The conservation of information from black hole radiance has an unsettled history. The
initial indications were that information is lost. Yet a formalism of a consistent quantum
theory of gravity with information loss is difficult, for such a theory would have to be
nonunitary. In a bet recently Hawking conceded to Preskill that information was preserved
in black holes. Information would then not be destroyed, but rather scrambled in such as
way as to make its retrieval intractably impossible. A tunnelling approach to quantum
radiance by Parikh and Wilczek [1] suggests that the process in total has AS = 0, but
as recently pointed out in [2] this is the case where the black hole and environment are
in thermal equilibrium. However, the negative heat capacity of spacetime means that a
black hole slightly removed from equilibrium is unstable and will diverge from equilibrium.
This is seen with the evaporation of a black hole, where as its entropy ASy, — 0 its
temperature becomes large. Thus the Parikh-Wilczek tunnelling theory appears to be a
“measure zero” case.

A tunnelling process involves an action which is not accessible classically. With the
case of a simple tunnelling of a particle through a square barrier, this involves an imag-
inary momentum or action. In the case of a tunnelling of a particle from a black hole
M — M + dm, this involves the imaginary part of the action

Tf
ImS = Im/ prdr. (1)
The Hamilton equation 7 = %_1; permits this to be written as
Tf Pi d
ImS = Im / / & aH. 2)
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Along null geodesics the velocity 7 = +1 + y/2M /r the action for the classically forbidden
path is

om
ImS = —27/ dr dm = —2r((M — om)? — M?), (3)
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which defines —%(S ¢ — S;). The imaginary part of the action gives the tunnelling proba-
bility or emission rate as I' = exp(—2ImS) = exp(AS). For a black hole in equilibrium
with the environment the entropy remains on average zero, for with every quanta it emits
it will on average absorb another from the environment. For dM = dQ as the first law
of black hole thermodynamics with dS = % holds for a reversible process. However,
the fluctuations will eventually cause the black hole to diverge from equilibrium, where
no matter how small this is it will cause the black hole radiance to diverge, or for the
black hole to acquire larger mass so that its mass increases arbitrarily. Any change in the
state of the black hole, whether by emission or absorption, perturbs the black hole from
equilibrium.

There are a number of physical ways that black hole radiance are presented. A black
hole emits a particle since the quanta which make up a black hole have some small but
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nonzero probability of existing in a region » > 2M. Another interpretation is that virtual
electron-positron pairs near the event horizon may permit one in the pair to fall into the
hole while the other escapes to infinity. This view is equivalent to saying that an electron or
positron propagates backward through time from the black hole and is then scattered into
the forward direction by the gravity field. A related interpretation has that the creation of
a positive mass-energy particle is associated with the creation of a negative mass-energy
particle absorbed by the black hole. As a result the black hole’s mass is reduced and a
particle escapes. In the case of fermions this is in line with Dirac’s original idea of the
anti-particle with a negative mass-energy. In all of these cases there is a superposition
principle at work. Quanta within the black hole are correlated with quanta in the exterior
region. How these quanta are correlated is the fundamental issue. The imaginary action
is a measure of the nonlocal correlation a particle in the black hole has with the outside
world. In the case of equilibrium with T'dS = dM the black hole exchanges entropy with
the environment so that the total information of the black hole and environment remains
the same. Yet in general the radiance of a black hole will heat up the environment so that
as > %, and the same is the case of the black hole absorbs mass-energy.

A black hole will absorb and emit observables, where if information is preserved these
observables will have a corollation. The corollation will reflect a quantum process which is
unitary, or that the emitted observables are nonlocally entangled with the black hole states
in such as way as to preserve information. If information is preserved by a black hole, then
in principle a black hole is an efficient teleporter of quantum information. Obviously the
quantum gravity evolution must contain some error correction processing which compen-
sates for randomizing quantum fluctuations near the Planck scale. This will be discussed
towards the end. At this stage the black hole is shown to ultimately preserve quantum

dM

information even for the case that dS > T

The standard “Alice and Bob” problem is considered. Alice has the set of ob-
servables A, which she communicates to Bob in a string zi;zs...z,. Bob simi-
larly has the string y1ys...y,. The von Neumann information each possesses is then

S(X) = —Tr(px logapx, for X either A or B. The entropy of each is then a compart-
mentalization on p 4 p for the total quantum information both possess and pa = Trp(pap)
and pp = Tra(pap). Here the trace is over the part of the Hilbert space for Alice or

Bob to project out the density operator for Bob or Alice. The density operator pap then
defines the joint entropy
S(AB) = —Tr(pas log2pap)- (4)

If Alice transmits her string x5 ...z, to Bob this defines the conditional information or
entropy S(A|B) as the information communicated by Alice given that Bob has y; ...y,
defined as

