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A method is given for the numerical calculation of energy surface integrals within the 
Brillouin zone like density of states, conductivity, susceptibility, dielectric function etc. 
The Brillouin zone is divided into tetrahedrons in which the integrand is interpolated 
linearly. I n  this way the integration can be done analytically avoiding the histogram 
method. Several similar methods are discussed with regard to  the quotient of accuracy 
and effort. 

Es wird eine Methode zur numerischen Berechnung von Integralen iiber Energieflachen 
in der Brillouin-Zone wie Zustandsdichte, Leitfihigkeit, Suszeptibilitat, dielektrische Funk- 
tion u. a. angegeben. Die Brillouin-Zone wird in Tetraeder eingeteilt, in denen der Inte- 
grand linear interpoliert wird. Dadurch kann die Integration unter Vermeidung der 
Histogramm-Methode analytisch durchgefuhrt werden. Mehrere ahnliche Methoden werden 
hinsichtlich des Verhaltnisses von Genauigkeit und Aufwand diskutiert. 

1. Introduction 

Calculating the density of states D(E)  of elementary excitations and other 
related integrals over the Brillouin zone listed in Section 2 often histogram 
methods have been used. They imply in principle serious complications as the 
statistical noise of the calculated function. The mean relative fluctuation of 
D(E)  in an energy interval is inversely proportional to  the square root of the 
number of points in that interval. Decreasing the width of intervals results in 
an increase of statistical noise. If fine peaks in D(s)  shall be described a very 
large number of points must be calculated in order to distinguish between virtual 
statistical peaks and real ones. This situation was the reason for developing 
other calculation schemes for the density of states and related quantities [l, 2, 
3, 51. Gilat and Raubenheimer [l] (GR) divided the k-space into cubes with 
equal volume and described the phonon dispersion relation within the cubes by 
a linear interpolation expression for which the density of states can be evaluated 
analytically. Lipton and Jacobs [2] (LJ)  used a similar method as GR for the 
calculation of the spin susceptibility of metals. Whereas GR use for the inter- 
polation the values of &(k) and grad &(k) a t  the centres of the cubes L J  employ 
the values of e(k) a t  the corners of the cubes what reduces the numerical effort. 
The similar treatment of Lehmann et  al. [3] starts from the fact that the coeffi- 
cients of the linear interpolation expression in a tetrahedron are determined 
uniquely by the values of e(k) a t  the corners of the tetrahedron. In this way 
a continuous interpolation over the total Brillouin zone is got and there are no 
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boundary effects. Moreover, the resulting formulas are very handy. The use of 
higher than linear interpolation expressions for e(k) ,  like in the QUAD method 
(e.g. [4]), makes the analytical determination of D(e)  impossible. Therefore, 
Cooke and Wood [5] proposed a treatment which combines the QUAD and the 
GR method. 

As recently the interest in that problem increased our treatment is reformuIat- 
ed in more detail in Section 3. A comparison of the mentioned three different 
linear schemes for the numerical calculation of the density of states is given and 
the relation of accuracy to  numerical effort is discussed in Section 4. I n  Section 5 
the results of some numerical tests are given. 

2. Applications of the Method 

In  this Section some examples for physical quantities for the calculation of 
which our method is applicable are given. In  Section 3 we shall describe the 
evaluation of integrals of type 

over surfaces AE(k) = const and in the Appendix integrals of type 

over surfaces AE(k) = const are reduced to  (2.1). 6(x) is the usual step function 
which coincides with the Fermi distribution function a t  temperature 27 = 0. 

(i) At first the density of states of elementary excitations with the dispersion 
relation E(k) is mentioned. The equation 

&(k)-= E 

has the form (2.1). 

can be transformed into an Fermi surface integral of the form (2.1): 
(ii) The inverse of the effective mass tensor averaged over the occupied states 

e ( k )  = ep 

where o means the tensor product. 

potential W can be calculated by means of a Fermi surface integral: 
(iii) The conductivity in the direction e due to  crystal imperfections with the 

The relaxation time rk is in the Born approximation a Fermi surface integral 
equation which can be solved iteratively [B]. 
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(iv) The real part of the magnetic susceptibility can be transformed into sur- 
face integrals of type (2.2) [2]: 

dX 
Re xo(9 ,w)  oc p c - ~ [ f  (k + Q ,  P )  - f ( k  y)1 .  

