
A derivation of statistical distributions for various types of particles 

 

In the following text I will derive statistical distributions for indistinguishable particles 

directly using combinatorics. This leads initially to the Bose-Einstein and the Fermi-Dirac 

distribution. Then I show how the Boltzmann distribution emerges under low occupancy 

conditions. By identifying statistical entropy (the Boltzmann formula) with thermodynamic 

entropy it is then possible to give all undetermined parameters (the Lagrange multipliers) 

physical meaning without considering a specific system (such as an ideal gas). Finally I apply 

these results to the ideal gas and derive the Sackur-Tetrode equation for statistical entropy 

and the Maxwell-Boltzmann distribution for kinetic energies in an ideal gas. For this last step 

I borrow the methods involving the partition function from textbook literature. 

At the end of the text I also consider systems of distinguishable particles, both bosonic and 

fermionic, without further discussing a possible relevance for real systems. For this 

discussion I refer to publications by Robert Swendsen and others. 

Initially the analysis considers a system of particles that can have discrete values of energy. I 

don’t specify what kind of energy this is, for example kinetic or binding energy. I simply 

assign particles to generic “energy levels”. Every energy level i has gi states which can be 

occupied by 0 or 1 particles each in the case of fermions or any number of particles in the 

case of bosons. There are ni particles in energy level i and the number of energy levels is k, 

which is finite. Obviously, for fermions the number of states gi on every energy level cannot 

be smaller than the number of particles ni. Each distribution of particles among energy levels 

can be realized in, usually, a large number of ways denoted by W. It is reasonable to assume 

that a system of particles that can freely change energy levels will eventually be found in a 

distribution close to that with the largest value for W. This most likely distribution will also 

be the average distribution over an extended time once the system is in equilibrium. 

 

1. Bosons: Indistinguishable particles, any number of particles per state 

The combinatorics of this case is known as “combinations of size ni with unrestricted 
repetitions, taken from a set of size gi”. 
The number of different ways to place ni particles in the gi states of energy level i is the same 
as the number of integer solutions of the equation: 

∑ 𝑘𝑗

𝑔𝑖

𝑗=1

= 𝑛𝑖  

Here the kj are the numbers of particles in the states numbered from j = 1 to gi. 



If we write this equation for a particular distribution among the states using lines rather than 

numbers we get something like this: 

𝐼𝐼𝐼 + 𝐼𝐼 + 𝐼𝐼𝐼𝐼𝐼 + 𝐼 + +𝐼𝐼 + ⋯ = 𝑛𝑖  

Note that we leave the space between two +-signs empty to denote a state that didn’t 

receive a particle. Clearly we can permute this row of lines and plusses without changing the 

sum and therefore the total number of possibilities is: 

𝑊𝑖 =
(𝑛𝑖 + 𝑔𝑖 − 1)!

𝑛𝑖! (𝑔𝑖 − 1)!
 

Here the numerator gives the total number of permutations of the row of sticks and +-signs.  

We’ve also taken into account that swapping lines among themselves and +-signs among 

themselves doesn’t lead to a different expression, thus the denominator. 

Not accounting for permutations of particles in different energy levels since we assume 

indistinguishability, the total number of arrangements then becomes: 

𝑊 = ∏
(𝑛𝑖 + 𝑔𝑖 − 1)!

𝑛𝑖! (𝑔𝑖 − 1)!

𝑘

𝑖=1

 

To find the most probable distribution of particles among energy levels (that with the largest 

W) we calculate the maximum of ln W: 

ln 𝑊 = ∑[ln(𝑛𝑖 + 𝑔𝑖 − 1) ! − ln 𝑛𝑖! − ln(𝑔𝑖 − 1) ! ]

𝑘

𝑖=1

 

ln 𝑊 ≈ ∑[(𝑛𝑖 + 𝑔𝑖 − 1) ln(𝑛𝑖 + 𝑔𝑖 − 1) − (𝑛𝑖 + 𝑔𝑖 − 1) − 𝑛𝑖  ln 𝑛𝑖 + 𝑛𝑖

𝑘

𝑖=1

− (𝑔𝑖 − 1) ln(𝑔𝑖 − 1) + (𝑔𝑖 − 1)] 

ln 𝑊 ≈ ∑[(𝑛𝑖 + 𝑔𝑖 − 1) ln(𝑛𝑖 + 𝑔𝑖 − 1) − 𝑛𝑖  ln 𝑛𝑖 − (𝑔𝑖 − 1) ln(𝑔𝑖 − 1)]