S(A|B) = S(AB) — S(B). (5)

If Alice sends this string into a black hole, this is the entropy measured by Bob as measured
by the quantum information the black hole emits. The conditional entropy may be defined
by a conditional von Neumann entropy definition

S(A|B) = =Tr(ppp(A|B) log2p(A|B) = —Tr(paglogzpas), (6)
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where pajp = limp— (pABl/”(lA ® pB)_l/")n. Here 1,4 is a unit matrix over the
Hilbert space for Alice’s quantum information. This means that the entries of p45 can be
over unity, which also means that the information content of conditional entropy can be
negative as well [3]. Thus quantum information can be negative, in contrast to classical
information. The conditional entropy determines how much quantum communication is
required to gain complete quantum information of the system in the state pap.

When the conditional entropy is negative Alice can only communicate information
about the complete state by classical communication. The sharing of —S(A|B) means
that Alice and Bob share an entangled state, which may be used to teleport a state at no
entropy cost. The negative quantum information is then the degree of “ignorance” Bob
has of the quantum system which cancels out any future information Bob receives. The
“hole” that Alice fills in Bob’s state ignorance amounts to a merging of her state with
Bob’s.

The merging of Alice’s state with Bob requires the use of an ancillary or reference
state. We assume that this ancillary state is the total state of the black hole with the
density matrix pp,. We then initially have the total state given by papwn, = pap ®
pph- Alice communicates her information so that Bob then holds both his initial state
but Alice’s as well. Assume that Alice sends n EPR entangled pairs with nS(A|B) to
generate the state paa pppn with S(AA’|BB’) < 0. This addition of an entangled pair
reduces the entropy by one g-bit. Thus by S(A|B) = S(AB) — S(B) means that
S(A) > S(AB) = S(bh). Thus a measurement of Alice’s state projects Bob’s state plus
that of the black hole into pppn, and the inclusion of the entangled pairs means that the
absorption of negative information may put Bob’s state into papp, thus Alice may merge
her state with Bob’s. The amount of classical information communicated is determined
by the mutual information I(A : bh) = S(bh) + S(A) — S(A|bh) between Alice and
the black hole. Alice’s state is then a product with pyp, and the quantum information is
the minimal entropy production involved in a measurement. Here the irreversible entropy
production is not due to the black hole, but the measurement process.

Consider Bob receiving information from the black hole. The black hole does this
through the emission of a particle in some state. Bob measure the change in the black
hole entropy according to the information S(A) < S(AB), which is greater than
S(AB) = S(bh) The existence of negative entropy may be explicitly demonstrated for
the black hole. Let a; and by be the lowering operator for outgoing and ingoing bosonic
fields with wave number k on the flat spacetime vacuum |0). These are related to the
operators A, and Bj which annihilate the vacuum outside and inside the black hole, with
a Minkowski state | ),,. The flat space operators are related by the Bogoliubov transfor-
mation [4]

Ak = oaap — ﬁb_k, Bk = Ozbk — ﬁa_k. (7)

Here
1

1
2

2
e (8)

a® = cosh®(g) = = sinh*(g) =

for g the surface gravity at the horizon determined by the Killing vector field & as
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VY (ErE,) = —2¢&¥. Transformations Ay = eage ™ B, = efbe ™ are given by
the Hamiltonian

H = ig(aLbT_k — a_pby + aT_kbL — akb_k). (9)

The detection of a particle from the black hole, with its mass changing accordingly
M — M — §M, and the particle state transitions from |ng) — |n + 1j). The density ma-
trix for the distant external particle state on flat spacetime then changes to pj, = a,: PrO-
This is combined with the change in the black hole density of states ppr, = > 3,000 | M) (M.
The black hole density operator changes according to T;,|M) — |M + 0M). The black
hole adjusts its mass by M — M + oM if it absorbs the particle, and M + éM — M
if it emits the particle. When the black hole absorbs the particle there is the transition
operator Tj;,,

Tinak : | M)on|ne)m — Vn|M + 6M)pp|ng — 1)m, (10)

with emission corresponding to
Toural - |M + SMYpn|ng — D — /1 M)pn |1k )m. (11)
Fields that exit and enter a black hole are coherently correlated, with a scattering operator
eiH/ake_iH/ = V1 — Petflge ™ + \/]_DGikue_iH, (12)

sothat H = H + H,. Pand 1 — P give the absorption and emission probabilities of
a particle in and out of a black hole. Amplitudes for creation and destruction of a boson
are

vh(M 4+ IM |y (ng — UTinar| M)onnk)m = sn(M + OM|Tin|M)on m{ne — 1ag|ne)m

= (k) Y2 (MI|T) Ti | Mon, i (ni| (), — 60, )ag|ni)m (13a)

and

o (M| (0| Tz @l | M+ 5M) i g — U = pn (M| Toue| M+ Mo mm(nglaling — 1)

= (ni) Y2, (M + SM|Toui T | M + M)y, (g — 1|(aar, — Bb1,)al|ng — 1)p. (13b)

u

Consider a normal ordering of akal, and matrix elements with b,kaL and bT_ @k vanish.