(2.7) 

R 
Alc "(k,q)=-d 

P. s 
(v) The imaginary part of the macroscopic dielectric function in semiconduc- 

tors often is calculated by means of [7] : 

3. Method 

For the evahation of integrals 9 ( s )  over the surface A&@) = 8, 

the BrilIouin zone is divided into tetrahedrons with arbitrary shape but the same 
volume (it is not a necessary condition but simplifies the evaluation). Within 
the tetrahedrons As(k) is interpola,ted by a linear function: 

(3.2) A&(k) = A€, + b k . 
The coefficients A&, and b are determined using the values of As(ki) = A&, 

a t  the corners ko = 0 and k i  (i = 1, 2 ,  3) of the tetrahedron (see Fig. 1) .  Using 
the triple ri contragredient to  ki 

b is expressed as 
3 

i = l  
b = ,Z ( A E ~  - As,) ri . (3.4) 

I 

l,; A € ,  

Fig. 1. One tetrahedron spanned out by the vectors 0,  k,, k,, and k,. 
The hatched planes are planes of constant As. Further explanation 

see in the text k;l=oi A€o 
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v = [kl ,  k,, k3] is the volume of the tetrahedron times six. The interpolated 
function As(k)  in the total Brillouin zone is continuous also a t  the boundaries of 
the tetrahedrons (it was not so in the papers of GR and LJ). Furthermore, it is 
not necessary to treat regions at  the boundary of the Brillouin zone separately 
since the Brillouin zone may be divided into tetrahedrons totally. 

In most cases the function A ( k )  can be interpolated linearly [8] within each 
tetrahedron like As(k) in (3.2). (The case if A ( k )  contains the discontinuous step 
function is treated in the Appendix.) 

(3.5) 
Then a is determined in analogy to  (3.4). However, if A ( k )  depends on 1% via 
grad AE(k) we take grad Ae(k) = b with b from (3.4) and insert this into 
B (grad As(k)). 

a(k) = a, + a k .’) 

With (3.5) the integral (3.1) over one tetrahedron consists of two parts: 

where 

and 

i(&) = a, i&) + ail (&) ,I) 

io(&) = 

h e ( k )  = E  

il(&) = 

ha(k) = E  

i O ( s )  is the density of states from one tetrahedron which can be written as 

i , ( E )  = f ( E )  . P1-l , 
where f ( E )  is the cross section of the plane As(k) = E with the tetrahedron. f ( s )  
may be written as a sum of triangular areas determined by the intersections of 
the plane As(k) = 8 with the space corner put up by the following straight lines 
in Fig. 1.  

- .- - ~ _ -  _ - -  
01, 02, 03 ( f o ) ;  10, 12, 13 (/I); 30, 31, 32 ( f 3 )  . 

With ordered energies according to As, < As, < As, < As, we get 

where 

fol6 

Aso 5 E 5 As, 

As, 5 E 5 As,, 
- fl for As, 5 E 5 As, 

_ _ _ ~  ~ 

(8 - As,)’ 
~~ 

V 
fJb1-1 = - 

2 (A€, - As,) (As, :&,) (AE,  - As,) 

( E  - As,)’ 
~ -~ 

V 
1 -  - - ””‘ - -2 (As, - Aid (As, - As,) (Ac3 - As,) ’ 

(3.9) 

(3.10) 

Quantities resulting from one tetrahedron are denoted by small letters. 
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As a remarkable result io(s) depends only on the energy values As,, As,, As,, Ae3 
and the volume of the tetrahedron but not on the shape of the tetrahedron. 
Furthermore i,(~) is a quadratic polynomial in E .  Therefore, the function iO(&) 
may be characterized by its constant second derivative i: in each energy inter- 
val. Then id(&) and iO(&) may be calculated from i: by means of the conditions 
that i0(&) and i b ( ~ )  are continuous a t  the points Act. 