𝑘

𝑖=1

 

𝛿 ln 𝑊 ≈ ∑ [𝛿𝑛𝑖 ln(𝑛𝑖 + 𝑔𝑖 − 1) + (𝑛𝑖 + 𝑔𝑖 − 1)
𝛿𝑛𝑖

(𝑛𝑖 + 𝑔𝑖 − 1)
− 𝛿𝑛𝑖  ln 𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
]

𝑘

𝑖=1

= ∑[𝛿𝑛𝑖 ln(𝑛𝑖 + 𝑔𝑖 − 1) − 𝛿𝑛𝑖 ln 𝑛𝑖]

𝑘

𝑖=1

 

For the maximum of ln W under the constraints of constant particle number and energy we 

get: 

ln(𝑛𝑖 + 𝑔𝑖 − 1) −  ln 𝑛𝑖 − 𝛼 − 𝛽𝑢𝑖 = 0 



𝑔𝑖 − 1

𝑛𝑖
+ 1 = 𝑒𝛼𝑒𝛽𝑢𝑖  

𝑛𝑖

𝑔𝑖
≈

𝑛𝑖

𝑔𝑖 − 1
=

1

𝑒𝛼𝑒𝛽𝑢𝑖 − 1
 

In the last step we assumed that gi >> 1. 

This is the Bose-Einstein distribution for indistinguishable particles, constant particle 

number. 

If the number of particles is not constant we get: 

𝑛𝑖

𝑔𝑖
≈

𝑛𝑖

𝑔𝑖 − 1
=

1

𝑒𝛽𝑢𝑖 − 1
 

This is the Bose-Einstein distribution for indistinguishable particles, non-constant particle 

number. 

Examples: photon gas, phonon gas 

 

2. Fermions: Indistinguishable particles, maximum one particle per state 

The total number of arrangements becomes: 

 𝑊 = ∏
𝑔𝑖!

(𝑔𝑖−𝑛𝑖)! 𝑛𝑖!

𝑘
𝑖=1  

The same procedure as before gives us: 

ln 𝑊 = ∑[ln 𝑔𝑖! − ln(𝑔𝑖 − 𝑛𝑖)! − ln 𝑛𝑖!]

𝑘

𝑖=1

≈ ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 − (𝑔𝑖 − 𝑛𝑖) ln(𝑔𝑖 − 𝑛𝑖) + (𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖  ln 𝑛𝑖 + 𝑛𝑖]

𝑘

𝑖=1

= ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 ln(𝑔𝑖 − 𝑛𝑖) + 𝑛𝑖 ln(𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖 ln 𝑛𝑖]

𝑘

𝑖=1

 

𝛿 ln 𝑊 = ∑ [−𝑔𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) 𝛿𝑛𝑖 + 𝑛𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
− ln 𝑛𝑖 𝛿𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
]

𝑘

𝑖=1

= ∑ [
𝑔𝑖 − 𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 1] 𝛿𝑛𝑖

𝑘

𝑖=1

= ∑[ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖]𝛿𝑛𝑖

𝑘

𝑖=1

 



To find the maximum of ln W under the constraints of constant number of particles and 

constant energy we solve the following equation: 

ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 𝛼 − 𝛽 𝑢𝑖 = 0 

This gives us 
𝑔𝑖

𝑛𝑖
− 1 = 𝑒𝛼𝑒𝛽𝑢𝑖 

And further 

𝑛𝑖

𝑔𝑖
=

1

𝑒𝛼𝑒𝛽𝑢𝑖 + 1
 

This is the Fermi-Dirac distribution for indistinguishable particles, constant particle number. 

Examples: valence electrons in a metal 

If we don’t require a constant number of particles we simply leave out the Lagrange 

multiplier  and get: 

𝑛𝑖

𝑔𝑖
=

1

𝑒𝛽𝑢𝑖 + 1
 

This is the Fermi-Dirac distribution for indistinguishable particles, non-constant particle 

number. 

Examples: ? 

