Corollary 5. The ring R is a finitely generz;técf k-algebra if and only if there is some
surjective k-algebra homomorphism

@ klxy,x2,...,x,] > R

from the polynomial ring in a finite number of variables onto R that is the identity map
on k. Any finitely generated k-algebra is therefore Noetherian,

Proof: If R is generated as a k-algebra by ry, ..., r,, then we may define the map
@ klx),...,x,] > Rby ¢(x;) = r; forall i and ¢(a) = a forall a € k. Then ¢
extends uniquely to a surjective ring homomorphism. Conversely, given a surjective
homomorphism ¢, the images of xy, ..., x, under ¢ then generate R as a k-algebra,
proving that R is finitely generated. Since k[xy, ..., x,] is Noetherian by the previous
corollary, any finitely generated k-algebra is therefore the quotient of a Noetherian ring,
hence also Noetherian by Proposition 1.

Example
Suppose the k-algebra R is finite dimensional as a vector space over k, for example when
R = k[x]/(f(x)), where f is any nonzero polynomial in k[x]. Then in particular R is a
finitely generated k-algebra since a vector space basis also generates R as a ring. In this
case since ideals are also k-subspaces any ascending or descending chain of ideals has at
most dim R + 1 distinct terms, hence R satisfies both A.C.C. and D.C.C. on ideals.

The basic idea behind “algebraic geometry” is to equate geometric questions with
algebraic questions involving ideals in rings such as k[xj, ..., x,]. The Noetherian
nature of these rings reduces many questions to consideration of finitely many algebraic
equations (and this was in turn one of the main original motivations for Hilbert’s Basis
Theorem). We first consider the principal geometric object, the notion of an “algebraic
set” of points.

Affine Algebraic Sets

Recall that the set A" of n-tuples of elements of the field & is called affine n-space
over k (cf. Section 10.1). If x, x5, . .., x,, are independent variables over k, then the
polynomials f in k[xy, x3, ..., x,] can be viewed as k-valued functions f : A" — k

on A" by evaluating f at the points in A”:

fi(a,a,....a,) — fla,aa,...,a,) €k.

This gives aring of k-valued functions on A", denoted by k[ A" ] and called the coordinate
ring of A". For instance, when k = R and n = 2, the coordinate ring of Euclidean
2-space R? is denoted by R[A?] and is the ring of polynomials in two variables, say x
and y, acting as real valued functions on R? (the usual “coordinate functions”).

Each subset S of functions in the coordinate ring k[A”"] determines a subset Z(5)
of affine space, namely the set of points where all functions in § are simultaneously
Zero:

ZS) ={(a,a2,...,a,) € A" | f(a1,a2,...,a,) =0forall f € S},
where Z(0) = Al'.
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Definition. A subset V of A" is called an affine algebraic“s;ztm(or just an algebraic set)
if V is the set of common zeros of some set S of polynomials, i.e., if V = Z(S) for
some S € k[A"]. In this case V = Z(S) is called the locus of S in A".

IfS={f}or{fi,..., fiu} we shall simply write Z(f) or Z(f1, ..., fin) for Z(S)
and call it the locus of f or fi,..., fu, respectively. Note that the locus of a single
polynomial of the form f — g is the same as the solutions in affine n-space of the
equation f = g, so affine algebraic sets are the solution sets to systems of polynomial
equations, and as a result occur frequently in mathematics.

Examples

(1) If n = 1 then the locus of a single polynomial f € k[x] is the set of roots of f in k.
The algebraic sets in Al are @, any finite set, and & (cf. the exercises).

(2) The one point subsets of A" for any n are affine algebraic since {(a1, a3, . . ., ap)} is
Z(xy —a1, x2—az, ..., xn —ay). More generally, any finite subset of A” is an
affine algebraic set.

(3) One may define lines, planes, etc. in A" — these are linear algebraic sets, the loci
of sets of linear (degree 1) polynomials of k[xi,...,x,]. For example, a line in
A? is defined by an equation ax + by = c (which is the locus of the polynomial
f(x,y) =ax+by—c € k[x, y]). Alinein A? is the locus of two linear polynomials
of k[x, y, z] that are not multiples of each other. In particular, the coordinate axes,
coordinate planes, etc. in A" are all affine algebraic sets. For instance, the x-axis in
A3 is the zero set Z(y, z) and the x,y plane is the zero set Z(z).

