SOLUTIONS FOR THE FINAL EXAM UCU SCI 211, DECEMBER 2002

1a) Since the initial velocity is zero and the wave propagation speed is ¢ = 1, the
d’Alembert formula takes the form v(z,t) = 3(f(z +t) + f(z —t)); in particular,
for z = 0 we have v(0,t) = 5(f(t) + f(—t)) = 0 for every ¢ (because f is an odd
function, so f(—t) = —f(t)).

Remarks. Being a restriction to z > 0 of a solution u(z,t) of the wave equation,
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v(z,t) is itself a solution in the domain = > 0 (this is tautology: =z~ =

ot?
and 82;9(;"5) = 82;&?” for all positive x (because v(z,t) = u(z,t) for x > 0), so
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initial condition is satisfied tautologically, too: v(z,0) = u(z,0) = f(x) = ()
for x > 0 (the first equality says that we use u as v when x > 0, the second
equality holds because f(x) is the initial condition for u(z,t), the last one holds
because f is a continuation of ¢, which coincides with ¢ for = > 0). The boundary
condition is v(0,¢) = 0, and this is indeed so: v(0,t) = w(0,t) = 0 by virtue
of d’Alembert’s formula, as it is shown above. Finally, vanishing of the second
derivative ¢”(0) (which is, strictly speaking, not defined at the endpoint of the
domain of ¢), mentioned in the problem, guarantees that the solution wu(z,t) is
twice continuously differentiable everywhere.
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F1GuRE 1. Graphs of v(x,1) and v(z,4)

1b) See the pictures above.

Remark. The hump splits into two equal humps of height 1/2. One of them runs
to the right with unit velocity; the other one first moves to the left, but bounces
at the endpoint x = 0 and gets reverted. See the notebook partial DE.nb for more
examples.

2a) The Fourier series for f(t) is >, by sin(knt); there are sine terms only, be-
cause f is an odd function. The Fourier coefficients are by, = 2 fol f(t)sin(knt) dt =
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.= —(1—=(=1)%), so by, = 0 if k is even and b, = — if k is odd. So we have
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f= > - sin(knt),
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and this equals 1 for 0 < ¢t < 1 (see Theorem 1.1 in the Guide Book). The double
infinite sum below does not converge absolutely, so we will treat it as the limit of
finite sums:
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= f(x)f(y) =1, 0<z<l1l O<y<l.

This proves statement a).

2b) If = or y equals 0 or 1, then sin(kwrz)sin(lry) = 0, so all summands vanish
on the boundary of the unit square. Thus u(z,t) satisfies the boundary condi-
tions. To compute the Laplacian of u(z,y), we take the sum of Laplacians of the
summands. Note that 88—; sin(krx) = —k*r? sin(krz) and A(sin(krz)sin(iry)) =
—(k? 4+ 1?)m? sin(knx) sin(imy).
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inside the unit square, according to problem 2a).

3a) Euler step: z,11 = x, + hcz,. Initial condition z(0) = a yields base of
induction: zg = a = a(l + hc)?. Induction step: suppose we know that z, =
a(l + he)™ for all n < k. Then for n = k + 1 we have xpy1 = xp + hcxy =
(1 + he)xy, = (1 + he)a(l + he)* = a(1 + he)*+L, so the formula x,, = a(1 + he)”
holds for n = k + 1, too.



3b) The solution of the differential equation dx(t)/dt = cx(t) with the initial condi-
tion 2(0) = a is x(t) = ae®, so Inx(t) = ct+Ina. Combining zx = a(l+hc)Y with
h=t/N,wegetInxyn(t) =Ina+N In(l+ct/N), and then v(t) = ct—N In(1+ct/N),
which implies v(0) = 0 and % = ¢ — N Lo = (€L 110 <t < T, then
N < N+ct <N+ T, thus
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Finally, v(t) = v(0) + fot v'(s) ds. Taking into account that v(0) = 0, we deduce

from (1) that ﬁch f(f sds <wv(t) < % f(f sds, or
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for all t € [0,T], q.e.d.



