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3.1.1 Faraday’s Experiments on Electric Displacement

About 1837, the director of the Royal Society in London, Michael Faraday, became very 
interested in static electric fields and the effect of various insulating materials on these 
fields. This problem had been bothering him during the previous ten years when he was 
experimenting in his now-famous work on induced electromotive force, which we will 
discuss in Chapter 9. With that subject completed, he had a pair of concentric metallic 
spheres constructed, the outer one consisting of two hemispheres that could be firmly 
clamped together. He also prepared shells of insulating material (or dielectric material, or 
simply dielectric) that would occupy the entire volume between the concentric spheres. 

His experiment, then, consisted essentially of the following steps:

1. With the equipment dismantled, the inner sphere was given a known positive charge.
2. The hemispheres were then clamped together around the charged sphere with

about 2 cm of dielectric material between them.
3. The outer sphere was discharged by connecting it momentarily to ground.
4. The outer sphere was separated carefully, using tools made of insulating

material in order not to disturb the induced charge on it, and the negative
induced charge on each hemisphere was measured.

Faraday found that the total charge on the outer sphere was equal in magnitude to
the original charge placed on the inner sphere and that this was true regardless of the 
dielectric material separating the two spheres. He concluded that there was some sort 
of “displacement” from the inner sphere to the outer which was independent of the me-
dium; we now refer to this as displacement, displacement flux, or simply electric flux.

Faraday’s experiments also showed, of course, that a larger positive charge on the in-
ner sphere induced a correspondingly larger negative charge on the outer sphere, leading 
to a direct proportionality between the electric flux and the charge on the inner sphere. 
The constant of proportionality is dependent on the system of units involved, and we are 
fortunate in our use of SI units, because the constant is unity. If electric flux is denoted 
by Ψ (psi) and the total charge on the inner sphere by Q, then for Faraday’s experiment

 Ψ = Q 

and the electric flux Ψ is measured in coulombs.

3.1.2 Electric Flux Density

More quantitative information can be obtained by considering an inner sphere of radius a 
and an outer sphere of radius b, with charges of Q and −Q, respectively (Figure 3.1). The 
paths of electric flux Ψ extending from the inner sphere to the outer sphere are indicated 
by the symmetrically distributed streamlines drawn radially from one sphere to the other.

At the surface of the inner sphere, Ψ coulombs of electric flux are produced by 
the charge Q(= Ψ) coulombs distributed uniformly over a surface having an area of 
4πa2 m2. The density of the flux at this surface is Ψ/4πa2 or Q/4πa2 C/m2, and this is 
an important new quantity.
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Electric flux density, measured in coulombs per square meter (sometimes de-
scribed as “lines per square meter,” for each line is due to one coulomb), is given the 
letter D, which was originally chosen because of the alternate names of displacement
flux density or displacement density. Electric flux density is more descriptive, how-
ever, and we will use the term consistently.

The electric flux density D is a vector field and is a member of the “flux density” 
class of vector fields, as opposed to the “force fields” class, which includes the elec-
tric field intensity E. The direction of D at a point is the direction of the flux lines at 
that point, and the magnitude is given by the number of flux lines crossing a surface 
normal to the lines divided by the surface area.

Referring again to Figure 3.1, the electric flux density is in the radial direction 
and has a value of

D   |r=a
   =   Q ____ 

4π  a   2 
    a  r     (inner sphere) 

   
D   |r=b

   =   Q ____ 
4π  b   2 

    a  r     (outer sphere)

and at a radial distance r, where a ≤ r ≤ b,

 D =   Q
 _ 

4π  r   2 
    a  r   (1)

If we now let the inner sphere become smaller and smaller, while still retaining a 
charge of Q, it becomes a point charge in the limit, but the electric flux density at a 
point r meters from the point charge is still given by (1), for Q lines of flux are sym-
metrically directed outward from the point and pass through an imaginary spherical 
surface of area 4πr2.
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Figure 3.1 The electric flux in the region between 

a pair of charged concentric spheres. The direction 

and magnitude of D are not functions of the dielec-

tric between the spheres.
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This result should be compared with Section 2.2, Eq. (9), the radial electric field 
intensity of a point charge in free space,

 E =   
Q
 _ 

4π  ϵ  0    r   2 
    a  r   

In free space, therefore,

 D =  ϵ  0   E  (free space only) (2)

Although (2) is applicable only to a vacuum, it is not restricted solely to the field of 
a point charge. For a general volume charge distribution in free space, the discussion 
in Section 2.3.2 resulted in

 E =  ∫  vol     
 ρ  v   dv

 _ 
4π  ϵ  0    R   2 

     a  R   (free space only) (3)

This relationship was developed from the field of a single point charge. In a similar 
manner, (1) leads to

 D =  ∫  
vol

      ρ  v   dv_ 
4π   R   2 

      a  R   (4)

and (2) is therefore true for any free-space charge configuration; we will consider (2) 
as defining D in free space.

As a preparation for the study of dielectrics later, it might be well to point out 
now that, for a point charge embedded in an infinite ideal dielectric medium, Fara-
day’s results show that (1) is still applicable, and thus so is (4). Equation (3) is not 
applicable, however, and so the relationship between D and E will be slightly more 
complicated than (2).

Because D is directly proportional to E in free space, it does not seem that it should 
really be necessary to introduce a new symbol. We do so for a few reasons. First, D is as-
sociated with the flux concept, which is an important new idea. Second, the D fields we 
obtain will be a little simpler than the corresponding E fields because ϵ0 does not appear.

D3.1. Given a 60-μC point charge located at the origin, find the total electric 
flux passing through: (a) that portion of the sphere r = 26 cm bounded by 0 <  
θ <   π __ 2   and 0 < ϕ <   π __ 2  ; (b) the closed surface defined by ρ = 26 cm and z = ±26 cm;
(c) the plane z = 26 cm. 

Ans. (a) 7.5 μC; (b) 60 μC; (c) 30 μC


