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If an axially symmetric stationary metric is given in standard form (i.e. in 
coordinates adapted to the symmetries) the transformation r t---+ Ct : 
r -- wt (0) ----constant) of the azimuthal angle leads to another such 
standard form. The spatial lattice L '  corresponding to the latter rotates 
at angular velocity w relative to the lattice L of the former. For the 
standard form of a stationary metric there are simple formulae giving the 
four-acceleration of a given lattice point and the rotation of a gyroscope 
at a given lattice point. Applying these formulae to L I, we find the 
condition for circular paths about the axis in L to be 4-geodesic, and also 
the precession of gyroscopes along circular paths which are not necessarily 
geodesic. Among other examples we re-obtaln the complete geodesic 
structure of the G~del universe, and the gyroscopic precessions associated 
with the names of Thomas, Fokker and de Sitter, and Schiff. 

1. I N T R O D U C T I O N :  T H E  M E T H O D O L O G Y  

As  is wel l  k n o w n  (see Ref .  1, p. 250, Ref .  2, p. 183), t h e  m e t r i c  o f  any  

s t a t i o n a r y  s p a c e - t i m e  can  be  cas t  i n to  t h e  c a n o n i c a l  f o r m  

d s  2 = - e 2 r  - w i d x i )  2 + h i j d x i d x  y, (1) 

w i t h  i = 1 , 2 , 3 ,  w h e r e  r  wi,  a n d  hij  d e p e n d  on t h e  s p a t i a l  c o o r d i n a t e s  

x i only.  ( W e  use  u n i t s  m a k i n g  c = G = 1 t h r o u g h o u t . )  In  fac t ,  t h e  
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admitt ing of such a coordinate representation can serve as the detlnition 
of a stationary space-time. The representation (1) is form-invariant under 
(i) the group of spatial transformations z 'i = z ' i ( z l , z2 , z  a) and (ii) the 
group of time transformations 

e =  (2) 

where a is an arbitrary constant and f an arbitrary differentiable function. 
Under (i) the quantities hi j ,  wi, r w[i,jl behave as 3-tensors (we write 
",i" for O/Sz l ) ;  under (ii) r and wi transform as follows: 

r ~--* r  = r  w i ~ - + w ~ = a ( w i + f , i ) ,  (3) 

which leaves r and eCw[i,j] invariant, and of course hij also. By a suitable 
time transformation (2) we can therefore achieve r = 0 and wi = 0 at any 
preassigned event without affecting hij.  Thus 

dl 2 = h i jdz i  dz  j (4) 

is recognized as the metric of the "lattice" of '~xed points" or "reference 
particles" z i = constant. 

Two straightforward calculations (see Appendix) lead to the follow- 
ing two pairs of formulae for the four-acceleration A l, and the rotation 
three-vector 12 of the congruence of world-lines x i = constant (with #, ~ = 
0, 1, 2, 3 and z ~ = / ) :  

A# = (0, grad r  = (0, r 

A = ( g ~ " A , A , )  1/2 = (h iJr162 , (6) 

and 

= �89162 i.e., ~ ' =  �89162 (7) 

Q -~- ( h i j Q i Q J )  112 --~ eC(hlJhktw[i,~]w[j3]) 112. (8) 

We note that  grad r is the proper three-acceleration of a reference parti- 
cle x i = constant, i.e. its acceleration in the local inertial rest frame. In 
particular, and importantly, if ~,i = 0, then A~ = 0 and the reference 
particle describes a geodesic. The vector ~ ,  on the other hand, describes 
the rate of rotation with respect to proper time at any reference particle 
P,  of the set of neighboring reference particles, relative to the local com- 
pass of inertia. Mathemat ica l ly  that  compass corresponds to a triad of 
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spatial vectors Fermi-Walker transported along P's world-line. Physically 
it can be realized by a triad of gyroscopes spinning about three mutually 
orthogonal axes. Of course, the proper angular velocity of the compass of 
inertia relative to the reference particles is given by - f L  

