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“The collapse of a quantum state as a joint probability construction”,
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1 Classical mechanics is incomplete

2 Algebraic measurement theory for both CM and QM

3 Construct a connection between CM and QM that is not quantization,
in terms of that algebraic measurement theory

4 How we use noncommutativity:
(i) Measurement incompatibility
(ii)“collapse” as joint measurement
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[1] classical mechanics is incomplete

The usual idea:

QM Is Incomplete Because It Does Not Make Contact With CM
EPR 1935: “Can Quantum-Mechanical Description of Physical Reality Be Considered Complete?”

Turn that around:

CM Is Incomplete Because It Does Not Make Contact With QM
2022: “Can Classical-Mechanical Description of Physical Reality Be Considered Complete?”

various no-go theorems show that CM is not able to model
measurements that can be modeled by QM

Gleason, Kochen-Specker, Bell, ...

but CM has been straw-manned
We can easily add two things to CM to make it as capable as QM:

noncommutativity and “quantum” noise

where “quantum” noise is different from “thermal” noise
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[2] algebraic QM and CM — noncommutative
or commutative probability theory

There are abstract measurements M̂1,M̂2,M̂3,...,M̂1+M̂2,...,M̂1M̂2,...

linear operators≡random variables, spectrum≡sample space, noncommutative
or commutative ,

associative,
distributive,

with unit

With no dynamics, the tradition is: QM=noncommutative, CM=commutative

A (statistical) state ρ maps measurement operators to expected measurement results

ρ(M̂1),ρ(M̂2),ρ(M̂3),...,ρ(M̂1+M̂2),...,ρ(M̂1M̂2),..., ρ(M̂n
1 ),...

positive: ρ(Â†Â)≥ 0; normalized: ρ(1) = 1;

von Neumann linearity: ρ(λÂ+µB̂) =λρ(Â)+µρ(B̂)

compatible with the adjoint: ρ(Â†) = ρ(Â)∗; where (ÂB̂)†= B̂†Â†

We can also use measurement operators to modulate the state ρ to give different

expected measurement results, ρA(M̂) = ρ(Â† M̂ Â)

ρ(Â†Â)
,

from which the GNS-construction gives us a Hilbert space

This has so far introduced neither Planck’s constant nor a dynamics:
this is algebraic measurement theory in the abstract
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[3] classical mechanics (Eckart 1926; Koopman 1931; von Neumann
Birkhoff (ergodic theorem); Sudarshan 1976)

(“An algebraic approach to Koopman classical mechanics”, PM, Ann. Phys. 2020)

Take classical mechanics to be an algebra of functions on phase space
that has three binary operations:

addition, multiplication, and the Poisson bracket
u + v
u · v
{u, v}

The Poisson bracket acts with the Hamiltonian function to give
a generator of time evolution, ẐH(u) = {H,u}, the Liouvillian,

and we can use other functions v to give other transformations Ẑv (u)
[Ẑv , Ẑw ] = Ẑ{v ,w} 6= 0 generates a noncommutative algebra

For Ŷw (u) = w ·u, [Ŷv ,Ŷw ] = 0, but [Ẑv ,Ŷw ] = Ŷ{v ,w} 6= 0, generating
a noncommutative algebra of operators with addition and composition

I suggest:

We can use the Ŷ ’s and Ẑ ’s of a more powerful CM+ without restriction

Instead of quantization and its not-inverses
(the Correspondence Principle, the Ehrenfest theorem, decoherence, et cetera)

we can use the same measurement theory for CM+ and QM
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[Ẑv , Ẑw ] = Ẑ{v ,w} 6= 0 generates a noncommutative algebra
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the classical simple harmonic oscillator

The Poisson bracket: {u, v} = ∂u
∂p

∂v
∂q −

∂u
∂q

∂v
∂p

We work with the transformations
generated by the Poisson bracket,

not with the Poisson bracket directly
{u, v} 6 67→ [û, v̂ ]

Ŷq[u] = q · u, Ẑp[u] = {p, u} = ∂
∂qu, [Ŷq, Ẑp] = −1

Ŷp[u] = p · u, Ẑq[u] = {q, u} = − ∂
∂pu, [Ŷp, Ẑq] = 1

ŶH [u] = 1
2

(q2 + p2) · u, ẐH [u] = {H, u} =
(
p · ∂∂q − q · ∂∂p

)
u

The Gibbs thermal state at temperature kT (in a generating function form, introducing j):

〈kT|ejλŶq+jµŶp |kT〉= e−kT(λ2+µ2)/2, 〈kT|eαẐp+βẐq |kT〉= e−(α2+β2)/8kT

set Ŷq = (a + a†)
√

kT, Ẑp =
(a− a†)

