6

The Elecetrie Field in Various Circuamstances

6-1 Equations of the electrostatic potential

This chapter will describe the behavior of the electric field in a number of
different circumstances. It will provide some experience with the way the electric
field behaves, and will describe some of the mathematical methods which are
used to find this field.

We begin by pointing out that the whole mathematical problem is the solution
of two equations, the Maxwell equations for electrostatics:

v E=", 6.1
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v X E = 0. (6.2)

In fact, the two can be combined into a single equation. From the second equation,
we know at once that we can describe the field as the gradient of a scalar (see

Section 3-7):
E=— V¢ 6.3)

We may, if we wish, completely describe any particular electric field 1in terms
of its potential . We obtain the differential equation that ¢ must obey by sub-
stituting Eq. (6.3) into (6.1), to get

veove =" (6.4)

The divergence of the gradient of ¢ is the same as V? operating on ¢:

2 2 2
Ve = Vi 0 00 070
VoVe = Vi = ol et g (6.5)

so we write Eq. (6.4) as Vi — P 66)
€o

The operator V2 1s called the Laplacian, and Eq (6 6) 1s called the Poisson equa-

tion. The entire subject of electrostatics, from a mathematical point of view, 1s

merely a study of the solutions of the single equation (6.6). Once ¢ 1s obtained by

solving Eq. (6.6) we can find E immediately from Eq. (6.3).

We take up first the special class of problems in which p is given as a function
of x,y,z. In that case the problem 1s almost trivial, for we already know the
solution of Eq. (6.6) for the general case. We have shown that if p is known at
every point, the potential at pont (1) is

o(l) = / pR)dVy ©7)
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where p(2) is the charge density, dV, is the volume element at point (2), and r;»
is the distance between points (1) and (2). The solution of the differential equation
(6.6) is reduced to an integration over space. The solution (6.7) should be especially
noted, because there are many situations in physics that lead to equations like

v? (something) = (something else),

and Eq. (6.7) 1s a prototype of the solution for any of these problems.

The solution of electrostatic field probiems is thus completely straightforward
when the positions of all the charges are known. Let’s sec how 1t works 1n a few
examples.
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Fig. 6-1. A dipole: two charges

+q and —q the distance d apart.
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Fig. 6~2. The water molecule H,O.
The hydrogen atoms have slightly less
than their share of the electron cloud; the
oxygen, slightly more.

6-2 The electric dipole

First, take two point charges, +q and —gq, separated by the distance d. Let
the z-axis go through the charges, and pick the origin halfway between, as shown
in Fig. 6-1. Then, using (4.24), the potential from the two charges is given by

#(x, y, z)
1 [ q + —9q
T dmeo [VIz — d2)2+ x2+y2 Vz+ @2 + x2 + y2

] . (68)

We are not going to write out the formula for the electric field, but we can always
calculate it once we have the potential. So we have solved the problem of two
charges.

There is an important special case in which the two charges are very close
together—which is to say that we are interested in the fields only at distances from
the charges large in comparison with their separation. We call such a close pair
of charges a dipole. Dipoles are very common.

A “dipole” antenna can often be approximated by two charges separated by a
small distance—if we don’t ask about the field too close to the antenna. (We are
usually interested in antennas with moving charges; then the equations of statics
do not really apply, but for some purposes they are an adequate approximation.)

More important perhaps, are atomic dipoles. If there is an electric field in
any material, the electrons and protons feel opposite forces and are displaced
relative to each other. In a conductor, you remember, some of the electrons
move to the surfaces, so that the field inside becomes zero. In an insulator the
electrons cannot move very far; they are pulled back by the attraction of the nu-
cleus. They do, however, shift a little bit. So although an atom, or molecule,
remains neutral in an external electric field, there is a very tiny separation of its
positive and negative charges and it becomes a microscopic dipole. If we are
interested in the fields of these atomic dipoles in the neighborhood of ordinary-
sized objects, we are normally dealing with distances large compared with the
separations of the pairs of charges.

In some molecules the charges are somewhat separated even in the absence
of external fields, because of the form of the molecule. In a water molecule, for
example, there is a net negative charge on the oxygen atom and a net positive
charge on each of the two hydrogen atoms, which are not placed symmetrically
but as in Fig. 6-2. Although the charge of the whole molecule is zero, there is a
charge distribution with a little more negative charge on one side and a little
more positive charge on the other. This arrangement is certainly not as simple
as two point charges, but when seen from far away the system acts like a dipole.
As we shall see a little later, the field at large distances is not sensitive to the
fine details.