 

3. The “correct” Boltzmann distribution for indistinguishable particles as a 

limiting case of the Bose-Einstein and the Fermi-Dirac distribution for 

low occupancy 

From Bose-Einstein to “correct Boltzmann counting” at low occupancy 

The total number of arrangements of indistinguishable bosons among k energy levels is: 

𝑊 = ∏
(𝑛𝑖 + 𝑔𝑖 − 1)!

𝑛𝑖! (𝑔𝑖 − 1)!

𝑘

𝑖=1

 

A single factor in W can be written without index as: 

𝑊′ =
(𝑛 + 𝑔 − 1)!

𝑛! (𝑔 − 1)!
 



Assuming g >> n >> 1, which means that the number of particles in each energy level is large, 

but the number of possible states is still much larger (low occupancy), and using Stirling’s 

approximation ln x! ≈ x ln x – x in the form x! ≈ xx e-x a few times, approximating (n + g)n as gn 

and using ex ≈ 1 + x once gives: 

𝑊′ =
(𝑛 + 𝑔 − 1)!

𝑛! (𝑔 − 1)!
≈

(𝑛 + 𝑔)!

𝑛! 𝑔!
≈

(𝑛 + 𝑔)𝑛+𝑔 𝑒−(𝑛+𝑔)

𝑛𝑛𝑒−𝑛 𝑔𝑔𝑒−𝑔
=

(𝑛 + 𝑔)𝑛(𝑛 + 𝑔)𝑔

𝑛𝑛 𝑔𝑔
≈

𝑔𝑛(𝑛 + 𝑔)𝑔

𝑛𝑛 𝑔𝑔

=
𝑔𝑛 (

𝑛
𝑔 + 1)

𝑔

𝑛𝑛
≈

𝑔𝑛 (𝑒
𝑛
𝑔)

𝑔

𝑛𝑛
=

𝑔𝑛𝑒𝑛

𝑛𝑛
=

𝑔𝑛

𝑛𝑛 𝑒−𝑛
≈

𝑔𝑛 

𝑛!
 

In the very first step above we simply used that (n + g)/g ≈ 1, since g >> n. 

After inserting W’ into the product for every i we get W for “correct Boltzmann counting”: 

𝑊 = ∏
𝑔𝑖

𝑛𝑖  

𝑛𝑖!

𝑘

𝑖=1

 

 

From Fermi-Dirac to “correct Boltzmann counting” at low occupancy 

The total number of arrangements of indistinguishable fermions among k energy levels is: 

𝑊 = ∏
𝑔𝑖!

(𝑔𝑖 − 𝑛𝑖)! 𝑛𝑖!

𝑘

𝑖=1

 

We again take the limiting case of 1 << ni << gi for all i. 

A single factor in W can be written without index as: 

𝑊′ =
𝑔!

(𝑔 − 𝑛)! 𝑛!
 

Using Stirling’s approximation ln x! ≈ x ln x – x in the form x! ≈ xx e-x a few times, 

approximating  (g - n)n as gn and using e-x ≈ 1 - x once gives: 

𝑊′ =
𝑔!

(𝑔 − 𝑛)! 𝑛!
≈

 𝑔𝑔𝑒−𝑔

(𝑔 − 𝑛)𝑔−𝑛 𝑒(𝑛−𝑔)𝑛!
=

 𝑔𝑔

(𝑔 − 𝑛)𝑔−𝑛 𝑒𝑛𝑛!
=

 𝑔𝑔(𝑔 − 𝑛)𝑛

(𝑔 − 𝑛)𝑔 𝑒𝑛𝑛!

≈
𝑔𝑛

(1 −
𝑛
𝑔)

𝑔

 𝑒𝑛𝑛!

≈
𝑔𝑛

(𝑒
−

𝑛
𝑔)

𝑔

 𝑒𝑛𝑛!

=
𝑔𝑛 

𝑛!
 

After inserting W’ into the product for every i we get W for “correct Boltzmann counting” 

even in this case: 



𝑊 = ∏
𝑔𝑖

𝑛𝑖  

𝑛𝑖!

𝑘

𝑖=1

 

 

The Boltzmann distribution for indistinguishable particles 

With this expression for W the usual procedure gives: 

ln 𝑊 = ∑ 𝑛𝑖 ln 𝑔𝑖

𝑘

𝑖=1

− ∑ 𝑛𝑖!