2
√

kT
, [a, a†] = 1, ensuring [Ŷq, Ẑp] = −1, and we set a|kT〉 = 0

We can construct modulated, non-equilibrium states,
〈kT|Â† M̂ Â|kT〉
〈kT|Â†Â|kT〉

, and hence a Hilbert space

Instead of trying to map (q, p) 6 67→ (q̂, p̂), as quantization tries to (but fails),

we can map CM+ to QM, (q, j ∂∂q ) 7→ (q̂, p̂), (p, j ∂∂p ) 7→ (q̂′, p̂′)

Crucially, kT is not ~, but it is also about an irreducible noise
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(q2 + p2) · u, ẐH [u] = {H, u} =
(
p · ∂∂q − q · ∂∂p

)
u

The Gibbs thermal state at temperature kT (in a generating function form, introducing j):
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kT, Ẑp =
(a− a†)

2
√

kT
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quantum and thermal noise

What is the difference between quantum and thermal noise?

~ has units action, whereas kT has units energy

In QFT, the quantum vacuum is Poincaré invariant, thermal noise is not
This difference of symmetry properties can be used in CM+

In CM+, ~ is an amplitude of Poincaré invariant noise
kT is an amplitude of thermal noise

This gives a new reason to think that we must work with field theories,
because we can only define the Lorentz group in 1+n-dimensions
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unboundedness of the Hermitian generators of time-like evolution

For the Gibbs state of the Simple Harmonic Oscillator,
ẐH is anti-Hermitian, so we consider jẐH , which is Hermitian,

jẐH = j

(
p · ∂
∂q
− q · ∂

∂p

)
= j
(
ŶpẐp + ŶqẐq

)
= j (ba− b†a†) so 〈kT|jẐH |kT〉= 0

= 1
2

[
(a− jb†)†(a− jb†)− (a + jb†)†(a + jb†)

]
6≥ 0

The Hamiltonian operator in QM is bounded below→analytic properties;
the corresponding operator in CM+, jẐH , is not (though ŶH is)

CM+ includes (1) noncommutativity and (2) quantum noise, however
(3) analyticity is mathematically useful but is not included

We can think of QM as an analytic form of CM+

Accepting this instead of trying to fix it gives us isomorphisms,
as we have seen, which is pleasantly different from quantization

Peter Morgan (Yale) collapse ! joint probability November 2nd, 2022 8 / 20
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)
= j (ba− b†a†) so 〈kT|jẐH |kT〉= 0
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reprise: classical and quantum measurement theories

If “quantum” noise pushes us to field theory, what is the role of particles?

For your consideration: QM and QFT are formalisms about
Megabytes or Terabytes of experimental records of events

but assigning events to particles, against a noisy background,
will generally be a fragile algorithm

We have to consider patterns of events globally

For an empiricist, QM is not enough about particles and systems
for particle properties to be hard-wired into QM’s axioms

Particles are not hard-wired into QFT’s axioms
and nor should they be for classical noisy fields

This focus connects with Bohr’s insistence on classical description
“It is decisive to recognize that, however far the phenomena transcend the scope of classical
physical explanation, the account of all evidence must be expressed in classical terms.”

but “in classical terms” about events, not about particles and their properties
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[4] Two sides of noncommutativity:

(i) measurement incompatibility for CM+

(ii) “collapse” as joint measurement for QM
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[4(i)] measurement incompatibility in practice

Alice and Bob both have two Avalanche PhotoDiodes,
an Electro-Optic Modulator, a Random Bit Generator, and a clock;

a central apparatus modulates the ground state

page 60 from
Gregor Weihs’s

thesis

think
noisy
fields

The time when an APD’s signal rises to a higher level is recorded, and
which APD it was, and what the EOM setting was: when and 2 bits

This compressed record does not analyze any other signal details
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Gregor gets measurement results (Alice sees almost 400,000 APD events in 10 seconds)

16 colors represent the 4 APD and EOM bits:
�
�
+
×

(brightness represents Alice’s two bits, shapes represent Bob’s two bits, red is the diagonal, ...)

-3.0ns

3.0ns

0.0s 5.0s 10.0s

longdist35-Alice+-3ns-0-10s

M

M

M

M

15203 events displayed of 388455 that occurred in 10.0 seconds
4 displayed events tagged M as a multiple coincidence

For over 15,000 of Alice’s 400,000 events, Bob also records an event within 3 nanoseconds

When Alice and Bob both record an event within 3 nanoseconds, the majority are green or yellow

Alice 0 APD#0, EOM:0, 0 Alice 1 APD#0, EOM:1, 45 Alice 2 APD#1, EOM:0, 90 Alice 3 APD#1, EOM:1, 135

Bob 3
APD#1
EOM:1
157.5

Bob 2 
APD#1
EOM:0
112.5

Bob 1
APD#0
EOM:1
67.5

Bob 0
APD#0
EOM:0
22.5

Histogram for longdist35-Alice+-3ns-0-10s
Total in all Histograms = 15199 paired events

Histogram entry width is 60ps. Highest entry is 142 events.