The probability for the absorption and emission of a particle are
2w
Win = —=|p(M + SE)M + SM|Tin| M)[*| (e — 1ax|ne)|*

2T
Wour = == |p(M)(M|Tim|M + SM)P[(nglafn, — 1), (14)

4



e 8™MOM 4] " and with an evaluation of

The Fermi golden rule gives that wgyt/win, =
m !altak\ )m this gives,

o—semen __ PM) ( (I = Pye + B2{1 + (1 — P)ns} )2
p(M + M)\(1 — P)(np — 1) + 821 + (1 = P)(npy — 1}/
(15)
Let the ratio of the density of states be ~ PQ(T) for Q(T) = 1/(1 + zexp(—8wMJ5M))
the partition function for degrees of freedom on the horizon, with P ~ exp(—87mMJ§M)
the emission probability of a particle of energy 6M. z = e 4™M * is the fugacity of the

system. Consider the emission of one particle by the black hole ny = 1, then
1 4 2e MM — ((1 — P)g~2 + 2 — P)*, (16a)

so the absorption coefficient is then
L a2
P~ 1 — ¢ . (16b)

So for quantum unitarity P is nonzero in general.

The density matrix for fields inside and outside the black hole plus the black hole
is pm = e pp @ ppre™H then evolves to pl, = epl @ p), e H. For g << 1, or

equivalently a black hole sufficiently massive, this gives
P;n = ALToutpmAk;Tin

= aLToutmeinak + Z([H, QL]ToutpmakT%n + alToutpm[Hy ak]Tz )

= aLToutmeinak: - g(b—kToutmeinak + a]tTout,OmCFian_k)- (17)

The first term gives how the black hole state changes according to the emission of a particle.
The remaining two terms indicate a correlation between an ingoing field which enters from
the asymptotic flat region with the field emitted by the black hole. These define entangled
pairs of states which enter and exit the black hole. If we consider the case where Bob

observes all the quanta emitted from the black hole the last two terms consist of fields
known to Alice merged with Bob, if we have S(AB) = S(bh)

A measurement of the “in” and “out” states are performed so these states are in
an entanglement and define the conditional entropy. Since >, [i)in and > |j)out are
orthogonal the eigenstates of the black hole [M) are also orthogonal to _; |j)out. Hence
a subset of eigenstates of |M) are those of ), |i);,. Further, given the scattering matrix
S = 1 — 2miT the density matrix for the black hole pp, = |M)(M]| evolves by unitarity

Pon, = SponST. (18)

This is still the case for a completely random scattering matrix. This requires that the
preservation of quantum information is due to an error correction code. The fidelity of

5



quantum information is necessary in order for quantum gravity to be unitary. The structure
of this error correction code is a topic to be introduced in this series.

The von Neumann formula indicates that
dS ~ kIn(2)Sdp. (19)

The differential of the density operator dp is entirely hermitian and gives a unitary descrip-
tion for the decay process. It is a simple matter to see that here the conditional entropy

S(B|A) = S(AB) — S(A) is equal to
S(BJA) = dS = —gk In(2)S(AB) (b—1ToutpmTinar + a}TourpmTinb ), (20)
which is the entangled pair teleported between Alice and Bob. Hence the negative entropy

gained by the black hole is accounted for according to negative information, which is further
a result of completely unitary processes.

For a black hole in equilibrium dS = %, but this case is not stable. In general it is
expected that dS > %, but what is ignored is the negative entropy available. In other

words Bob has to option of acquiring additional information for free, with no entropy
cost, but ignores it. It is a physics case of winning the lottery, but never checking the
ticket numbers. If Bob only considers entropy as classical he will see that the entropy of
the black is indeed irreversible. Of course for a large black hole this is what is expected,
for the entangled pairs of ingoing and outgoing states are difficult to measure. In other
words an outgoing state measured now may be entangled with a state which entered the
black hole in the implosion of a star many billions of years earlier. As pointed out in [2] a
negative g-bit is equivalent to a g-bit travelling backwards in time. Hence this entangled
pair can be thought to involve the merging of a state carrying a negative g-bit which
entered the black hole in the past with a state in the future, or equivalently the time
reversed connection between of a state which exits the black hole now with a state that
entered in the distant past. The nature of quantum black holes and their unitarity and
how semi-classical and classical black holes assume a For All Practical Purposes (FAPP)
thermodynamic irreversibility is discussed. Here it is found that there is a phase transition
effect which differentiates the quantum domain of gravitation from the classical.
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