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abstract

After examining the common conceptions regarding the electromagnetic energy and the ambiguity

of its flux density, a general form of the power flux density will be proposed, which encompasses

the classical Poynting vector theory, and provides a better theoretical fundation for the energy

and momentum fluxes. Of course, the general form is compatible with Maxwell equations and the

energy density formula.

1. Electromagnetic Energy density and power flux

The expression of the energy density of the electromagnetic field was first derived

in 1880 by J. C. Maxwell ([2]) in his monumental work. Maxwell showed essentially

that the (volumic) density of E.M. energy at some point M is equal to

u =
ε0
2
E2 +

ε0c
2

2
B2 , (1)

where E and B are the electric and magnetic fields resp. at M , ε0 is the permitivity

of free space, and c is the speed of light.

This expression fitted well with the once new theory of continuous propagation of

the electrical and magnetic fields, advocated by Faraday and Maxwell, in contrast

to the theory of action at some distance developed by the German physicists.

Relation (1) is now considered as fundamental, and is firmly anchored into the theory

of General relativity ([4], Sec. 1.2 p. 6).

Building on the work of Maxwell, J. H. Poynting introduced in 1883 the vector that

bears his name ([3]). The Poynting vector is defined at any point M by

S = ε0c
2E×B . (2)

It can be shown, using Maxwell’s equations, that S fulfills

−∂u

∂t
= ∇ · S + E · j , (3)

where j is the current density at M . Since E · j is the work done by the E.M. field,

or more precisely, the power transmitted to the charge element q = ρdV centered at
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M , this formula, when integrated on a closed volume V whose surface is oriented to

the outer side, means that the rate of decrease of the E.M. energy contained inside

a volume V , or what is the same, the E.M. power wasted by V , is equal to the sum

of the flux of S through the surface ∂V of V , with the power transmitted by the

E.M. field to the charges inside V .
This leads to the interpretation of S as the power flux density vector of the E.M.

field, flowing out of V through its surface.

This interpretation has proved to work well in many circumstances, and to quote

Feynman “nobody has never find anything wrong with it”. Nevertheless, and that’s

the main point of this article, it should be observed that the Poynting vector is not

the only possible expression of the power flux density susceptible of giving rise a

valid theory. Indeed, the only physical way to observe the flux of power seems to

be measuring the rate of decrease of the energy inside a closed volume V ; in other

words, since we have

∇ · S = −∂u

∂t
− E · j , (4)

we obtain, integrating over V with the Stokes formula,∫
∂V

S · d⃗s = −∂U

∂t
− P , (5)

where U is the E.M. energy inside V and P is the power transmitted to the charges

inside V by the E.M. field. But if some solenoidal field R were added to S, say

S′ = S+R ,

then taking into account that ∇ ·R = 0, relation (4) and (5) would hold with S′ in

place of S as well. So, it seems that the real form of the power flux density cannot

be determined by any physical experiment: it is defined only up to a solenoidal.

Let us report here an entire note of Feynman in his Lectures on Physics ([1], II, 27.4):

“Before we take up some applications of the Poynting formulas [Eqs. (27.14) and (27.15)],

we would like to say that we have not really “proved” them. All we did was to find a

possible u and a possible S. How do we know that by juggling the terms around some more

we couldnt find another formula for u and another formula for S? The new S and the new u

would be different, but they would still satisfy Eq. (27.6). Its possible. It can be done, but

the forms that have been found always involve various derivatives of the field (and always

with second-order terms like a second derivative or the square of a first derivative). There

are, in fact, an infinite number of different possibilities for u and S, and so far no one has

thought of an experimental way to tell which one is right! People have guessed that the

simplest one is probably the correct one, but we must say that we do not know for certain
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what is the actual location in space of the electromagnetic field energy. So we too will take

the easy way out and say that the field energy is given by Eq. (27.14). Then the flow vector

S must be given by Eq. (27.15).

It is interesting that there seems to be no unique way to resolve the indefiniteness in the

location of the field energy. It is sometimes claimed that this problem can be resolved by

using the theory of gravitation in the following argument. In the theory of gravity, all energy

is the source of gravitational attraction. Therefore the energy density of electricity must be

located properly if we are to know in which direction the gravity force acts. As yet, however,

no one has done such a delicate experiment that the precise location of the gravitational

influence of electromagnetic fields could be determined. That electromagnetic fields alone

can be the source of gravitational force is an idea it is hard to do without. It has, in fact,

been observed that light is deflected as it passes near the sun–we could say that the sun pulls

the light down toward it. Do you not want to allow that the light pulls equally on the sun?