In the present paper we utilize these more or less familiar results for 
two purposes, namely (i) to find circular geodesics, and (ii) to find the 
precession of gyroscopes along circular paths, in stationary space-times 
with axial symmetry (i.e. with "circular" Killing vector fields). Examples 
of such space-times are those associated with the names of Minkowski, 
Schwarzschild, t~eissner-NordstrCm, Weyl, Lewis, GSdel, Kerr, Kerr- 
Newman, Tomimatsu-Sato, etc. The standard method is to solve the 
geodesic equation in the first case, and to Fermi-Walker transport a triad 
around the orbit in the second case. Our method consists in replacing 
the azimuthal coordinate r of the given metric (when written in polar 
coordinates about an axis of symmetry) by another, r such that 

r --- r 4- wt (w = constant) (9) 

(see Fig. 1), and leaving all other coordinates, in particular also the time t, 
unchanged. This transforms the original coordinate representation of the 
stationary metric into another, based on the same coordinate time, whose 
lattice of fixed points r, ~, Ct = constant (or r, z, r = constant in the case 
of cylindrical polar coordinates) rotates relative to the first at angular 
velocity w with respect to coordinate time t. It is to the rotating lattice 
that we apply the formulae (5) and (8). In particular, setting the new r 
[or, equivalently, (e2r equal to zero gives us the condition that a fixed 
new lattice point describes a geodesic, which translates, of course, into a 
circular geodesic in the original lattice. (This process happens to yield all 
the timelike and null geodesics in GSdel space, see Section 2 below.) 

A similar approach using formula (6) yields the (nongravitational) 
centrifugal or centripetal force, grad ~, that would have to be applied in 
order to keep a particle in a nongeodesic circular orbit. 

Lastly, evaluating -12 in the rotating system gives us the rate of 
rotation of a compass of inertia at a point fixed in the rotating lattice; when 
this is suitably reduced by w it yields the precession of a gyroscope that is 
moving uniformly round a circular orbit (geodesic or not) in the original 
lattice. In this way one easily calculates, for example, the well-known 
Thomas precession in Minkowski space, the Fokker-de Sitter precession 
in Schwarzschild space, and the additional Schiff precession in Kerr space 
(see Section 3 below). 
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new b a s e  l l n e  

W~ 

~ ~  llne 

Fig .  I .  
Old and new polar coordinates of a point P:  (r, r (r, r 

2. CIRCULAR GEODESICS 

In this section we exemplify our method by finding the circular geo- 
desics in the Schwarzschild, 3 Kerr, and GSdel space-times. 

2.1 S c h w a r z s c h i l d  S p a c e  
The well-known standard form of the Schwarzschild metric (describing the 
vacuum space-time around a spherically symmetric mass distribution) is 
as follows: 

~ ( 1  ~ ) ~ ( 1  ~m) ~ ~ 0 ~ s i ~ 0 ~  ~10~ 
If we apply to this the transformation (9) and then cast the resulting 
representation of the metric into the canonical form (1), we obtain, after 
setting i9 = r / 2 ,  

~ (1~ )( ~ )~ = r2w 2 dt - d e  I 
r 1 - (2re~r)  - r 2 w  2 

+ ( 1 -  2m~ -1 r 2 - 2 m r  d e  n (11) 
dr2 + 1 -- ( 2 m / r )  -- r2w 2 " 

k r /  

3 Our method for obtaining the circular geodesics in Schwarzschild space has already 
been used at the suggestion of one of us (W. R.) by A. Rosenblum [3]. 
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Setting 9 = r / 2  is justified by the fact that  the surface 9 = ~r/2 is a 
"symmetry surface" and thus contains any geodesic that  touches it; by the 
spherical symmetry of Schwarzschild space all geodesics therefore lie in the 
surface 9 = 7r/2 or in one of the isometric surfaces into which 9 = ~r/2 can 
be "rotated" about the origin. 

The first parenthesis in (11) corresponds to the e 2r of the canonical 
form (1), here a function of r only. Setting its r-derivative equal to zero 
at once yields 

w 2 = m r  -3 ,  (12) 

the well-known "exact Kepler law" governing circular geodesics in Schwarz- 
schild space, with w = d r  A simple check shows that  these are timelike 
as long as r > 3m. In the limit, at r = 3m, we have a circular light path. 