Let’s look, then, at the field of two opposite charges with a small separation
d. If d becomes zero, the two charges are on top of each other, the two potentials
cancel, and there is no field. But if they are not exactly on top of each other, we
can get a good approximation to the potential by expanding the terms of (6.8) in
a power series in the small quantity d (using the binomial expansion). Keeping
terms only to first order in d, we can write

( —-g)zzzz—zd.

x2+y2+ 2% = ri
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It is convenient to write

Then

and

6-2



Using the binomial expansion again for [ — (zd/r2)]""2—and throwing away
terms with higher powers than the square of d—we get

1 1 zd
;(“rw)'

VE+ @R+ x2+ 2 T 5 72

The difference of these two terms gives for the potential

Similarly,

#(x,y,2) = = qd. 6.9

The potential, and hence the field, which is its derivative, is proportional to gd,
the product of the charge and the separation. This product is defined as the
dipole moment of the two charges, for which we will use the symbol p (do not
confuse with momentum!):

p = qd. 6.10)

Equation (6.9) can also be written as

1 pcosé
4mrey 12

o(x, p,z) = g (6.11)
since z/r = cos 0, where 6 is the angle between the axis of the dipole and the
radius vector to the point (x, y, z)—see Fig. 6-1. The potential of a dipole decreases
as 1/r2 for a given direction from the axis (whereas for a point charge it goes as
1/r). The electric field E of the dipole will then decrease as 1/73.

We can put our formula into a vector form if we define p as a vector whose
magnitude is p and whose direction is along the axis of the dipole, pointing from
q— toward g,. Then

cosf = p-e, (6.12)

where e, 15 the unit radial vector (Fig. 6-3). We can also represent the point
(x, y, z) by r. Then

Dipole potential: 1 p-e 1 p-r

o(r) = (6.13)

dreg r2 4mey 13

This formula 1s valid for a dipole with any orientation and position if r represents
the vector from the dipole to the point of interest.

If we want the electric field of the dipole we can get it by taking the gradient
of ¢. For example, the z-component of the field 1s —d¢/9z. For a dipole oriented
along the z-axis we can use (6.9):

_o_ _ p o(z\_ _ p (1 _32
9z d7eq 8z \r3) 47req \r3 r5 )’
or 3cos? 6 — 1
P cos” § —
: = Gre, 3 . 6.14)

The x- and y-components are

_ _p 3z - _p 3z
E. = 4rey 15 By = ey 15

These two can be combined to give one component directed perpendicular to the
z-axis, which we will call the transverse component E| :

EL=w/E3_+E3——p——3~Z~/x2+y2

T dareq 15
or .
D 3cosfsinb

E| =
41req r3

(6.15)
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Fig. 6-4.
dipole.

The electric field of a

The transverse component £, is in the x-p plane and points directly away from
the axis of the dipole. The total field, of course, is

E=vVE + E.

The dipole field varies inversely as the cube of the distance from the dipole.
On the axis, at § = 0, it is twice as strong as at § = 90°. At both of these special
angles the electric field has only a z-component, but of opposite sign at the two
places (Fig. 6-4).

6-3 Remarks on vector equations

This is a good place to make a general remark about vector analysis. The
fundamental proofs can be expressed by elegant equations in a general form, but
in making various calculations and analyses 1t is always a good idea to choose
the axes in some convenient way. Notice that when we were finding the potential
of a dipole we chose the z-axis along the direction of the dipole, rather than at some
arbitrary angle. This made the work much easier. But then we wrote the equations
in vector form so that they would no longer depend on any particular coordinate
system. After that, we are allowed to choose any coordinate system we wish,
knowing that the relation 1s, in general, true. It clearly doesn’t make any sense to
bother with an arbitrary coordinate system at some complicated angle when you
can choose a neat system for the particular problem—provided that the result can
finally be expressed as a vector equation. So by all means take advantage of the
fact that vector equations are independent of any coordinate system.

On the other hand, if you are trying to calculate the divergence of a vector,
instead of just looking at V - E and wondering what 1t is, don’t forget that 1t can
always be spread out as

dE, JIEy + aEz.
ox dy a9z

If you can then work out the x-, y-, and z-components of the electric field and
differentiate them, you will have the divergence. There often seems to be a feeling
that there is something inelegant—some kind of defeat involved—in writing out
the components; that somehow there ought always to be a way to do everything
with the vector operators. There is often no advantage to it. The first time we
encounter a particular kind of problem, it usually helps to write out the components
to be sure we understand what is going on. There is nothing inelegant about put-
ting numbers into equations, and nothing inelegant about substituting the deriva-
tives for the fancy symbols. In fact, there is often a certain cleverness in doing
just that. Of course when you publish a paper in a professional journal it will look
better—and be more easily understood—if you can write everything in vector form.
Besides, it saves print.

6-4 The dipole potential as a gradient

We would like to point out a rather amusing thing about the dipole formula,
Eq. (6.13). The potential can also be written as

I |
. V<;). (6.16)

If you calculate the gradient of 1/r, you get

and Eq. (6.16) is the same as Eq. (6.13).

How did we think of that? We just remembered that e,/r? appeared 1n the
formula for the field of a point charge, and that the field was the gradient of a
potential which has a 1/7 dependence.
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