Anyway, everyone always accepts the simple expressions we have found for the location of

electromagnetic energy and its flow. And although sometimes the results obtained from

using them seem strange, nobody has ever found anything wrong with them—that is, no

disagreement with experiment. So we will follow the rest of the world—besides, we believe

that it is probably perfectly right”.

As pointed out by Feynman and virtually all textbooks in electromagnetism, the

Poynting vector leads to a representation of the power flow that does not fit well

with the common natural intuition. As a example taken from the article of Poynting

([3], p. 350–351, let us examine how, according to this theory, the power flows inside

an electrical wire connected to the terminals of a battery, assuming, for the sake

of simplicity, that the wire is cylindrical and has a uniform resistance per unit of

length, and that the current is steady.

At a point M inside the wire or at its surface, the electric field E is parallel to the

segment of wire centered at M , since the current is flowing along this direction.

Furthermore, since we assumed steady currents, E is constant. On the other hand,

assuming a point M is located at the surface of the wire, it can be shown, with,

e.g. the Biot and Savard law, that the magnetic field B at M is is orthogonal to the

radius OM of the wire, and directed toward its axis: B = αE × −−→
OM , with α > 0.

So, the Poynting vector S = ε0c
2E × B is radial: S = β

−−→
OM , with β < 0. This

means that according to this theory, the E.M. power is not flowing inside and along

the wire, as one would intuitively expect, but it comes from the outside and flows

perpendicularly through the surface, toward the axis of the wire.

The amount of electrical power transmitted to a length ℓ of the wire can also be

easily computed: Let A be the area of the cylinder formed by the wire, and A′ its

area without the cross sections at the extremities: A′ = 2πrℓ, where r is the radius
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of the wire. The power transmitted to the length of wire is

P = −
∫
A
S d⃗s = −

∫
A′

S d⃗s = 2πrℓ∥S∥ = 2πrℓ∥E∥∥B∥ .

But 2πr∥B∥ is equal to the circulation of the magnetic field around the loop of

radius r, hence is equal, according to Ampere’s law, to I
ε0c2

, where I is the current

intensity in the wire. On the other hand, V = ℓ∥E∥ is equal to the positive difference
of potential between the two extremities of the length of wire. Hence

P = V I ,

which is the well known form of the electrical power transmitted to a resistor,

eventually dissipated into heat.

This example shows that although the power flow stemming from the Poynting

vector seems counter-intuitive, the results are coherent when it comes to comput-

ing global energy transfers. This is usually the justification given by virtually all

textbooks on this topic, something like “Hey, that’s weird, but don’t worry, just

compute with the Poynting vector and everything will be OK.” As we shall see, this

need not be the case. It is possible to obtain a definition of the power flux density

vector which gives rise a power flow that better fits with our intuition, and yet leads

to the same global energy transfer results as the classical definition.

Nevertheless, if one consider the Poynting vector as a mathematical artifice, it is

possible to enjoy both worlds: We could just use it to compute global energy transfers

whenever convenient, since it leads to the same results as any alternative power flux

density vector anyway. Nevertheless, at the local scale, those forms lead to different

results and interpretations. We believe that both in practical and in theoretical

situations like thermodynamics, where the E.M. energy interacts with other fluxes

and with the matter, the alternative definition given in the next section is the most

suitable.

2. General form of the power flux density vector

The general form proposed in this section stems from a long discussion in the

Physics Forum, about the way the electrical power should be flowing through, or

outside, an electrical wire traversed by a steady current. While most of the persons

stuck to the classic Poynting view, according to which the electrical power is tran-

smitted radially to the wire, the O.P., “Fluidistic”, defended the idea that according

to thermodynamics, there must exist a component of the power flow along the wire.

Indeed, starting from the thermodynamic equation

J⃗U = T J⃗S + µ̄J⃗e ,
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where J⃗U is the internal energy flux of the system, J⃗S is the entropy flux, J⃗e is the

particle flux density and µ̄ is the electrochemical potential energy of the electrons,

Fluidistic shown that the component T J⃗S of the energy flux density is radial to

the wire, while µ̄J⃗e is parallel to the wire. After a long discussion, it was observed

by the author that since µ̄ is the sum of the chemical energy of the electron with

the potential energy of the electron (with respect to the electric potential), and

since the chemical energy of an electron inside a conductor is likely to be null or

negligible, µ̄Je could simply be written Φj, where j is the current density. The author

then realized that the whole situation could be formulated in a completely classical

electrodynamic framework, that will now be exposed as a motivating example.