320

439

2006

1658

1675

293

300

1463

1780

1741

364

374

193

1200

1212

181

E00 =  -0.694
[320+364,-2006-1780]

E01 =  -0.614
[439+374,-1658-1741]

E10 =   0.708
[1675+1212,-300-193]

E11 =  -0.698
[293+181,-1463-1200]

|E00-E10|+|E01+E11|
=  2.714

|E00-E01|+|E10+E11|
=  0.090

after simultaneous
events have

been identified,
absolute

timing information
is discarded

then relative
timing information

is also discarded

to give a 4×4 table
of APD# and
EOM setting,

2 bits for Alice and
2 bits for Bob
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transformations and noncommutativity

We have applied various transformations to recorded experimental data
If they were innocuous, we could use commutative algebras

as models of those transformations

In QM, we model Bell-violating statistics using noncommuting operators

In CM as usual, we do not have noncommuting operators

In Koopman’s Hilbert space formalism for classical mechanics, CM+, we can
use noncommutativity as needed to model contexts systematically

For quantum fields, locality is closely associated with incompatibility because
microcausality only allows noncommutativity at time-like separation

The 4×4 table of numbers we constructed could come from anywhere,
so, for now, set aside discussion of locality (and this talk is about probability)
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use noncommutativity as needed to model contexts systematically

For quantum fields, locality is closely associated with incompatibility because
microcausality only allows noncommutativity at time-like separation

The 4×4 table of numbers we constructed could come from anywhere,
so, for now, set aside discussion of locality (and this talk is about probability)
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Boole 1854

It has been known since George Boole in the mid-19th Century that
for some pairs of probability measures we cannot construct

a joint probability measure that has that pair
as marginal probability measures

It is classically understandable that such pairs can arise when
measurement results come from different experimental contexts

“Measurement incompatibility” is classically understandable and
classical mechanics should have a systematic response to it

so we can optimize our use of the results of new experiments

We can use Wigner functions in CM+ just as we do in QM
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[4] Two sides of noncommutativity:

(i) measurement incompatibility for CM+

(ii) “collapse” as joint measurement for QM
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[4(ii)] “The collapse of a quantum state as a joint probability construction” JPhysA
2022

For a measurement A, with sample space A = {am}, Â =
∑

m amP̂m, and

a measurement B, with sample space B = {bn}, B̂ =
∑

n bnQ̂n,

For solo measurements, with density operator ρ̂,
we obtain the result αm with probability Tr[ρ̂P̂m] and
we obtain the result βn with probability Tr[ρ̂Q̂n].

For two measurements, of A first, followed by B, we say that the result αm

“collapses” the state from ρ̂ to the collapsed state ρ̂m,

ρ̂m =
P̂mρ̂P̂m

Tr[P̂mρ̂P̂m]
=

P̂mρ̂P̂m

Tr[ρ̂P̂m]
,

then we measure B in that state, so we obtain the result αm followed by βn with
conditional probability

p(βn|αm) = Tr[ρ̂mQ̂n] =
Tr[P̂mρ̂P̂mQ̂n]

Tr[ρ̂P̂m]
.

The joint probability, therefore, is
p(αm and βn) = Tr[P̂mρ̂P̂m · Q̂n] = Tr[ρ̂ · P̂mQ̂nP̂m].
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We have p(αm and βn) = Tr[P̂mρ̂P̂m · Q̂n] = Tr[ρ̂ · P̂mQ̂nP̂m],

so the positive operators Ĵmn = P̂mQ̂nP̂m generate
the joint probabilities Tr[ρ̂Ĵmn].

Instead of collapse affecting a state,
we can take collapse to affect the next measurement

If [Â, B̂] = 0, then P̂mQ̂nP̂m = P̂mQ̂n = Q̂nP̂mQ̂n ∼ no action

We can use Ĵmn to construct a “collapse product”,
a measurement AI◦B, with sample space A×B, even if [Â, B̂] 6= 0

The existence of a joint probability is traditionally “classical”, so we can instead use

Tr[ρ̂′ · P̂ ′
mQ̂

′
n] = Tr[ρ̂ · P̂mQ̂nP̂m], with [Â′, B̂ ′] = 0, ρ̂′ 6= ρ̂

We can think of this as a “super-Heisenberg picture”, for which
unitary evolution and collapse are both applied to measurements

or as the “Bohr picture”, because it is rather classical
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Instead of collapse affecting a state,
we can take collapse to affect the next measurement
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we can (and somehow must) extend this to many measurements

For a sequence of three or more measurements,

we can use the sequential product, X̂ ◦ Ŷ =
√
X̂ · Ŷ ·

√
X̂

(or more elaborate constructions of positive operators)

Collapse of the quantum state after measurement is ambiguous

ρ
(√

P̂
(A)
i P̂

(B)
j P̂

(A)
i P̂

(C)
k

√
P̂

(A)
i P̂

(B)
j P̂

(A)
i

)
or ρ

(
P̂

(A)
i P̂

(B)
j P̂

(C)
k P̂

(B)
j P̂

(A)
i

)
?

