore, during shear, all
waveform profiles other than flat interface provide interlocking to provide a damage tolerance mechanism for shear
loading.

�
 Bio-inspired design: The general formulation of the mechanics of suture interfaces with arbitrary geometry and the

specific solutions for general trapezoidal suture interface can serve as a design guideline for engineering systems and
synthetic materials. Therefore, suitable shapes and geometric parameters should be chosen to reach the optimal
mechanical function under different loading cases:
J To resist uniaxial tension/compression, a triangular shape with small y is recommended. Triangular shape with large

y needs to be avoided because of the significantly reduced tensile stiffness, strength and fracture toughness when y
increases.

J To resist multi-axial tension/compression, anti-trapezoidal or triangular shape with relatively large y (�451) is
recommended in order to provide isotropy. Also, because the anti-trapezoidal shape gains provide the interlocking
mechanism for all loading, these shapes are desirable for interfaces which will be subjected to multiaxial loading
even though its shear strength and fracture toughness are lowest. In fact, any interface profile f (x) of non-single
valued function will show a similar interlocking effect.

J To resist shear, triangular shapes with y in the middle range (15–451) are recommended because of the peak
stiffness, strength and fracture toughness in this range. Triangular shapes with small y needs to be avoided because
of the significantly reduced shear stiffness, strength and fracture toughness which arise due to the bending of the
teeth during shear. The anti-trapezoidal shape is not recommended for resisting shear due to the significantly
reduced shear strength and fracture toughness.

J Anti-trapezoidal shape is recommended to avoid catastrophic failure and provides damage tolerance when y must
be large and good adhesives are not available.
6.2. Relevance to biological systems

Interestingly, suture interfaces in natural systems follow the aforementioned rules in tailoring geometry. For
example, the pelvic suture of Gasterosteus aculeatus (three-spined stickleback) is mainly under uniaxial tension/
compression loading when fulfilling daily function (Song, 2011; Song et al., in review), thus triangular suture interfaces
are employed and show a spatial variation in y corresponding to spatially distributed loading levels, with small y in the
region where high stiffness is required and large y in the region where low stiffness is needed (Song et al., in review;
Song, 2011). Diatom suture interfaces connecting two neighboring frustules (where the frustules have a cylindrical
shape) are under bi-axial tension/compression and in-plane shear, therefore, general trapezoidal shapes are employed
with a y value in the middle range and y is uniform due to the axial symmetry of the cylindrical frustules generating the
nature of the loading. The cranial suture of vertebrates are under multi-axial tension/compression due to the irregular
spherical shape of the skull, thus the cranial sutures exhibit a very complicated shape with tooth in various shapes
growing in different directions, as shown in Fig. 1f.

In conclusion, the general suture interface model captures the dependence of the mechanical behavior including
stiffness, strength and deformation and failure mechanisms of the suture interface on the geometry and material
composition. This model can be used to derive detailed guidelines for designing the geometry and choosing material
composition of suture interface to function under different in-plane loading cases and also provides insights into the
morphological diversity of suture interfaces in biological systems.
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Appendix A. Derivation of stress distribution in the teeth of general trapezoidal suture interfaces

Force equilibrium yields the relationship between the normal stress within the tooth, syy(y), and the interfacial normal
and tangential traction, tn (y) and tt(y)

syy yð ÞþdS
	 


f yð Þþdf
	 


�syy yð Þf yð Þ ¼ tt
dx

cosb
cosbþtn

dx

cosb
sinb: ðA1Þ

By neglecting the higher order term, we have

d½syyðyÞf ðyÞ� ¼ ttþtntanbð Þ dy: ðA2Þ

By using Eqs. (19), Eq. (A2) becomes

d½syyðyÞf ðyÞ�

dy
¼ sy tanj: ðA3Þ

Due to the boundary conditions that syy(0)¼0, and syy(A)¼sy, the stress distribution in the teeth is obtained

syy yð Þ ¼
syy tanj

y tanbþA tanj�tanb
� � : ðA4Þ

Hence, the elastic energy stored in the teeth E is expressed as

E ¼
Z A

0

syyðyÞ
2

E1
w yð Þ dy¼

Z 1

0
U yð Þ d

y

A
, ðA5Þ

where U(y) is the strain energy density per unit length along the teeth amplitude. U(y) is normalized by U0 ¼ s2
y A2 as

UðyÞ

U0
¼
syyðyÞ

2

s2
y A2

wðyÞ

A
: ðA6Þ

Eqs. (A4) and (A6) are plotted in Fig. A1, showing the consistency between the analytical results and the numerical
results from finite element simulaitons.