𝑘

𝑖=1

≈ ∑ 𝑛𝑖 ln 𝑔𝑖

𝑘

𝑖=1

− ∑(𝑛𝑖 ln 𝑛𝑖 − 𝑛𝑖)

𝑘

𝑖=1

= ∑ 𝑛𝑖 ln 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖

𝑘

𝑖=1

 

𝛿 ln 𝑊 ≈ ∑ ln 𝑔𝑖 𝛿𝑛𝑖

𝑘

𝑖=1

− ∑ ln 𝑛𝑖 𝛿𝑛𝑖

𝑘

𝑖=1

− ∑ 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖

𝑘

𝑖=1

+ ∑ 𝛿𝑛𝑖

𝑘

𝑖=1

= ∑ ln 𝑔𝑖 𝛿𝑛𝑖

𝑘

𝑖=1

− ∑ ln 𝑛𝑖 𝛿𝑛𝑖

𝑘

𝑖=1

 

Therefore we get, for constant N: 

𝑛𝑖

𝑔𝑖
= 𝑒−𝛼𝑒−𝛽𝑢𝑖  

For non-constant N we get: 

𝑛𝑖

𝑔𝑖
= 𝑒−𝛽𝑢𝑖  

 

 

4. Interpretation of the Lagrange multipliers 

To give the Lagrange multipliers physical meaning we start with a general method of 

determining Lagrange multipliers (see any text on calculus of variations) and then use 

Boltzmann’s definition of entropy and results from classical thermodynamics. 

The multiplier  is given by: 

𝛼 = (
𝜕 ln 𝑊

𝜕𝑁
)

𝑈,𝑉
=

1

𝑘𝐵
(

𝜕(𝑘𝐵 ln 𝑊)

𝜕𝑁
)

𝑈,𝑉

=
1

𝑘𝐵
(

𝜕𝑆

𝜕𝑁
)

𝑈,𝑉
= −

𝜇

𝑘𝐵𝑇
 

Here is the chemical potential and T the absolute temperature. 

The entropy S is defined as kB ln W. 

The last step in the above derivation can be found by applying the triple product rule to the 

definitions of temperature and chemical potential as follows: 

Definitions: (
𝜕𝑆

𝜕𝑈
)

𝑁,𝑉
=

1

𝑇
  (

𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
= 𝜇 

 



Triple product: (
𝜕𝑆

𝜕𝑈
)

𝑁,𝑉
(

𝜕𝑈

𝜕𝑁
)

𝑆,𝑉
(

𝜕𝑁

𝜕𝑆
)

𝑈,𝑉
= −1 

 

After inserting the definitions: 
1

𝑇
𝜇 (

𝜕𝑁

𝜕𝑆
)

𝑈,𝑉
= −1 

 

And therefore: (
𝜕𝑆

𝜕𝑁
)

𝑈,𝑉
= (

𝜕(𝑆+𝑐𝑜𝑛𝑠𝑡.)

𝜕𝑁
)

𝑈,𝑉
= −

𝜇

𝑇
 

 

U stands for the total inner energy of the system. 

 

Similarly we get the multiplier : 

 

𝛽 = (
𝜕 ln 𝑊

𝜕𝑈
)

𝑁,𝑉
=

1

𝑘𝐵
(

𝜕(𝑘𝐵 ln 𝑊)

𝜕𝑈
)

𝑁,𝑉

=
1

𝑘𝐵
(

𝜕(𝑆 + 𝑐𝑜𝑛𝑠𝑡. )

𝜕𝑈
)

𝑁,𝑉

=
1

𝑘𝐵𝑇
 

 

Here the last step simply follows from the definition of temperature. 

 

5. An expression for entropy of indistinguishable Boltzmann particles 

Inserting the results for the distribution functions back into the corresponding expressions 

for ln W and using Boltzmann’s definition for entropy leads to expressions for entropy in 

terms of macroscopic variables after some simplifications. 