For the calculation of the contribution JO(s) coming from the first term in 
(3.6) by summation over all tetrahedrons of one band we take the following 
procedure. ,Firstly all energy values EL of one band are ordered: E L  EL+1. 
The energy interval between EL and EL+1 is characterized by the number L. 
The aim is to  express J,(E) in each interval as an analytical (parabolical) func- 
tion. Now for each tetrahedron the second derivative is calculated for the three 
regions between AE, and A F ~ ,  A&, and A&,, As,, and As,. I n  each region ii is 
a constant. Then those second derivatives multiplied by the appropriate a, 
are stored in the intervals lying between As, and As,, As, and As,, As, and As,. 
The contributions of all tetrahedrons are summed up. Thus the second deriva- 
tive coming from all tetrahedrons of the Brillouin zone is obtained. Ti(&) is 
constant in each energy interval. 3; (e)  and 3,(s) we get by integration taking 
into account the continuity and the smoothness a t  the boundaries EL of the 
energy intervals. 

The evaluation of il(&) gives in a similar way as for iO(&) 

il(4 = f(.) 1W-l S ( F )  3 (3.11) 

where S ( E )  is the centre of gravity of f ( E ) .  

P o  A&, 5 F 5 AE, 

‘0 fo - ‘~fi for A&, 5 5 A&, I fo  - fl 
S(&) = 

The si are the centres of gravity of the appropriate triangles f i .  

(3.12) 

(3.13) 

In (3.12) the case AE, 5 F 5 AE, has an involved structure. Therefore, it may 
be more appropriate to  approximate it by the following linear expression: 

Unfortunately, i, and s are dependent on the geometry of the tetrahedrons and 
cannot be characterized in such a simple way as i, by its derivatives. 

4. Comparison of the Accuracy of Our Method with Other Ones 

In  this section the accuracy of different approaches is checked by investigat- 
ing the mean squared deviations Sf2 of different linear interpolation expressions 
f A , B , C , D  from a complete quadratic function f, 
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The deviationsSf2 from (4.1) are representative for nonsingular smooth functions 
and small cells (linear dimension 2 a). They are proportional t o  a4. Third order 
terms in (4.1) give higher order corrections in a. The different interpolation 
expressions are : 

fa  = a ,  + a, .2: + a9 y + a,, z (Gilat/Raubenheimer) , (4.2) 
f n  = (a, + a2 + aJ a2 + a, + a, x: + a, y + al, z (Lipton/Jacobs) , (4.3) 

where fa and f B  hold within a cube of edge length 2 a. 
f c :  our expressions, where the same cube as in A and B is divided in six tetra- 
hedrons with corners a t  the following points: (ill), ( I l l ) ,  (lii),  (111); ( l l l ) ,  
(iii),  (iii), ( i i i ) ;  ( i l l ) ,  ( i i i ) ,  ( i l l ) ,  (iii); ( i l l ) ,  (iii), (1111, (i i i) ;  ( i l l ) ,  
( i l i ) ,  ( i i i ) ,  (111); ( i l l ) ,  (ili), (iii), ( I i i ) .  
f,,: our expression, where the mesh in the xy-plane consists of equilateral tri- 
angles (length 2 a), the different layers have in x-direction the distance 2 a c ( r  arbitrary parameter), every prism is then divided into three tetrahedrons 
with corners a t  the points: (1,  - ( 3 / 3 , [ ) ,  ( -  1, - 1/3/3, c), (0 ,  2 @/3, C), 

(0,21/3/3, - 5 )  ; (1, - 1/3/3, - C ) ,  ( - 1, -1/3/3, - C), (0,21/3/3,- C), (1, -@/3,C). 
The coefficients of the reduced (on the same density of mesh points) mean squared 
tieviation SZ, 

( 0 , z  1/3/3, - 5 ) :  (1, - J%/3 ,C) ,  ( -  1,  - ii3/3,5), ( -  1, - 1/3/3, - r ) ,  

are presented in Table 1. Q is the volume of the primitive cell of the mesh 
(A, B, and C :  Q = 8 013; D: Q = 4 l/%a3 5) .  The coefficients c i j  of the mixed 
terms in (4.4) except c12 are emitted in Table 1 because they can give to & 
both positive or negative contributions. The cii for i > 6 vanish. It can be 
seen from the Table that approach A is better than B, C, D by a factor 1 to  3. 
The differences between B, C, and D are smaller. The best of the last three is 
approach D. However, in method A one has to calculate a t  every mesh point 
four quantities (f and grad f ) ,  whereas for methods B, C, and D only f must be 
calculated. 

