
Fermions 

1. Indistinguishable particles, maximum one particle per state 

Now we assume that particles (no matter whether in the same energy level or in different 

ones) are indistinguishable from each other. We take this into account by dividing by the 

number of permutations of ni when we calculate the different arrangements of particles in 

each energy level. We then simply multiply the number of arrangements in every level 

without taking into account permutations of particles in different levels. 

The total number of arrangements with ni particles in state i, which has gi states, becomes: 

 𝑊 = ∏
𝑔𝑖!

(𝑔𝑖−𝑛𝑖)! 𝑛𝑖!

𝑘
𝑖=1  

The same procedure as before gives us: 

ln 𝑊 = ∑[ln 𝑔𝑖! − ln(𝑔𝑖 − 𝑛𝑖)! − ln 𝑛𝑖!]

𝑘

𝑖=1

≈ ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 − (𝑔𝑖 − 𝑛𝑖) ln(𝑔𝑖 − 𝑛𝑖) + (𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖  ln 𝑛𝑖 + 𝑛𝑖]

𝑘

𝑖=1

= ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 ln(𝑔𝑖 − 𝑛𝑖) + 𝑛𝑖 ln(𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖 ln 𝑛𝑖]

𝑘

𝑖=1

 

𝛿 ln 𝑊 = ∑ [−𝑔𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) 𝛿𝑛𝑖 + 𝑛𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
− ln 𝑛𝑖 𝛿𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
]

𝑘

𝑖=1

= ∑ [
𝑔𝑖 − 𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 1] 𝛿𝑛𝑖

𝑘

𝑖=1

= ∑[ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖]𝛿𝑛𝑖

𝑘

𝑖=1

 

To find the maximum of ln W under the constraints of constant number of particles and 

constant energy we solve the following equation: 

ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 𝛼 − 𝛽 𝑢𝑖 = 0 

This gives us 
𝑔𝑖

𝑛𝑖
− 1 = 𝑒𝛼𝑒𝛽𝑢𝑖 

And further 

𝑛𝑖

𝑔𝑖
=

1

𝑒𝛼𝑒𝛽𝑢𝑖 + 1
 

This is the Fermi-Dirac distribution for indistinguishable particles, constant particle number. 



If we don’t require a constant number of particles we simply leave out the Lagrange 

multiplier  and get: 

𝑛𝑖

𝑔𝑖
=

1

𝑒𝛽𝑢𝑖 + 1
 

This is the Fermi-Dirac distribution for indistinguishable particles, non-constant particle 

number. 

 

2. Interpretation of the Lagrange multipliers 

To give the Lagrange multipliers physical meaning we start with a general method of 

determining Lagrange multipliers (see any text on calculus of variations) and then use 

Boltzmann’s definition of entropy and results from classical thermodynamics. 

The multiplier  is given by: 

𝛼 = (
𝜕 ln 𝑊

𝜕𝑁
)

𝑈,𝑉
=

1

𝑘𝐵
(

𝜕(𝑘𝐵 ln 𝑊)

𝜕𝑁
)

𝑈,𝑉

=
1

𝑘𝐵
(

𝜕𝑆

𝜕𝑁
)

𝑈,𝑉
= −

𝜇

𝑘𝐵𝑇
 

Here is the chemical potential and T the absolute temperature. 

The entropy S is defined as kB ln W. 

The last step in the above derivation can be found by applying the triple product rule to the 

definitions of temperature and chemical potential as follows: 

Definitions: (
𝜕𝑆

𝜕𝑈
)

𝑁,𝑉
=

1

𝑇
  (

𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
= 𝜇 

 

Triple product: (
𝜕𝑆

𝜕𝑈
)

𝑁,𝑉
(

𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
(

𝜕𝑁

𝜕𝑆
)

𝑈,𝑉
= −1 

 

After inserting the definitions: 
1

𝑇
𝜇 (

𝜕𝑁

𝜕𝑆
)

𝑈,𝑉
= −1 

 

And therefore: (
𝜕𝑆

𝜕𝑁
)

𝑈,𝑉
= (

𝜕(𝑆+𝑐𝑜𝑛𝑠𝑡.)