Inserting the Boltzmann distribution 

𝑛𝑖

𝑔𝑖
= 𝑒−𝛼𝑒−𝛽𝑢𝑖  

for indistinguishable particles, constant N, into the corresponding expression for ln W gives: 

ln 𝑊 ≈ ∑ 𝑛𝑖 ln 𝑔𝑖 − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖

𝑘

𝑖=1

= 𝑁 − ∑ 𝑛𝑖 ln
𝑛𝑖

𝑔𝑖

𝑘

𝑖=1

= 𝑁 − ∑ 𝑛𝑖(−𝛼 − 𝛽𝑢𝑖)

𝑘

𝑖=1

= 𝑁 + 𝛼𝑁 + 𝛽𝑈 

Using Boltzmann’s definition of entropy, S = kB ln W, and the expressions for  and  derived 

in the previous section we get: 

𝑆 = 𝑘𝐵𝑁 − 𝜇
𝑁

𝑇
+

𝑈

𝑇
 

or 

𝑈 = 𝑇𝑆 − 𝑘𝐵𝑁𝑇 + 𝜇𝑁 



For an ideal gas this becomes: 

𝑈 = 𝑇𝑆 − 𝑝𝑉 + 𝜇𝑁 

 

6. An expression for the entropy of an ideal gas 

The one particle partition function (see Blundell equation 21.19) is given by 

𝑍1 =
𝑉

𝜆3
 

where  is the thermal wavelength 

𝜆 =
ℎ

√2𝑚𝑘𝐵𝑇
 

The N-particle partition function for indistinguishable particles (see Blundell equation 21.29) 

then becomes 

𝑍𝑁 =
1

𝑁!
(

𝑉

𝜆3
)

𝑁

 

The natural logarithm of the N-particle partition function for indistinguishable particles (see 

Blundell equation 21.35) then becomes (using Stirling’s approximation for ln N!) 

ln 𝑍𝑁 = 𝑁 ln 𝑉 − 3𝑁 ln 𝜆 − 𝑁 ln 𝑁 + 𝑁 

 

The Helmholtz free energy is given by  

𝐹 = −𝑘𝐵𝑇 ln 𝑍𝑁 

For the chemical potential we then get 

𝜇 = (
𝜕𝐹

𝜕𝑁
)

𝑉,𝑇
= −𝑘𝐵𝑇 (ln 𝑉 − 3 ln 𝜆 − 𝑁

1

𝑁
− ln 𝑁 + 1) = 𝑘𝐵𝑇 𝑙𝑛

 𝜆3𝑁

𝑉
 

We also have the following expression for U 

𝑈 =
3

2
𝑁𝑘𝐵𝑇 

Inserting these expressions into the entropy for indistinguishable particles gives 

𝑆 = 𝑘𝐵𝑁 − 𝜇
𝑁

𝑇
+

𝑈

𝑇
= 𝑘𝐵𝑁 − 𝑘𝐵𝑇 ln (

𝜆3𝑁

𝑉
)

𝑁

𝑇
+

3

2
𝑁𝑘𝐵 =

5

2
𝑁𝑘𝐵 − 𝑁𝑘𝐵 ln (

𝜆3𝑁

𝑉
) 



which is the (extensive) Sackur-Tetrode equation. 

 

7. The Maxwell-Boltzmann distribution for indistinguishable particles 

We have the following expressions for indistinguishable particles  

𝑛𝑖

𝑔𝑖
= 𝑒−𝛼𝑒−𝛽𝑢𝑖  

𝜇 = 𝑘𝐵𝑇 ln (
𝜆3𝑁

𝑉
) 

𝛽 =
1

𝑘𝐵𝑇
 

 

𝛼 = −
𝜇

𝑘𝐵𝑇
 

 

Inserting the chemical potential for distinguishable particles into the probability distribution 

for distinguishable particles gives: 

𝑛𝑖

𝑔𝑖
= 𝑒

𝜇
𝑘𝐵𝑇 𝑒

−
𝑢𝑖

𝑘𝐵𝑇 = 𝑁
𝜆3

𝑉
𝑒

−
𝑢𝑖

𝑘𝐵𝑇 =
𝑁

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢𝑖
𝑘𝐵𝑇 

Writing this as a probability distribution gives: 

𝑓𝑖 =
𝑛𝑖

𝑁
=

𝑔𝑖

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢𝑖
𝑘𝐵𝑇 

Finally we write this distribution for a continuum of energy levels and insert an expression 

for the density of states g(u)du (see Blundell): 