Consider again the electrical wire example of Poynting in the previous section. Along

the length of wire ℓ, the electrical potential is Φ(z), z being the curvilinear coordinate

oriented from the “plus” to the “minus” terminal of the length ℓ. Notice that Φ is

decreasing, and it decreases linearly if the resistance per unit of length is constant.

Now, consider a cross section A(z) of the wire, and let ρ be the volumic flowing

charge density inside the wire. At a point M of A(z), an elementary charge ρdV

has a potential electrical energy equal to ρΦ(z)dV . So, we can define an “electrical

potential energy flux density” at M by

S′ = ρΦv = Φj ,

where v is the speed of the charge at M , and j is the current density. The amount

of power “flowing” through A(z) is∫
A(z)

Φj d⃗s = IΦ(z) ,

where I is the current intensity through A(z), assuming A(z) oriented in the same

direction as the current. Now, consider as above the cylinder made by a length

ℓ of wire. Orient the total surface A of the cylinder as usual, according to the

outer normal of the surface. Then denoting by A(z1) and A(z2) the surfaces at the

extremities of the cylinder, and assuming z1 < z2, the potential energy rate flowing

out of the cylinder is∫
A
Φj d⃗s =

∫
A(z2)

Φj d⃗s−
∫
A(z1)

Φj d⃗s = I(Φ(z2)− Φ(z1)) = −IV ,

where V is the positive difference of potential between z1 and z2. In other words, the

electrical power transmitted to the wire is IV , as should be the case for a resistor.

We see that we have obtained here the same result as Poynting, but in a completely,

almost opposite, route. The power is now flowing inside and along the wire, carried

by the charges, and has no component orthogonal to the wire, which certainly better

corresponds to our intuition of the electrical power.
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We now state the proposed form of the power flux density vector, valid for all

electrodynamic systems, in full generality. It is likely to be the simplest form that

reduces to Φj in the case of steady currents.

In term of the potential Φ and the vector potential A alone, it is defined by

S′ = ε0c
2

[(
Φ∇− ∂A

∂t

)
× (∇×A)

]
. (1)

In a somewhat more digest form, using Maxwell’s equation B = ∇×A,

S′ = ε0c
2

[(
Φ∇− ∂A

∂t

)
×B

]
(2)

Observe that if a gauge is chosen is such a way that Φ = 0 identically (which

is always possible), then formula (2) reduces to the Poynting vector, because of

Maxwell’s equation

E = −∇Φ− ∂A

∂t
.

Such a gauge is usually advantageously chosen in the case of plane wave propagating

in charge free space. Then the Poynting vector is directed along the direction of the

wave propagation, an intuitively desirable property, especially because the EM power

flux density must be, according to general physical concepts, equal to c2 times the

EM power flux momentum.

Beside, with the help of Maxwell’s equation

ε0c
2∇×B = j+ ε0

∂E

∂t
,

it is possible to transform eq. (2) in order to exhibit the current density:

S′ = Φj+ ε0Φ
∂E

∂t
− ε0c

2 ∂A

∂t
×B . (3)

Observe that for steady currents, eq. (3) reduces to

S′ = Φj ,

assuming a gauge has been chosen is such a way that ∂A
∂t = 0. The meaning of this

equation is that for steady currents, there is no flow of power wherever the space

is free of charges: the power is carried by the charges only. This form justifies the

electrical power flux used in thermodynamics, as pointed out in the previous section.

It is now well acknowledged that the electric and magnetic fields are not real, or at

least less real than the electric and vector potentials. This fact was pointed out by
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Feynman ([1]), and can be found in many books like [4], Sec. 1. Now, if we consider

Φ and A as the real notions, then the Poynting vector becomes

S = ε0c
2E×B = −ε0c

2

[
(∇Φ +

∂A

∂t
)×B

]
(4)

= −ε0c
2

[(
∇Φ +

∂A

∂t

)
× (∇×A)

]
(5)

Observe that

S′ − S = (Φ∇+∇Φ)×B = ∇× ΦB .

So, S′ and S differ by a solenoidal field. This implies that ∇ · S′ = ∇ · S , and S′

represent a valid formula for the power flux density, as explained in the previous

section.
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