𝜕𝑁
)

𝑈,𝑉
= −

𝜇

𝑇
 

 

U stands for the total inner energy of the system. 

 

Similarly we get the multiplier : 

 

𝛽 = (
𝜕 ln 𝑊

𝜕𝑈
)

𝑁,𝑉
=

1

𝑘𝐵
(

𝜕(𝑘𝐵 ln 𝑊)

𝜕𝑈
)

𝑁,𝑉

=
1

𝑘𝐵
(

𝜕(𝑆 + 𝑐𝑜𝑛𝑠𝑡. )

𝜕𝑈
)

𝑁,𝑉

=
1

𝑘𝐵𝑇
 

Here the last step simply follows from the definition of temperature. 



3. Expressions for entropy 

Inserting the results for the distribution functions back into the corresponding expressions 

for ln W and using Boltzmann’s definition for entropy leads to expressions for entropy in 

terms of macroscopic variables after some simplifications, or maybe not? 

The distribution 

𝑛𝑖

𝑔𝑖
=

1

𝑒𝛼𝑒𝛽𝑢𝑖 + 1
 

for indistinguishable particles, constant N, can be rewritten as 

𝑒𝛼𝑒𝛽𝑢𝑖 =
𝑔𝑖

𝑛𝑖
− 1 

And also as 

𝑔𝑖 = 𝑛𝑖(𝑒𝛼𝑒𝛽𝑢𝑖 + 1) 

The expression for ln W for indistinguishable particles is: 

ln 𝑊 ≈ ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 ln(𝑔𝑖 − 𝑛𝑖) + 𝑛𝑖 ln(𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖 ln 𝑛𝑖]

𝑘

𝑖=1

= ∑ [−𝑔𝑖 ln
𝑔𝑖 − 𝑛𝑖

𝑔𝑖
+ 𝑛𝑖 ln

(𝑔𝑖 − 𝑛𝑖)

𝑛𝑖
]

𝑘

𝑖=1

= ∑ [−𝑔𝑖 ln (1 −
𝑛𝑖

𝑔𝑖
) + 𝑛𝑖 ln (

𝑔𝑖

𝑛𝑖
− 1)]

𝑘

𝑖=1

 

This gives 

ln 𝑊 ≈ ∑ [−𝑔𝑖 ln (1 −
1

𝑒𝛼𝑒𝛽𝑢𝑖 + 1
) + 𝑛𝑖 ln(𝑒𝛼𝑒𝛽𝑢𝑖)]

𝑘

𝑖=1

= ∑ [−𝑔𝑖 ln (
𝑒𝛼𝑒𝛽𝑢𝑖

𝑒𝛼𝑒𝛽𝑢𝑖 + 1
) + 𝑛𝑖 ln(𝑒𝛼𝑒𝛽𝑢𝑖)]

𝑘

𝑖=1

= ∑ [𝑔𝑖 ln (
𝑒𝛼𝑒𝛽𝑢𝑖 + 1

𝑒𝛼𝑒𝛽𝑢𝑖
) + 𝑛𝑖(𝛼 + 𝛽𝑢𝑖)]

𝑘

𝑖=1

= ∑ [𝑛𝑖(𝑒𝛼𝑒𝛽𝑢𝑖 + 1) ln (
𝑒𝛼𝑒𝛽𝑢𝑖 + 1

𝑒𝛼𝑒𝛽𝑢𝑖
) + 𝑛𝑖(𝛼 + 𝛽𝑢𝑖)]

𝑘

𝑖=1

≈ ? ? ? + 𝑁𝛼 + 𝑈𝛽 

 



Using Boltzmann’s definition of entropy, S = kB ln W, and the expressions for  and  derived 

in the previous section we get: 

𝑆 ≈ ? ? ? − 𝜇
𝑁

𝑇
+

𝑈

𝑇
 

 


