
Solutions for the final exam UCU SCI 211, December 2002

1a) Since the initial velocity is zero and the wave propagation speed is c = 1, the
d’Alembert formula takes the form v(x, t) = 1

2
(f(x + t) + f(x − t)); in particular,

for x = 0 we have v(0, t) = 1
2 (f(t) + f(−t)) = 0 for every t (because f is an odd

function, so f(−t) = −f(t)).

Remarks. Being a restriction to x ≥ 0 of a solution u(x, t) of the wave equation,

v(x, t) is itself a solution in the domain x > 0 (this is tautology: ∂2v(x,t)
∂t2 = ∂2u(x,t)

∂t2

and ∂2v(x,t)
∂x2 = ∂2u(x,t)

∂x2 for all positive x (because v(x, t) = u(x, t) for x > 0), so
∂2v(x,t)

∂t2
= ∂2v(x,t)

∂x2 (for all t and 0 < x < ∞), because ∂2u(x,t)
∂t2

= ∂2u(x,t)
∂x2 ). The

initial condition is satisfied tautologically, too: v(x, 0) = u(x, 0) = f(x) = ϕ(x)
for x > 0 (the first equality says that we use u as v when x > 0, the second
equality holds because f(x) is the initial condition for u(x, t), the last one holds
because f is a continuation of ϕ, which coincides with ϕ for x > 0). The boundary
condition is v(0, t) = 0, and this is indeed so: v(0, t) = u(0, t) = 0 by virtue
of d’Alembert’s formula, as it is shown above. Finally, vanishing of the second
derivative ϕ′′(0) (which is, strictly speaking, not defined at the endpoint of the
domain of ϕ), mentioned in the problem, guarantees that the solution u(x, t) is
twice continuously differentiable everywhere.
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Figure 1. Graphs of v(x, 1) and v(x, 4)

1b) See the pictures above.

Remark. The hump splits into two equal humps of height 1/2. One of them runs
to the right with unit velocity; the other one first moves to the left, but bounces
at the endpoint x = 0 and gets reverted. See the notebook partialDE.nb for more
examples.

2a) The Fourier series for f(t) is
∑∞

k=1 bk sin(kπt); there are sine terms only, be-

cause f is an odd function. The Fourier coefficients are bk = 2
∫ 1

0
f(t) sin(kπt) dt =



. . . =
2

kπ
(1 − (−1)k), so bk = 0 if k is even and bk =

4

kπ
if k is odd. So we have

f(t) =
∑

k≥1, k odd

4

kπ
sin(kπt) ,

and this equals 1 for 0 < t < 1 (see Theorem 1.1 in the Guide Book). The double
infinite sum below does not converge absolutely, so we will treat it as the limit of
finite sums:

∑

l≥1, l odd

∑

k≥1, k odd

4

kπ
sin(kπx)

4

lπ
sin(lπy)

= lim
N→∞





N
∑

l=1, l odd

N
∑

k=1, k odd

4

kπ
sin(kπx)

4

lπ
sin(lπy)





= lim
N→∞





N
∑

k=1, k odd

4

kπ
sin(kπx)









N
∑

l=1, l odd

4

lπ
sin(lπy)





=
∑

k≥1, k odd

4

kπ
sin(kπx)

∑

l≥1, l odd

4

lπ
sin(lπy)

= f(x)f(y) = 1, 0 < x < 1, 0 < y < 1.

This proves statement a).

2b) If x or y equals 0 or 1, then sin(kπx) sin(lπy) = 0, so all summands vanish
on the boundary of the unit square. Thus u(x, t) satisfies the boundary condi-
tions. To compute the Laplacian of u(x, y), we take the sum of Laplacians of the

summands. Note that ∂2

∂x2 sin(kπx) = −k2π2 sin(kπx) and ∆(sin(kπx) sin(lπy)) =

−(k2 + l2)π2 sin(kπx) sin(lπy).

∆u(x, y) =
∂2u(x, y)

∂x2
+

∂2u(x, y)

∂y2

= −
∑

l≥1, l odd

∑

k≥1, k odd

∆

(

16

π4kl(k2 + l2)
sin(kπx) sin(lπy)

)

= −
∑

l≥1, l odd

∑

k≥1, k odd

16

π4kl(k2 + l2)
(−π2(k2 + l2) sin(kπx) sin(lπy))

=
∑

l≥1, l odd

∑

k≥1, k odd

4

kπ

4

lπ
sin(kπx) sin(lπy)) = 1

inside the unit square, according to problem 2a).

3a) Euler step: xn+1 = xn + hcxn. Initial condition x(0) = a yields base of
induction: x0 = a = a(1 + hc)0. Induction step: suppose we know that xn =
a(1 + hc)n for all n ≤ k. Then for n = k + 1 we have xk+1 = xk + hcxk =
(1 + hc)xk = (1 + hc)a(1 + hc)k = a(1 + hc)k+1, so the formula xn = a(1 + hc)n

holds for n = k + 1, too.



3b) The solution of the differential equation dx(t)/dt = cx(t) with the initial condi-
tion x(0) = a is x(t) = aect, so ln x(t) = ct+ln a. Combining xN = a(1+hc)N with
h = t/N , we get ln xN (t) = ln a+N ln(1+ct/N), and then v(t) = ct−N ln(1+ct/N),

which implies v(0) = 0 and dv(t)
dt

= c − N 1
1+ct/N

c
N

= c2t
N+ct

. If 0 ≤ t ≤ T , then

N ≤ N + ct ≤ N + cT , thus

c2t

N + cT
≤

dv(t)

dt
≤

c2t

N
. (1)

Finally, v(t) = v(0) +
∫ t

0
v′(s) ds. Taking into account that v(0) = 0, we deduce

from (1) that c2

N+cT

∫ t

0
s ds ≤ v(t) ≤ c2

N

∫ t

0
s ds, or

c2t2

2(N + cT )
≤ v(t) ≤

c2t2

2N

for all t ∈ [0, T ], q.e.d.


