
1. The Lagrange Problem

Let Ω ⊂ Rm be an open domain with standard coordinates

x = (x1, . . . , xm)T .

To proceed with formulations we split the vector x in two parts:

x =



y1

...
yn

z1

...
zm−n


=

(
y
z

)
, n < m. (1)

Below to denote derivatives we use letters in the subscripts:

dx

dt
= xt.

Such a notation does not lead to a confusion with number subscripts such as x1.
Let F : Ω× Rm → R stand for a smooth function.
We will study stationary points of a functional

F
(
x(·)

)
=

∫ t2

t1

F (x(t), xt(t))dt (2)

on the set of smooth functions x = (yT , zT )T : [t1, t2] → Ω with boundary conditions

z(t1) = z1, z(t2) = z2, y(t1) = y1, (3)

and constraints
a(x, xt) = 0. (4)

Here a = (a1, . . . , an)T is a vector of functions that are smooth in Ω× Rm.
Assume that

det
∂a

∂yt
(x, xt) ̸= 0, (x, xt) ∈ Ω× Rm (5)

and equation (4) can equivalently be written as

yt = Φ(y, z, zt). (6)

Definition 1. Let a smooth function

x̃ : [t1, t2] → Ω, x̃(t) = (ỹT , z̃T )T (t)

be such that
a(x̃(t), x̃t(t)) = 0, x̃(t1) = x1 = (yT1 , z

T
1 )

T , z̃(t2) = z2.

We shall say that x̃ is a stationary point of functional (2) with constraints (4) and boundary condi-
tions (3) if the following holds.

For any smooth function

X : [t1, t2]× (−ε0, ε0) → Rm, X(t, ε) = (Y T , ZT )T (t, ε), ε0 > 0

such that
1) X

(
[t1, t2]× (−ε0, ε0)

)
⊂ Ω;

2) X(t, 0) = x̃(t), t ∈ [t1, t2];
1



2

3) X(t1, ε) = x1, Z(t2, ε) = z2, ε ∈ (−ε0, ε0) ;
4) a(X(t, ε), Xt(t, ε)) = 0, (t, ε) ∈ [t1, t2]× (−ε0, ε0)
we have

d

dε

∣∣∣
ε=0

F
(
X(·, ε)

)
= 0.

The functions X with properties 1)-4) are referred to as variations.

Theorem 1 ([1]). If the function x̃ is a stationary point of functional (2) with constraints (4) and
boundary conditions (3) then there is a smooth function λ(t) = (λ1, . . . , λn)(t) such that x̃ satisfies
the equations

d

dt

∂F ∗

∂xt

− ∂F ∗

∂x
= 0, F ∗(t, x, xt) = F (x, xt) + λ(t)a(x, xt), (7)

and
∂F

∂yt
(x̃(t2), x̃t(t2)) + λ(t2)

∂a

∂yt
(x̃(t2), x̃t(t2)) = 0. (8)

This theorem remains valid if the functions a, F depend on t.

1.1. The Linear Constraints and Some Geometry. Consider a case when

a(x, xt) = B(x)xt,

where

B(x) =


b11(x) b12(x) · · · b1m(x)
b21(x) b22(x) · · · b2m(x)
...

...
. . .

...
bn1 (x) bn2 (x) · · · bnm(x)


is a matrix such that

rangB(x) = n < m, ∀x ∈ Ω.

Constraints (4) take the form
B(x)xt = 0. (9)

Equations (5), (6) imply that

B(x)xt = A(x)yt + C(x)zt, detA ̸= 0.

We can consider the domain Ω as a coordinate patch in some smooth manifold M . Then equation
(9) defines a differential system in M

xt(t) ∈ Tx(t), Tx = kerB(x) ⊂ TxM, dim Tx = m− n.

The boundary conditions (3) imply that there is an n−dimensional submanifold

Σ ⊂ M, Σ = {z = z2}
such that

TxM = TxΣ⊕ Tx, x ∈ Σ

and x(t2) ∈ Σ.
Condition (8) takes the form:

∂F ∗

∂xt

(t2, x̃(t2), x̃t(t2))v = 0, ∀v ∈ Tx̃(t2)Σ.

Summing up we look for a stationary point of the functional F in the following class of functions

x(t1) = x1, x(t2) ∈ Σ, xt(t) ∈ Tx(t).
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Remark 1. In general case equations (7) contain the derivatives λt and do not match with ones
from classical mechanics with ideal constraints:

d

dt

∂F

∂xt

− ∂F

∂x
= λB.