Therefore, the function in Eq. (20a)–(20c) is obtained

z b, j
� �

¼
2EE1f 2

v

sy
2

: ðA7Þ

By substituting Eq. (A5) into Eq. (A7), Eqs. (20b) and (20c) are derived.

Appendix B. Boundary and loading conditions of the RVEs of general trapezoidal sutures

Generally, for an arbitrary loading case, a macroscopic displacement gradient H is imposed to the field of a RVE (Figs. B1
and B2) via periodic boundary conditions (Danielsson et al., 2002), where H¼F�I, F is the deformation gradient, and I is a
unit tensor. The periodicity of suture interface is only along x-direction.

Specifically, there are two cases corresponding to two different RVE boundaries:
1.
Fig
With flat tip material
The RVE has boundaries A–B–C–D (Fig. B1). Only the edges of AD and BC need to satisfy the periodic boundary
conditions. By definition, the relative displacement of nodes on AD and BC, u9AD–u9BC ¼HL, where, the displacement
. A1. Stress distribution (a) and distribution of strain energy density per unit length (b) along the teeth for four types of trapezoidal suture interfaces.
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Fig. B1. Schematics of the loading and boundary conditions in finite element simulations of a RVE of general trapezoidal sutures with tip materials, for

(a) longitudinal tension, (b) lateral tension, and (c) simple shear.
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Fig. B2. Schematics of the loading and boundary conditions in finite element simulations of a RVE of general trapezoidal sutures with no materials at the

flat tips, for (a) longitudinal tension, (b) lateral tension, and (c) simple shear.
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vector of a node is u¼(ux, uy)’, and the length of AB and AD in the reference coordinates, L¼[(XB–XA), (YD–YA)]’, and

H¼
H11 H12

H21 H22

" #
:

For longitudinal tension

H¼
ex 0

0 0

� �
,

and the prescribed displacements are uA¼(0,0), all other nodes on AB have displacements uA’B’¼(free, 0), and all nodes
on CD have displacements uCD¼(free, d); for lateral tension

H¼
0 0

0 ey

" #
,

and the prescribed displacements are uA¼(0, 0), uD¼(0, free), uC¼(d, free), all other nodes on AB (except A) have
displacements uAB¼(free, 0), and the ux of the nodes on CD are the same; for simple shear

H¼
0 gxy

0 0

� �
,

and the prescribed displacements of the nodes on the boundaries are that all nodes on AB have displacements uAB¼(0, 0),
and all the nodes on DD’ and CC’ have displacements uCD ¼(d, 0), as shown in Fig. B1.
2.
 No material at the flat tips
The RVE has boundaries A’’–E–A’–B’–F–B’’–C–C’–F’–E’–D’–D (Fig. B2), i.e. has nodes on these boundaries (for example, there
are no nodes on A’’A and AA’). Only the nodes on the edges of A’’D and B’’C need to satisfy the periodic boundary conditions.
By definition, the relative displacement of nodes on A’’D and B’’C, u9A’’D–u9B’’C ¼HL, where, the length of A’’B’’ and A’’D in the
reference coordinates, L¼[(XB’’–XA’’), (YD–YA’’)]’. The components of H are the same as case (1) for the three loading cases.
As for the prescribed displacements: for longitudinal tension, the prescribed displacements are uA’¼(0,0), all other nodes on
A’B’ have displacements uA’B’¼(free, 0), all nodes on DD’ and C’C have displacements uDD’¼ uCC’¼(free, d); for lateral
tension, the prescribed displacements are uA’’¼(0,0), uD¼(0, free), uC¼(d, free), uB’’¼(free, 0), the ux of the nodes on A’B’ are
the same, and the ux of the nodes on DD’ and C’C are the same; for simple shear, nodes on A’B’ have displacements uA’B’¼(0, 0),
and all the nodes on DD’ and CC’ have displacements uDD’¼ uCC’¼(d, 0), as shown in Fig. B2. For all three loading cases, all
nodes on E’F’ and all other nodes (not prescribed as above) on A’’E, FB’’ are free.