2.2 K e r r  Space  
Next we use the same method to find the circular geodesics in the equa- 
torial plane of the Kerr metric. In Boyer-Lindquist coordinates [4], and 
restricted to the equatorial plane 9 = ~r/2 (which again is a symmetry 
surface), this metric reads 

It describes the space-time geometry outside a material object with mass 
m and angular momentum a m  (a and m both having the dimension of a 
length here), which has undergone gravitational collapse. But it also ap- 
plies, at least approximately, to finite, spherical, rotating masses. We re- 
quire 0 < a < m (the limiting case a = 0 leads us back to the Schwarzschild 
metric) so as to avoid the appearance of a naked singularity. 

In order to find the circular geodesics of this metric outside the horizon 
r := r+ = m § ( m  2 - a2) 1/2, we apply the azimuthal transformation (9) to 
(13), which results in 

d s 2 = - [  1 - ~ 2 4 7  2 m ( 1 - a ~ ) 2 ]  •  

[ w ( r  2 + a 2) - ( 2 a m l r )  (1 - aw) dr ~ 
• 

L d r -  1 : 
J 

r 2 - 2 m r  + a s 

+ 1 - w2( r  2 + a 2) - ( 2 m / r )  (1 - aw) 2 dr 

+ l + a 2 r  -~ dr 2. (14) 
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From this we read off the new e 2r to be 

e 2r 1 -w2(a  2 + r  2 ) -  2 m ( l _ a w )  2. (15) 
r 

Setting its r-derivative equal to zero gives us the geodesic condition 

w - a =t: (16) 

(The a in this formula represents an "inertial-frame-dragging" correction 
to the Kepler law.) For each value of r > r:k there is one positive and one 
negative value of w, since then a < v/'r'ff'/m. However, the corresponding 
geodesic is timelike only if 

: t = 2 a m ~  < r2 ( r -  3m). (17) 

Hence, for large r, both the forward geodesic (corresponding to the upper 
sign) and the retrograde geodesic (corresponding to the lower sign) are 
timelike. When r reaches the largest root rl  of the equation 

r(r - 3m) 2 - 4a2m = 0 (18) 

(a number greater than or equal to 3m), the retrograde geodesic becomes 
lightlike, whereas the forward geodesic remains timelike until r reaches 
the second root r2 of (18) (a number between m and 3m). If we go to the 
Schwarzschild limit by setting a equal to zero, r l  and r2 amalgamate at 
3m. In the "extreme Kerr" case a = m, the corresponding radii are given 
by r l  = 4m and r2 = m. It is interesting to note that  the latter is already 
situated inside the ergosphere, i.e. the region between r = r+ and r = 2m, 
where t in the original representation (13) of the metric is no longer a time 
coordinate. In fact, r = 2m is the boundary of stationarity relative to 
infinity. Nevertheless, and this justifies our method, the rotating lattice is 
stat ionary down to r = r+ for sufficiently large w; it has an outer limit of 
stationarity, where the orbital speed becomes c. 

2.3 G S d e l  S p a c e  
As our third example, we consider the GSdel universe. One form of its 
metric suitable for our purpose is 4 

ds  2 = -4R2[  (dr + ,r162 2 - {dr 2 + (S 2 + $4)dr 2 + dz 2 } ], (19) 

4 See Ref. 4, p.169. (Our latt ice  ro ta tes  in  the  opposi te  sense from theirs.) 
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where S = sinh r and R is a constant length. This stationary metric satis- 
ties Einstein's field equations with dust of constant density p = 1/(87rR 2) 
and a cosmological constant A = -1 / (2R2) .  Its lattice can be visualized 
as an infinite stack of surfaces z = constant, all having negative constant 
curvature - R  -2, as can be seen by casting their metric into the form 
R2(dr ' ~ + s i n h  2r 'dr with r '  = 2r. (Note that  S 2 + S  4 = $2C 2 = 
x sinh 2 2r, with C = cosh r.) The lattice has translational symmetry in 4 
the z-direction as well as rotational symmetry about any z-line. GSdel's 
universe is thus homogeneous both in space and in time. All lattice points 
describe geodesics [as can be seen from the constancy of "e2r cf. eqs. (1) 
and (5)], and the lattice rotates everywhere at proper angular velocity 
[2 = - (v / '2R)  -1 about the z-direction relative to the compass of inertia 
[cf.. eqs. (1), (7) and (8)]. (We shall take f2 to be negative if the sense of 
f~ is opposite to that  of increasing r Thus we seem to have a uniformly 
rotating rigid cylinder which is infinite in every direction, though there is, 
of course, no extended inertial frame "in" which this rotation takes place. 