(AI◦B)I◦C 6= AI◦(BI◦C)

We can use any ordering, but each makes a different assertion about collapses

This is nonassociative, so, more complicated than the Heisenberg cut,
we have a Heisenberg ordering ambiguity

For signal analysis, when we have many measurements at time-like separation,
we can use A1, ...,A100...000 with many ambiguous collapses,

or we can use A′
1, ...,A

′
100...000, which all commute, unambiguously

which we can think of as Bohr’s ideal of a classical model for compatible measurements

measurements at timelike separation can give joint probabilities
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“Collapse” is not
−→only or necessarily←−

a dynamical process
We can −→also←− take it to be a

JOINT PROBABILITY

ALGORITHM
Belavkin(1994) Quantum Non-Demolition (QND) Measurements
Tsang&Caves(2012) Quantum-Mechanics–Free-Subsystems

An unfortunate but necessary tradeoff:
QM is effective for incompatible measurements, but less so for joint measurements

Collapse is QM’s way of constructing joint measurement probabilities

CM is effective for joint measurements, but less so for incompatible measurements
The Poisson bracket is CM+’s way of constructing incompatible measurements

Peter Morgan (Yale) collapse ! joint probability November 2nd, 2022 17 / 20



“Collapse” is not
−→only or necessarily←−

a dynamical process
We can −→also←− take it to be a

JOINT PROBABILITY

ALGORITHM
Belavkin(1994) Quantum Non-Demolition (QND) Measurements
Tsang&Caves(2012) Quantum-Mechanics–Free-Subsystems

An unfortunate but necessary tradeoff:
QM is effective for incompatible measurements, but less so for joint measurements

Collapse is QM’s way of constructing joint measurement probabilities

CM is effective for joint measurements, but less so for incompatible measurements
The Poisson bracket is CM+’s way of constructing incompatible measurements

Peter Morgan (Yale) collapse ! joint probability November 2nd, 2022 17 / 20



events

An event in an APD compared with an event from throwing a coin:
We throw a coin, we see it land, we record ‘0’ or ‘1’

We ‘throw’ an APD, we record the ‘signal’ as ‘0’ or ‘1’, at GHz rates

We have engineered the avalanche thermodynamics of the APD so it is like
a coin for the purposes of statistics: the ‘signal’ is either ‘0’ or ‘1’

The difference: there are many ‘0’s together and many ‘1’s together, so
we can compress the data by recording only the times of transitions

Throws of a coin or of an APD are both used to compute relative frequencies,
with the dynamics effectively abstracted away

That we can work with
generalized

probability models for throws of a coin or of an APD

does not deny interest in also working with
thermo-

dynamical “collapse” models
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classical and quantum models

With noncommutativity and “quantum” noise added into CM+,
we can allow ourselves, with care, to think classically

We should be systematic about contextuality and Boole’s incompatibility
as classically natural ideas

Noncommutativity lets us use information systematically that otherwise
we might have to discard as not relevant to a new experiment

Insofar as experiments can be described using CM+ or QM,
quantum systems can be thought of as classical+ systems (and vice versa)

Quantum mechanics can be thought of as a generalized probability theory,
for which the generalization is classically understandable
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The difference between Quantum and Classical
is subtle, but not mysterious

if we think in terms of events and CM+, not in terms of particle and system properties

An experiment behaves the same whether we use CM+ or QM models
We might, however, choose to construct different experiments

Instead of collapse of the state, we can use Quantum Non-Demolition measurements,
but we still need noncommutativity to model contextuality/incompatibility

Quantum and Classical have been
converging, in numerous ways, for decades

Generalized Probability Theories, phase space methods, contextuality, non-demolition measurement,
Koopman CM, time-frequency analysis, stochastic methods, semi-classical methods, (superdeterminism)

We will, however, continue to use quantum mechanics
for its

analyticity

“Classical states, quantum field measurement”, Physica Scripta 2019

“An algebraic approach to Koopman classical mechanics”, Annals of Physics 2020

“The collapse of a quantum state as a joint probability construction”, Journal of Physics A 2022

and, ancient history, “Bell inequalities for random fields”, Journal of Physics A 2006
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