Due October 25 at the start of Lab time.
Show all steps, and use the laplace transform to find the solution of

$$
m \frac{d^{2} x(t)}{d t^{2}}+k x(t)=f(t), \quad x(0)=\frac{d x(0)}{d t}=0
$$

where $m$ and $k$ are positive constants and $\mathrm{f}(\mathrm{t})$ is given below. Let $\omega_{0}^{2}=k / m$.

1. $f(t)=I \delta(t)$.
2. $f(t)=A \sin (\omega t)$. Describe the solution for $\omega \neq \omega_{0}$ and when $\omega=\omega_{0}$.
3. $f(t)=A \cos \left(\omega_{0} t\right)$
4. $f(t)=A, 0<t<t_{0}$ and $f(t)=0, t \geq t_{0}$

You may use information from a laplace transform table.