Applying to (19) the azimuthal transformation (9) and then "com- 
pleting the square" to arrive once more at a canonical form (1), we find 

ds 2 = -4R~[1 + 2v~S2w + (S 4 - S2)w 2] (dr + ...)2 + . . . ,  (20) 

where the ellipses s tand for terms of no relevance to our present purpose. 
The expression preceding the dr-term corresponds to the e 2r of the new 
canonical form and depends on r only. Accordingly we set its r-derivative 
equal to zero in order to obtain the equation of circular geodesics in the 
symmetry surfaces z = constant: 

+ (4s c - 2sc)  2 = o. (21) 

The root w = 0 should not surprise us: as we have seen, the original lattice 
points themselves describe geodesics. After elimination of this "trivial" 
solution, equation (21) yields 

- (1 - 2 (22)  

as the equation governing circular geodesics. Note that,  as r increases 
from zero, w increases from 2V~: larger orbits have lesser periods. A little 
surprisingly, perhaps, the proper angular velocity of infinitesimally small 
orbits [to convert to proper angular velocity, we must multiply by (2R)-1] 
corresponds to twice that  of the compass of inertia. The given mass dis- 
tribution seems to allow identical small orbits in either sense relative to 
the local inertial rest frame. 
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To be of physical interest, an orbit must be timelike or null. Since 
the ellipses in (20) stand for terms involving the spatial differentials, we 
must now set them equal to zero, substitute for w from (22), and demand 
ds  2 < 0. This leads to the condition 

1 - 4S 2 - 4S 4 > 0, (23) 

or, equivalently, 
sinh 2 2r < 1. (24) 

Numerically, (24) corresponds to 

r < ro := �89 In(1 + Wr2) = 0.44068679..., (25) 

and also to S 2 < t ( v ~  - 1) = 0.2071067..., which leads via (22) to 

2V~ < w _< 2(x/2 - 1 ) - '  --: Wo = 4.8284271... (26) 

Note that ,  unlike the Keplerian orbits (12), all present orbits have the 
same sense, namely that  of r increasing; but  corresponding to every "right- 
handed" GSdel universe there is a "left-handed" one (r ~-+ - r  

Circular l ight orbits in the surfaces z = constant have coordinate ra- 
dius ro (corresponding to proper radius 2Rro) and coordinate-time period 
2~r/wo (corresponding to proper time period 4~rR/wo). But by the homo- 
geneity and isotropy of these surfaces, all light rays in them must be such 
circles, in particular all those emanating from a given event in all direc- 
tions satisfying z = constant. This set of rays consequently re-converges 
to the original lattice point at coordinate time 2~r/Wo later. Similarly, all 
timelike geodesics orthogonal to a z-line are circles, their radii r being re- 
stricted by 0 < r < to, and their coordinate time periods being given by 

= - 2 s h i v S .  

It is clear from the original representation (19) of the metric that  each 
geodesic motion in the GSdel universe is the composition of a geodesic 
motion in a surface z = constant with a uniform motion in the z-direction 
(z a linear Tunction of t). For a direct proof of this fact we can augment 
the azimuthal transformation (9) by 

z = z'  + vt (v = constant), (27) 

thus letting the "new" lattice not only rotate at angular velocity w, but  
also translate at velocity v. This brings an additional term - v  2 into the 
square bracket in (20), which, however, has no effect on the result (21). 
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Consequently a point fixed in the new lattice (now spiraling in the z- 
direction) describes a geodesic when (22) is satisfied, precisely as before. 
(A similar argument is, of course, possible whenever there is translational 
symmetry in the direction of an axis of rotational symmetry.) Free particles 
here move somewhat like charged particles in a parallel magnetic field. 
As v, the velocity component in the z-direction, increases, the maximum 
radius of the spiral, for timelikeness, decreases until it shrinks to zero for 
v = c, for the condition of timelikeness is now 

1 - 4 S  2 1 + v 2 
4S -------T- > 1 - v S" (28) 

Evidently we have re-obtained the full geodesic structure of the GSdel 
universe by the new method: every initial motion leads to one of the 
above circles or spirals. 