𝑔(𝑘)𝑑𝑘 =
𝑉𝑘2𝑑𝑘

22
 

𝑢 =
𝑝2

2𝑚
=

ℎ2 𝑘2

82𝑚
 

𝑘2 =
82𝑚𝑢 

ℎ2
 

𝑘 =
2 √2𝑚𝑢 

ℎ
 

𝑘 𝑑𝑘 =
42𝑚 𝑑𝑢

ℎ2
 



𝑔(𝑢)𝑑𝑢 =
𝑉

2 2

2 √2𝑚𝑢 

ℎ

42𝑚 𝑑𝑢

ℎ2
=

4  𝑉𝑚√2𝑚𝑢 𝑑𝑢

ℎ3
= 4√2 𝑚

3
2 ℎ−3𝑉√𝑢 𝑑𝑢 

𝑓(𝑢)𝑑𝑢 =
𝑔(𝑢)

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢
𝑘𝐵𝑇𝑑𝑢 =

2 √𝑢

√ (𝑘𝐵𝑇)
3
2

 𝑒
−

𝑢
𝑘𝐵𝑇𝑑𝑢 

We thus get the Maxwell-Boltzmann distribution for the kinetic energies of indistinguishable 

particles in an ideal gas: 

𝑓(𝑢)𝑑𝑢 =
2 √𝑢

√ (𝑘𝐵𝑇)
3
2

 𝑒
−

𝑢
𝑘𝐵𝑇𝑑𝑢 

 

 

 

 

An excursion to distinguishable particles 

8. Distinguishable particles, any number of particles per state 

The number of possible arrangements of ni particles in the gi states of level i is given by: 

𝑊𝑖 = 𝑔𝑖
𝑛𝑖  

In this number all possible permutations involving particles in different states of the same 

level are accounted for. 

Taking into account for permutations of particles on different levels the total number of 

arrangements is: 

𝑊 = 𝑁! ∏
𝑔𝑖

𝑛𝑖

𝑛𝑖!

𝑘

𝑖=1

 

ln 𝑊 = ln 𝑁! + ∑ 𝑛𝑖 ln 𝑔𝑖

𝑘

𝑖=1

− ∑ 𝑛𝑖!

𝑘

𝑖=1

≈ 𝑁𝑙𝑛 𝑁 − 𝑁 + ∑ 𝑛𝑖 ln 𝑔𝑖

𝑘

𝑖=1

− ∑(𝑛𝑖 ln 𝑛𝑖 − 𝑛𝑖)

𝑘

𝑖=1

 

𝛿 ln 𝑊 = ∑ [ln 𝑁 𝛿𝑛𝑖 + 𝛿𝑛𝑖 ln 𝑔𝑖 − 𝛿𝑛𝑖 ln 𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
+ 𝛿𝑛𝑖]

𝑘

𝑖=1

= ∑[ln 𝑁 + ln 𝑔𝑖 − ln 𝑛𝑖]𝛿𝑛𝑖

𝑘

𝑖=1

 



To find the maximum for constant energy and particle number: 

ln 𝑁 + ln 𝑔𝑖 − ln 𝑛𝑖 − 𝛼 − 𝛽 𝑢𝑖 = 0 

𝑛𝑖

𝑔𝑖
= 𝑁𝑒−𝛼𝑒−𝛽𝑢𝑖 

This is the Boltzmann distribution for distinguishable particles, constant particle number. 

For non-constant N we leave out the first Lagrange multiplier and get: 

ln 𝑁 + ln 𝑔𝑖 − ln 𝑛𝑖 − 𝛽 𝑢𝑖 = 0 

𝑛𝑖

𝑔𝑖
= 𝑁𝑒−𝛽𝑢𝑖 

This is the Boltzmann distribution for distinguishable particles, non-constant particle 

number. 

 

9. An expression for entropy of distinguishable Boltzmann particles 

Inserting the results for the distribution functions back into the corresponding expressions 

for ln W and using Boltzmann’s definition for entropy as in section 4, leads to expressions for 

entropy in terms of macroscopic variables after some simplifications. 