Appendix C. Initial stiffness for general trapezoidal sutures with flat tip interface

Finite element simulations were conducted for the models of general trapezoidal suture interfaces with flat tip
materials with y¼21.81, and b ¼21.81, 11.31, 01 and �11.31, (for triangular, trapezoidal, rectangular and anti-trapezoidal
sutures, respectively). The initial lateral and longitudinal tensile stiffness Ex and Ey of these models were obtained from



Table C1
Comparison of the FE simulation results of general trapezoidal suture interfaces with and without tip material.

Ey (MPa) RS¼10 RS¼100 RS¼1000 RS¼10,000

With tip No tip With tip No tip With tip No tip With tip No tip

Anti-trapezoidal 9998.0 2300.8 2848.8 580.0 347.9 68.8 35.7 7.0

Rectangular 7207.4 2985.6 2057.2 584.0 246.5 64.8 25.1 6.5

Trapezoidal 9832.0 3656.8 1711.7 639.2 179.3 68.8 18.1 7.0

Triangular 8159.0 4448.0 1626.6 768.0 183.9 83.2 19.2 8.3
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these simulations. These stiffnesses were compared with those without tip material. Ex of the two types of models (with
and without tip materials) are nearly the same, i.e. the material at the flat tip has little influence on the lateral tensile
stiffness. However, the material at the flat tip increases the initial longitudinal stiffness (Ey) significantly, as shown in the
table below, (E1 is fixed as 10,000 MPa for all simulations, Rs¼E1/E0) (Table C1).

Appendix D. Derivation of shear stiffness of general trapezoidal suture interfaces

For the general trapezoidal suture interfaces, the external complementary virtual work of far-field virtual tangential
traction dsxy is

dWn

e ¼Ddsxyl, ðD1Þ

where D (refer to Fig. 8a) is the tooth displacement at the boundary due to dsxy and is related to dsxy and the effective
shear modulus of suture interface Gxy as, D¼ dsxyA=Gxy

� �
, where A is the wave amplitude.

The variational strain energy including the deformation of teeth is expressed as

dUn
¼

Z
V0

tt

G0
dtsþ

tn

EPS
0

dtn

 !
dV0þ

Z A

0

MðyÞ

E1I
dM yð Þþ

NðyÞ

GsAs
dN yð Þ

� �
l dy, ðD2Þ

where dM¼EIv00, dN¼GsAsv
0. We can see that the deformation energy of the teeth has two components: bending and shear.

The deflection of the equivalent beam can be solved via the following governing equations considering the coupling
between shear and bending:

GsAs v0�v0b
� �

¼ E1Iv000b
E1Iv000b ¼ dsxy l�2gð Þ

:

(
ðD3Þ

where E1 is Young’s modulus of tooth material; I is the moment of inertia of the cantilever beam, I¼ 1=12 l�2gð Þ
3; As is the

effective shear area of the cross section, and for a rectangular cross section, As¼(2/3)(l�2g); Gs is the local shear modulus
(shown in Fig. 8b), which is calculated by the Voigt law as Gs¼G0(1� fv)þG1fv. Therefore, the total deflection along the
tooth is solved as a polynomial function as

v xð Þ ¼ dsxyl
x3

6E1I
þ

Ax2

2E1I
þ

x

GsAs

� �
ðD4Þ

and the deflection due to bending is

vb xð Þ ¼ dsxyl
x3

6E1I
þ

Ax2

2E1I

� �
: ðD5Þ

If we assume the teeth are rigid, the kinematics of the interface yields the relation between dtn and D, dtt and D:
dtt¼(D/g)G0 tan b, and dtn ¼ D=g

� �
EPS

0 . If we assume the teeth are deformable

dts ¼ G0
D�Dbð Þ

g
tanb�gb

� �
, ðD6Þ

and dtn ¼ EPS
0 D�Dbð Þ=gÞ
�

, where Db is a representative deflection of a tooth due to bending deformation due to dsxy, and gb

is the corresponding shearing deformation. The representative deformation of the tooth is evaluated in the middle of the
equivalent beam as, Db¼v(A/2), and gb¼v0(A/2). For relatively small y, due to shear and bending of the teeth, the
contribution to overall deformation from the teeth is significant. Thus by substituting Eqs. (21), (22), (D1), (D2), and (D3)
into Eq. (4), Eq. (23a) can be derived.
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