3. GYROSCOPIC PRECESSION 

We now present four examples of the use of rotating coordinates in 
determining gyroscopic precession: the Thomas precession, the Fokker-de 
Sitter precession, the Schiff precession, and the precession in G5del space. 

3.1 T h e  T h o m a s  p r e c e s s i o n  in  M i n k o w s k i  sp ace  
The Thomas precession [5] refers to the precession of the compass of inertia 
along an arbitrary path in Minkowski space. For brevity and vividness 
one often loosely speaks of the precession of "a gyroscope" instead. Here 
we shall examine the most frequently contemplated path, a full circle. 
(Thomas himself discussed the orbital motion of a spinning electron in an 
atom.) 

By setting m = 0 in the metric (11) for Schwarzschild space we obtain 
the metric representation corresponding to a rotating coordinate lattice in 
Minkowski space, once again restricted to the symmetry surface/9 = 7r/2: 

( r2w )2  r 2 d r  
ds 2 = (1 r2w 2) dt 1 ~--~w 2 de' + dr2 + 1 - r~w ~ " 

Preparatory to applying formulae (7) and (8), we note that  for the met- 
ric (29), with the choice x 1, z 2, x z = r,/9, r (so as to have right-handed 
coordinates), and the notation v = rw, we have, by comparison with the 
metric (1), 

e 2r = 1 - v 2, w3 = rv(1 - v2) -1, w3j = 2v(1 - vZ) -2 

h 11 = 1, h 33 = r-2(1 - v2). (30) 
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Accordingly, (7) shows that  • points in the positive direction orthogonal 
to the plane of the orbit, and (8) yields for its magnitude 

= ~r / 1 / 2  __..: V (1 - v2) -1 (31) 
~ . . . . .  [3, ~1J ~ , 

without approximation. Now we recall that  - N  gives the precession of 
the gyroscope relative to the lattice. So after one complete revolution the 
orientation of the gyroscope changes by an angle 

Ar  = - f l A r  : - ~ 2 e C A t  = -~2er -1 

= --v(1 -- v2)-1(1 - v 2 )  1 / 2 ~ ? r  = - - 2 7 r ( 1  - -  y 2 )  - 1 / 2 .  ( 3 2 )  
r 0J 

Without  loss of generality, we here assume w > O. Of  course, the rotating 
coordinate system precesses the baseline by 2~r per revolution, and this 
must be allowed for in obtaining the precession per revolution relative to 
the original system: 

Ar  = Ar  + 27r = - 2 , [ ( 1  - v2)  -~12 - 1] ~ -~rv 2. (33) 

This is Thomas'  well-known result, the negative sign indicating that the 
precession is retrograde. 

3.2 T h e  F o k k e r - d e  S i t t e r  p r e c e s s i o n  in Schwarzsch i ld  space  
The Fokker-de Sitter precession [6,7] refers to the precession of a gyroscope 
following a free (i.e. geodesic) orbit, generally taken to be a circle, around 
a spherically symmetric mass, such as the earth. It is of renewed interest in 
connection with various gyroscopic tests for general relativity currently in 
the planning stage. But, in fact, for the earth-moon "gyroscope" in orbit 
around the sun, it has already been verified to an astonishing accuracy 
of 2% [11]. The relevant metric is the Schwarzschild metric (10), which 
for our purposes we again refer to rotating coordinates, thus obtaining the 
form (11). We have seen already that circular Schwarzschild orbits obey 
Kepler's third law, eq. (12). Comparing (11) with the canonical form (1), 
and substituting, where convenient, from (12), we easily find 