Table  1 
Coefficients c i j  of the reduced mean squared deviations defined in (4.4) 

for different interpolation expressions. From the non-diagonal coefficients only cI2 is given 

I I 
case I cI1 = cZ2 1 c33 

9 1/80 1/80 

B ~ 

1/30 1 1/30 
(; 1 /30 1/30 

c44 j c55 

1/90 ! 1/90 

- - ~  ~. 

1/144 1 1/144 
1/144 1/144 

.~ . 
I 

‘66 1 ‘12 
__ 

1/144 ’ 1/144 
1/144 1/36 
1 /90 1 /36 

5. Numerical Results 

To test the accuracy of our method we calculated the density of states and its 
first and second derivative for the first free electron band in a hexagonal Brillouin 
zone. The results are given in Fig. 2 to 4 for a mesh of 222 points in 1/24 Brillouin 
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Fig. 2. Density of states B(s) of the first free electron 
band in a hexagonal Brillouin zone from 222 points in 

1/24 zone using the present method 

c- 

zone. The density of states D(F)  in Fig. 2 shows so few deviations from the exact 
curve that it is redundant t o  include the latter in Pig. 2. The first derivative 
D'(F) calculated by our method and the exact curve are given in Fig. 3. We see 
that the deviation is marked but not too large. In  the second derivative D"(E) 
given in Fig. 4, however, the statistical noise is too large to use our method. An 
calculation with 819 points in 1/24 Brillouin zone gave no satisfactory progress 
in decreasing the statistical fluctuations. 

Moreover the area of constant energy surfaces and the mean electron velocity 
averaged over a constant energy surface are calculated and given in Fig. 5 and 6, 
respectively. Again 222 points in 1/24 Brillouin zone and a free electron band 
are used. The energy surface P(E)  calculated with our method agrees so good 
with the exact curve that the latter is not included in Fig. 5. 

The results show that a number of points of order 200 is enough to  give nu- 
merical surface integrals with an accuracy of about 1%. For the energy deri- 
vatives of such quantities much more points are necessary. 

"d 

Big. 3. First derivative dD(s)/ds of Fig. 2 (full line). 

31 physica (b) 5412 

The dashed line is the exact result for dD(&)/ds 

'I 2 

Big. 4. Second derivative dPD(s)/daP of Fig. 2 
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Fig. 5. The area P(E)  of the constant energy surfaces 
of the first free electron band in a hexagonal Brillouin 

Fig. 6 .  The mean velocity w averaged ovcr constant 
energy surfaces of the first free electron band in it 
hexagonal Brillouin zone from 222 points on 1/24 zone zone from 222 points in 1/24 zone 

(full line). The dashed line is the exact result 
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Appendix 
In  this Appendix we describe how integrals of type (2.2) , 

a s  
6 (44 - EF) - (A.1) 1 lgrad A@)I 

A E ( ~ ) = E  

are treated in the framework of our tetrahedron method. We assume A&(k) and 
e(k) to be given a t  a mesh of points in the Brillouin zone. Again the Brillouin 
zone is divided into tetrahedrons and only one tetrahedron is considered. Also 
E(k) is interpolated linearly in one tetrahedron according to (3.2) and (3.4), 

The step function 8 (c(k) - E ~ )  restricts the integration to  a part of the tetra- 
hedron. The boundary planes E(k) = + are shown in Fig. 7 in the following 
three cases: 
I. 
The integral ( A . l )  is restricted to  the small tetrahedron characterized by the 
corners 0, k i l ,  ki2, and kis. The kii and the Aeii can be calculated by the follow- 
ing equations : 

~ ( k )  = E~ + c k .  ( A 4  

E o  5 Ep 5 E l .  

t, A t ,  
Fig. 7. The reduction of intearals of tvue (2.2) to  
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This small tetrahedron is treated in the usual way described in Section 3. 

11. 

The integral covers almost the whole tetrahedron except the small one given by 
the corners k3, k,  + k& k3 + lei:, and k, + k& We account for the whole tetra- 
hedron in the usual way and subtract the contribution of the little one with the 
following parameters : 

E2 5 Ep 5 E3 . 

111. 

The primary tetrahedron is divided in two secondary ones by the dotted plane 
in Fig. 7. Now we have one tetrahedron for case I and one for case 11. The vec- 
tors of the additional corner and the appropriate energy can be calculated by 
(A.3) and (A.4). 

We see that an important advantage of the tetrahedron method is the reduc- 
tion of integrals of type ( 2 . 2 )  to those of type (2.1). 
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