In general the algebraic set Z(f) of a nonconstant polynomial f is called a hyper-
surface in A". Conic sections are familiar algebraic sets in the Euclidean plane RZ,
For example, the locus of y — x2 is the parabola y = x2, the locus of x2 + y2 — 1
is the unit circle, and Z(xy — 1) is the hyperbola y = 1/x. The x- and y-axes are
the algebraic sets Z(y) and Z (x) respectively. Likewise, quadric surfaces such as the

= | are affine algebraic sets in R>.

ellipsoid defined by the equation x + yz + %

We leave as exercises the straightforward verification of the following propetties
of affine algebraic sets. Let S and T be subsets of k[A"].

(1) If § € T then Z(T) C Z(S) (i.e., Z is inclusion reversing or contravariant).

(2) 2(8) = Z(I), where I = (S) is the ideal in k[A"] generated by the subset S.

(3) The intersection of two affine algebraic sets is again an affine algebraic set, in
fact Z(S) N Z(T) = Z(S U T). More generally an arbitrary intersection of affine
algebraic sets is an algebraic set: if {S;} is any collection of subsets of k[A"], then

NZ(S)) = Z(US)).

(4) The union of two affine algebraic sets is again an affine algebraic set, in fact
Z(IHUZ(J) = Z(J), where I and J are ideals and /J is their product.
/(8) Z(0) = A" and Z(1) = @ (here 0 and 1 denote constant functions).

By (2), every affine algebraic set is the algebraic set corresponding to an ideal of
the coordinate ring. Thus we may consider

Z . {ideals of k[A"]} — { affine algebraic sets in A" }.
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Since every ideal I in the Noetherian ring k[x,, x2, . . ., x,,] is finitely generated, say
I =(f1, f2, ..., fy),itfollows from (3) that Z(1) = Z(fi)NZ(f,)N---NZ(f,), ie.,
each affine algebraic set is the intersection of a finite number of hypersurfaces in A",
Note that this “geometric” property in affine n-space is a consequence of an “algebraic”
property of the corresponding coordinate ring (namely, Hilbert’s Basis Theorem).

If V is an algebraic set in affine n-space, then there may be many ideals I such
that V = Z(I). For example, in affine 2-space over R the y-axis is the locus of the
ideal (x) of R[x, y], and also the locus of (x2), (x*), etc. More generally, the zeros
of any polynomial are the same as the zeros of all its positive powers, and it follows
that Z(I) = Z(I*) for all k > 1. We shall study the relationship between ideals that
determine the same affine algebraic set in the next section when we discuss radicals of
ideals.

While the ideal whose locus determines a particular algebraic set V is not unique,
there is a unique largest ideal that determines V, given by the set of all polynomials
that vanish on V. In general, for any subset A of A" define

Z(A)y ={f €klx1,....xy] | fla1,0a2,...,a,) =0forall (a1, as,...,a,) € Al.

It is immediate that Z(A) is an ideal, and is the unique largest ideal of functions that
are identically zero on A. This defines a correspondence

Z : {subsets in A" } — {ideals of k[A"]}.

Examples

(1) In the Euclidean plane, Z(the x-axis) is the ideal generated by y in the coordinate ring
R[x, y].

(2) Over any field k, the ideal of functions vanishing at (a, a2, ..., a,) € A" is amaximal
ideal since it is the kernel of the surjective ring homomorphism from k[xy, ..., x,] to
the field £ given by evaluation at (ay, az, ..., a,). It follows that

I((ay,az,...,an)) = (x1 —a1, X2 —az, ..., Xp —dp).

Let V = Z(x? — y%) in A2, If (a,b) € A? is an element of V then a® = b2, If
a # 0, then also b # 0 and we can write a = (b/a)?, b = (b/a)?. It follows
that V is the set {(a, @) | a € k). For any polynomial f(x,y) € k[x, y] we can
write f(x,y) = folx) + fix)y + 3 - yz)g(x,y). For f(x,y) € Z(V), ie.,
f(az, a’®) = 0 for all a € k, it follows that fo@®) + fi@®a® =0foralla € k. If
fo(x)=ayx" +---4+ap and f1(x) = bsx® + - - - + by then

foH + 3 fi(x?) = @x¥ 4+ - +ag) + (bsx® 3 - + box?)

and this polynomial is O for every a € k. If k is infinite, this polynomial has infinitely
many zeros, which can happen only if all of the coefficients are zero. The coefficients
of the terms of even degree are the coefficients of fy(x) and the coefficients of the
terms of odd degree are the coefficients of f(x), so it follows that fy(x) and fi(x)
are both 0. It follows that f(x, y) = (x3 — yz)g(x, y), and so

Z(V) = (x* = y?) C klx, yl.

If k is finite, however, there may be elements in Z (V) not lying in the ideal (x3 — y?2).
For example, if k = I, then V is simply the set {(0, 0), (1, 1)} and so Z(V) contains
the polynomial x(x — 1) (cf. Exercise 15).
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