3m e 2r = 1 
r 

w3 = r 2 w  ( 1 -  - - -  

2 m  h 11 - 1 -  - -  
r 

r202 2 , W3,1 = 2rw 1 -- - -  
r 

- 1  
, = / . - -2 ,  h 33 ( 1 -  ~ )  ( 1 -  2 ? )  (34) 
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where again we chose x l , z 2 , z 3  = r,O,r j. And again eq. (7) shows that  
f t  points in the positive direction orthogonal to the plane of the orbit. 
Substitution from (7) into (8) yields, coincidentally, 

er .~11~ ~~ "" I, tt/[3,1] / ~-~ 03. (35) 

Of course, f2 is a proper rate of rotation while w is a coordinate rate of 
rotation. So, repeating, mutatis mutandis, the argument that  leads to (32) 
and (33), and again under the assumption w > 0, we find for the precession 
of r per revolution: 

A r  1 -  , (36) 

without approximation, and consequently for the desired Fokker-de Sitter 
precession: 

Ar = --27r 1 -- -- 1 .~ = 37rv 2. (37) 
r 

Because of the positive sign, the precession is in the same sense as that  
in which the orbit is described, lit can be shown fairly simply (Ref. 8, 
p. ].41) that  two-thirds of the precession (37) can be ascribed to the spatial 
geometry of the Schwarzschild metric, while one-third is essentially due to 
Thomas precession; however, the latter is now in the forward rather than 
the retrograde sense, for it is now the frame of the t~eld that  Thomas- 
precesses around the gyroscope, which itself is free, i.e. unaccelerated.] 

If we repeat the above calculation without assuming (12), i.e. for an 
arbitrary (nongeodesic) circular orbit in which the required centrifugal or 
centripetal force grad r (relative to the rotating system ) could be supplied, 
for example, by a transverse rocket, we find instead of (35) and (37): 

r2~ 2 (38) 
r 

_ \ - 1 / 2  1]. (39) 
t 

Note, in particular, that  at radius r = 3m (where the geodesic orbit would 
be lightlike), the precession has become so large that,  independently of w, 
f2 = 0, i.e. the orientation of the gyroscope is locked to the lattice of the 
rotating frame. For smaller orbits, down to r -= 2m + e (c > 0), which can 
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still be timelike if w is sufficiently small, ~ becomes negative and so the 
precession of the gyroscope even in the rotating frame is forward, i.e. its 
total precession Ar exceeds 2~r. 

Note that  when we put m = 0 in (39), we re-obtain the Thomas 
precession (33). 

3.3 T h e  Schl f f  p recess ion  in  K e r r  space  
Next we calculate by the same method the precession of a gyroscope that  is 
carried Mong a circular geodesic i n the equatorial plane of Kerr space-time. 
From (14) we can read off all the quantities needed for this calculation. 
Making use of (16), we find 

e r = -t-2a + - -  
m 

Ws,1----2(a-I-~F~) ( r 
a 2 2m 

h 11 = 1 § 
r 2 r 

~, 1/2 - 1  

3r 2 ) (a  ::t= ~ )  

:t: -~-  =t=2a 
r3 ) - 1  

+ - -  _ 3r 2 
m 

the lower signs again corresponding to the retrograde orbits. These ex- 
pressions yield for ~, surprisingly, the same values 

a = :t:v/m-/r 3 (41) 

as in the Schwarzschild case (a = 0). Nonetheless, the precession Ar ~ per 
revolution does depend on a, since the conversion factor from proper time 
to coordinate time and the angular velocity (16) involve a. We find 

/---~ 1/2 
. (42) 

Consequently the precession of the gyroscope with respect to the original 
lattice amounts to 

A~b==F27r[(1-'3m:l:2a~ 1 / 2 r  - 1]. (43) 

It should be emphasized that  Ar is the precession of the gyroscope 
with respect to the neighbouring points of the original lattice, and not 

h ~3= :t=2a -I--- 3r 2 (r 2-2mr-t-a2) -1 a=l: ,(40) 
m 
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with respect to a gyroscope situated at one of the lattice points. In the 
Schwarzschild case these concepts coincide, but not in the Kerr case, where 
the original lattice is itself rotating with respect to a compass of inertia. 
Within one period of coordinate time 

A t  = + 2 ~ / ~  = 2~(V~-r/m • a) (44) 

a gyroscope fixed at radius r in the original lattice changes its orientation 
with respect to neighboring points by -2ram(r3x/-r- ~ • a) (1 - 2m/r )  1/~, 
as can be easily calculated by our method. The value (43) has to be reduced 
by this amount, if the precession of the orbiting gyroscope is wanted with 
respect to a fixed gyroscope. 