1.2. Proof of Theorem 1. Introduce a notation

[F ]y = − d

dt

∂F

∂yt
+

∂F

∂y
, [F ]z = − d

dt

∂F

∂zt
+

∂F

∂z

and correspondingly [F ]x = ([F ]y, [F ]z).
Let us put Z(t, ε) = z̃(t) + εδz(t),

supp δz ⊂ [t1, t2]. (10)

Then the function Y is uniquely determined from the following Cauchy problem

Yt(t, ε) = Φ(Y (t, ε), Z(t, ε), Zt(t, ε)), Y (t1, ε) = y1. (11)

Remark 2. That is why we can not impose condition x(t2) = x2. The value Y (t2, ε) has already
been uniquely defined by other boundary conditions and the constraints. In other words if we add the
condition Y (t2, ε) = y2 then the set of variations {X(t, ε)} may turn up to be too thin to justify the
Lagrange multipliers method.

Cauchy problem (11) has the suitable solution at least for |ε| and t2− t1 small. Observe also that

Yε(t1, ε) = 0. (12)

Using the standard integration by parts technique and from formulas (12), (10) we obtain

d

dε

∣∣∣
ε=0

F
(
X(·, ε)

)
=

∫ t2

t1

(
[F ]zδz + [F ]yYε

)
dt+

∂F

∂yt
(x̃(t2), x̃t(t2))Yε(t2, 0) = 0. (13)

The function λ(t) is still undefined but due to condition (5) the value λ(t2) is determined uniquely
from (8).

From condition 4) of definition 1 it follows that

A(ε) =

∫ t2

t1

λ(t)a(X(t, ε), Xt(t, ε))dt = 0.

By the same argument as above we have

d

dε

∣∣∣
ε=0

A =

∫ t2

t1

(
[λa]zδz + [λa]yYε

)
dt

+ λ(t2)
∂a

∂yt
(x̃(t2), x̃t(t2))Yε(t2, 0) = 0. (14)

Summing formulas (14) and (13) we yield∫ t2

t1

(
[F ∗]zδz + [F ∗]yYε

)
dt = 0. (15)

To construct the function λ consider an equation

[F ∗]y = 0. (16)
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This is a system of linear ordinary differential equations for λ. Due to assumption (5) this system
can be presented in the normal form that is

λt = Λ(t, λ).

Since we know λ(t2), by the existence and uniqueness theorem we obtain λ(t) as a solution to the
IVP for (16).

Equation (15) takes the form ∫ t2

t1

[F ∗]zδzdt = 0.

Since δz is an arbitrary function we get [F ∗]z = 0. Together with (16) this proves the theorem.

2. The Energy Integral

In this section assume the second argument of the function a to be defined on a conic domain
K ⊂ Rm. All the formulated above results and the argument of section 1.2 remain valid under such
an assumption.
Recall that by definition the domain K is a conic domain iff

x ∈ K =⇒ αx ∈ K, ∀α > 0.

Proposition 1. Assume that a is a homogeneous function of degree r in the second argument:

a(x, αxt) = αra(a, xt), ∀α > 0, ∀(x, xt) ∈ Ω×K. (17)

Then the stationary point x̃ preserves the ”energy”:

H(x, xt) =
∂F

∂xt

xt − F

that is H(x̃(t), x̃t(t)) = const.

Proof of Proposition 1. Consider a function X(t, ε) = x̃(t+ εφ(t)) with a smooth function φ such
that suppφ ⊂ [t1 + t′, t2 − t′], t′ > 0.
Take ε > 0 small such that ε|φ(t)| ≤ t′. Then the function X satisfies all the conditions of

Definition 1. To check this use (17).
Furthermore we have

X = x̃(t) + εφ(t)x̃t(t) +O(ε2),

Xt = x̃t(t) + ε
(
φt(t)x̃t(t) + φ(t)x̃tt(t)

)
+O(ε2)

and

d

dε

∣∣∣
ε=0

F(X(·, ε))

=

∫ t2

t1

(
φ(t)

d

dt
F (x̃, x̃t) + φt(t)

∂F (x̃, x̃t)

∂xt

x̃t(t)
)
dt

=

∫ t2

t1

H(x̃(t), x̃t(t))φt(t)dt = 0.

Here we use integration by parts.
Since φ is an arbitrary function the proposition is proved.
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