1. THE LAGRANGE PROBLEM

Let 2 C R™ be an open domain with standard coordinates
r=(z',..., 2™7.

To proceed with formulations we split the vector x in two parts:

Below to denote derivatives we use letters in the subscripts:
dr
pri

Such a notation does not lead to a confusion with number subscripts such as x;.

Let F': Q) x R™ — R stand for a smooth function.
We will study stationary points of a functional

Fa() = /QF(:c(t),:ct(t))dt

t1

Tt.

on the set of smooth functions = = (y”, 27)T : [t1, t5] — Q with boundary conditions

2(t) =21, 2(t2) = 22, y(t1) =y,
and constraints
a(x,zy) = 0.

Here a = (a',...,a™)7 is a vector of functions that are smooth in Q x R™.
Assume that 5
a
det —(z, ) #0, (z,2) € QX R™
Yy
and equation (4) can equivalently be written as

ye = P(y, 2, 21).
Definition 1. Let a smooth function
Tttt — Q0 2(t) = (5", 207 ()
be such that
a(Z(t), () =0, F(t) =21 =(y1,2)", Z(t2) = 2.

We shall say that T is a stationary point of functional (2) with constraints (4) and boundary condi-

tions (3) if the following holds.
For any smooth function
X [tl,tg] X (-50,60) — Rm, X(t,E) = (YT, ZT)T<t,€), gg >0
such that
1) X([tl,tg] X (—80,50)) C Q,’
2) X(t,0) = Z(t), tE€ [tr,ta];



3) X(tl,E) = I, Z(t2,€) =29, €E (—60,80) N
4) a(X(t,e), Xi(t,e)) =0, (t,e) € [t1,ta] X (—€0,€0)

we have p
d_&f EZO.F(X(', 8)) = 0.

The functions X with properties 1)-4) are referred to as variations.

Theorem 1 ([1]). If the function T is a stationary point of functional (2) with constraints (4) and
boundary conditions (3) then there is a smooth function \(t) = (A1,..., \,)(t) such that T satisfies
the equations

d OF* OF* . B
dt or, T or =0, F'(t,z,x) = F(x,2) + AMt)a(z, ), (7)
and
oF , _ . da )
a—%(x(tz),xt(m)) + )\(tg)a—yt(:l?(tg),xt(tz)) — 0. (8)

This theorem remains valid if the functions a, F’ depend on t.

1.1. The Linear Constraints and Some Geometry. Consider a case when
CL(I‘7 'It) = B(l’)l‘t,

where
o) o) e o)
<[00 HO) - 0
bi(z) by(z) -+ by (z)

is a matrix such that
rang B(z) =n <m, Vx €.

Constraints (4) take the form
B(z)z, = 0. (9)
Equations (5), (6) imply that
B(z)r; = A(x)y, + C(x)2, det A # 0.
We can consider the domain €2 as a coordinate patch in some smooth manifold M. Then equation
(9) defines a differential system in M

r(t) € Towy, To=kerB(x) C T,M, dimT, =m —n.
The boundary conditions (3) imply that there is an n—dimensional submanifold
YXCM, Y={z==z}
such that
T.M=T,>®T,, zx€X
and x(tz) € X.

Condition (8) takes the form:
oOF™
oxy

Summing up we look for a stationary point of the functional F in the following class of functions

x(ty) =z1, x(t2) €5, x(l) € Tuqw.-

(b2, 2(t2), T1(t2))v = 0, Vo € Thr) X,
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Remark 1. In general case equations (7) contain the derivatives Ny and do not match with ones
from classical mechanics with ideal constraints:

dt 3xt 3I

1.2. Proof of Theorem 1. Introduce a notation
doF OF doF OF

[F]y:_aa_yt‘i“ oy [F}Z:_Ea_zﬁ%

5()+ ()

and correspondingly [F'
Let us put Z(t,e) =

supp 0z C [t1, ta]. (10)
Then the function Y is uniquely determined from the following Cauchy problem
Yi(t,e) = ®(Y(t,e), Z(t,e), Zy(t,e)), Y(t1,€) = yi. (11)

Remark 2. That is why we can not impose condition x(ty) = xo. The value Y (t2,€) has already
been uniquely defined by other boundary conditions and the constraints. In other words if we add the
condition Y (ta,€) = yo then the set of variations {X (t,e)} may turn up to be too thin to justify the
Lagrange multipliers method.

Cauchy problem (11) has the suitable solution at least for |e|] and t; —¢; small. Observe also that

YZ.;(tl,E) = 0. (12)
Using the standard integration by parts technique and from formulas (12), (10) we obtain
d
il X{(-
d<€ EZOI( ( ’6))
2 OF i
:1/ (Uﬂﬁk+{F]Y>dﬁ+5§{ F(ta), Fo(t2))Va(t2, 0) = 0. (13)
t1 t
The function A(t) is still undefined but due to condition (5) the value A(t2) is determined uniquely

from (8).
From condition 4) of definition 1 it follows that

A@:/awmxmq&@@m:o

t1

By the same argument as above we have

d% e:oA = /ltl2 ([Aa]zéz + [/\a]ng>dt
FA(t) §i< (t2). Z4(t2)) Y2 (£2,0) = 0. (14)

Summing formulas (14) and (13) we yield

(162 + ). )dt = 0, (15)
I )

t1

To construct the function A consider an equation

[F*], = 0. (16)
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This is a system of linear ordinary differential equations for A\. Due to assumption (5) this system
can be presented in the normal form that is

At - A(t7 A)

Since we know A(f3), by the existence and uniqueness theorem we obtain A(f) as a solution to the

IVP for (16).
Equation (15) takes the form
to
/ [F*].62dt = 0.
t1
Since ¢z is an arbitrary function we get [F*], = 0. Together with (16) this proves the theorem.

2. THE ENERGY INTEGRAL

In this section assume the second argument of the function a to be defined on a conic domain
K C R™. All the formulated above results and the argument of section 1.2 remain valid under such
an assumption.

Recall that by definition the domain K is a conic domain iff

re K = are K, VYa>0.

Proposition 1. Assume that a is a homogeneous function of degree r in the second argument:

a(x,axy) = a"ala, ), Va>0, VY(r,z)e€QxK. (17)
Then the stationary point T preserves the “energy”:
oF
H(x,zy) = —x— F
Oy

that is H(z(t),Z,(t)) = const.

Proof of Proposition 1. Consider a function X (t,&) = Z(t + ep(t)) with a smooth function ¢ such
that suppe C [t1 +t', 6o —t'], ¢ >0.
Take ¢ > 0 small such that e|p(t)] < t’. Then the function X satisfies all the conditions of

Definition 1. To check this use (17).
Furthermore we have

X =3(t) +ep(t)T,(t) + O(e?),
Xy = Z4(t) + e(@e()T(t) + (1) Tu(t)) + O(e?)

and

- /tz ( (t >jtF<f, Ty) + %(t)%ﬂjt@))dt

/ H(E(t), 7(t))ou(t)dt = 0.

Here we use integration by parts.
Since ¢ is an arbitrary function the proposition is proved.
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