If both m / r  and a / r  are small, (43) can be replaced by the approxi- 
mation 

Ar  ~ • 3~,~ _ 2~.<,V,,-A--/,~. (45) 
r 

The first term on the right gives the precession due to the mass of the 
central body alone, whereas the second term represents the contribution 
from the angular momentum of the central body. This term may properly 
be called the Schiff precession [9]. Note that  it does not depend on the 
sense of the orbit. The quotientof these terms, 

2rrav/-m-lr 3 - 2 a  (46) 
3 ~r m / r 3 vr-m-r ' 

can be viewed as a relative measure for the Schiff effect within the under- 
lying approximation. In the case of the earth it is never more than about 
1%. 

3.4 G y r o s c o p i c  p r e c e s s i o n  in  GSde l  space  
As a final example, we present without detail the results of an analogous 
calculation for the case of GSdel's universe, restricting ourselves to the 
geodesic orbits for simplicity. We recall that  a circular geodesic in GSdel's 
universe satisfies eq. (22). For a gyroscope carried along such a curve we 
find [following the steps that  lead to (32) and to (42)] that  its orientation 
with respect to a co-rotating lattice changes by 

Ar  = -~r(1 - sinh 2 2r) 1/2 (47) 

after one revolution. This implies that  its orientation with respect to the 
original GSdel lattice changes by 

Ar  = 2~r - lr(1 - sinh 2 2r) 1/~. (48) 
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We recall [cf. eq. (24)] that  the radius of timelike geodesics is restricted 
by the condition 0 < sinh 2r < 1, where the limiting cases correspond to a 
vanishingly small circle and to a lightlike world-line respectively. 

As in the case of the Kerr metric, Ar  does not give the precession 
with respect to a second gyroscope fixed in the original Ghdel lattice. In 
order to yield the precession in this sense, (48) has to be reduced by the 
precession of that  second gyroscope with respect to neighboring lattice 
points, which amounts to r ( 1 -  2 sinh 2 r). Note the necessary coincidence 
of this value with (48) in the limit r --* 0. 

A P P E N D I X  

Here we briefly justify our key formulae (5) to (8). 
The 4-acceleration of a world-line z ~ = xU(s) is defined as 

A~ , D~x ~ d2x dx v dx"  (A.1) 
- ds----T-- ds ~ + { ~ o }  ds ds ' 

and its vanishing corresponds to the world-line's being a geodesic. Apply- 
ing the alternative formula (Ref. 10, eqs. 2.431 and 2.439) 

d ( O L )  OL ( h c d x I '  
2A~, = -~s ~ Ox~ = -'~'s ; L = g~,v~t'{c v) (A.2) 

to the world-line x i = constant of the metric (1), one easily obtains (5). To 
obtain (6) from (5), we apply a "gauge" (time-)transformation (4) to the 
metric (1) to achieve r = O, wi = 0 at the event of interest, and observe 
that  the last term in (6) is gauge invariant. 

In order to establish (7), we start out from the well-known formula 5 

w,v = (6; + V~,V ~ (5~ + V~V~)V[o,~l (A.3) 

for the vorticity tensor w~,v of an arbitrary timelike congruence whose 4- 
velocity field is V g. In our case, V I' = e-r ~, whence V~ = - e r  (hg-wihg),~ i 
and thus 

wkj = eCw[k,j]. (A.4) 

The components ~t of the rotation 3-vector • are given by 

wkj = ~z~/ljk, (A.5) 

where ~/zik = (det h,~,,)l/2e~jk is the Levi-Civita tensor associated with the 
spatial metric hij. Transvecting (A.5) with yqk = (det h m n ) - l / 2 e  iik yields 
formula (7). That  (8) follows from (7) is seen most easily by transforming 
to Euclidean space coordinates, h ij -- 5q,  at the lattice point of interest, 
and noting the 3-tensorial character of the right-hand sides. 

5 See, for example, Ref. 4, eq (4.12) and after (4.1). 
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