Fermions

1. Indistinguishable particles, maximum one particle per state

Now we assume that particles (no matter whether in the same energy level or in different
ones) are indistinguishable from each other. We take this into account by dividing by the
number of permutations of n; when we calculate the different arrangements of particles in
each energy level. We then simply multiply the number of arrangements in every level
without taking into account permutations of particles in different levels.

The total number of arrangements with n; particles in state i, which has g; states, becomes:
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The same procedure as before gives us:
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To find the maximum of In W under the constraints of constant number of particles and
constant energy we solve the following equation:
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This gives us
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And further
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This is the Fermi-Dirac distribution for indistinguishable particles, constant particle number.



If we don’t require a constant number of particles we simply leave out the Lagrange
multiplier o and get:
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This is the Fermi-Dirac distribution for indistinguishable particles, non-constant particle
number.

2. Interpretation of the Lagrange multipliers

To give the Lagrange multipliers physical meaning we start with a general method of
determining Lagrange multipliers (see any text on calculus of variations) and then use
Boltzmann’s definition of entropy and results from classical thermodynamics.

The multiplier a is given by:
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Here u is the chemical potential and T the absolute temperature.

The entropy S is defined as kg In W.

The last step in the above derivation can be found by applying the triple product rule to the
definitions of temperature and chemical potential as follows:
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U stands for the total inner energy of the system.

Similarly we get the multiplier B:

_(aan) 1 (0(kgInW) _ 1 (9(S + const.) 1
p= oU Jyy kg ou NV_kB U NV_kBT

Here the last step simply follows from the definition of temperature.




3. Expressions for entropy

Inserting the results for the distribution functions back into the corresponding expressions
for In W and using Boltzmann’s definition for entropy leads to expressions for entropy in
terms of macroscopic variables after some simplifications, or maybe not?

The distribution
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for indistinguishable particles, constant N, can be rewritten as
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The expression for In W for indistinguishable particles is:
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Using Boltzmann’s definition of entropy, S = kg In W, and the expressions for o and 3 derived
in the previous section we get:
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