Inserting the Boltzmann distribution 

𝑛𝑖

𝑔𝑖
= 𝑁𝑒−𝛼𝑒−𝛽𝑢𝑖 

for distinguishable particles, constant N, into the corresponding expression for ln W gives: 

ln 𝑊 ≈ 𝑁𝑙𝑛 𝑁 + ∑ 𝑛𝑖 ln 𝑔𝑖

𝑘

𝑖=1

− ∑ 𝑛𝑖 ln 𝑛𝑖

𝑘

𝑖=1

= 𝑁𝑙𝑛 𝑁 − ∑ 𝑛𝑖 ln
𝑛𝑖

𝑔𝑖

𝑘

𝑖=1

= 𝑁𝑙𝑛 𝑁 − ∑ 𝑛𝑖(ln 𝑁 − 𝛼 − 𝛽𝑢𝑖)

𝑘

𝑖=1

= 𝛼𝑁 + 𝛽𝑈 

Using Boltzmann’s definition of entropy, S = kB ln W, and the expressions for  and  derived 

in the previous section we get: 

𝑆 = −𝜇
𝑁

𝑇
+

𝑈

𝑇
 

or 

𝑈 = 𝑇𝑆 + 𝜇𝑁 



 

10. Inserting expressions for the chemical potential into S 

For distinguishable particles 

The one particle partition function (see Blundell equation 21.19) is given by 

𝑍1 =
𝑉

𝜆3
 

where  is the thermal wavelength 

𝜆 =
ℎ

√2𝑚𝑘𝐵𝑇
 

The N-particle partition function then becomes (since the particles are distinguishable) 

𝑍𝑁 = (
𝑉

𝜆3
)

𝑁

 

The Helmholtz free energy is given by 

𝐹 = −𝑘𝐵𝑇 ln 𝑍𝑁 = −𝑘𝐵𝑇 𝑁 𝑙𝑛
𝑉

𝜆3
 

For the chemical potential we then get 

𝜇 = (
𝜕𝐹

𝜕𝑁
)

𝑉,𝑇
= 𝑘𝐵𝑇 𝑙𝑛

𝜆3

𝑉
 

With the following expression for U 

𝑈 =
3

2
𝑁𝑘𝐵𝑇 

we then get the following non-extensive expression for the entropy of an ideal gas of 

distinguishable particles 

𝑆 =
𝑈

𝑇
− 𝜇

𝑁

𝑇
=

3

2
𝑁𝑘𝐵 − 𝑁 𝑘𝐵 ln

𝜆3

𝑉
 

 

11. The Maxwell-Boltzmann distribution for distinguishable particles 

Inserting the chemical potential for distinguishable particles into the probability distribution 

for distinguishable particles gives: 



𝑛𝑖

𝑔𝑖
= 𝑁 𝑒

𝜇
𝑘𝐵𝑇 𝑒

−
𝑢𝑖

𝑘𝐵𝑇 = 𝑁
𝜆3

𝑉
𝑒

−
𝑢𝑖

𝑘𝐵𝑇 =
𝑁

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢𝑖
𝑘𝐵𝑇 

Writing this as a probability distribution gives: 

𝑓𝑖 =
𝑛𝑖

𝑁
=

𝑔𝑖

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢𝑖
𝑘𝐵𝑇 

Finally we write this distribution for a continuum of energy levels and insert an expression 

for the density of states g(u)du (see Blundell): 

𝑔(𝑘)𝑑𝑘 =
𝑉𝑘2𝑑𝑘

22
 

𝑢 =
𝑝2

2𝑚
=

ℎ2 𝑘2

82𝑚
 

𝑘2 =
82𝑚𝑢 

ℎ2
 

𝑘 =
2 √2𝑚𝑢 

ℎ
 

𝑘 𝑑𝑘 =
42𝑚 𝑑𝑢

ℎ2
 

𝑔(𝑢)𝑑𝑢 =
𝑉

2 2

2 √2𝑚𝑢 

ℎ

42𝑚 𝑑𝑢

ℎ2
=

4  𝑉𝑚√2𝑚𝑢 𝑑𝑢

ℎ3
= 4√2 𝑚

3
2 ℎ−3𝑉√𝑢 𝑑𝑢 

𝑓(𝑢)𝑑𝑢 =
𝑔(𝑢)

𝑉

ℎ3

(2𝑚𝑘𝐵𝑇)
3
2

𝑒
−

𝑢
𝑘𝐵𝑇𝑑𝑢 =

2 √𝑢

√ (𝑘𝐵𝑇)
3
2

 𝑒
−

𝑢
𝑘𝐵𝑇𝑑𝑢 

This is the Maxwell-Boltzmann probability distribution for energies and turns out to be 

identical to the result we arrived at for indistinguishable particles. 

 

 

 

12. Distinguishable particles, maximum one particle per state 

The number of arrangements of ni particles among the gi states of level i is: 

𝑊𝑖 =
𝑔𝑖!

(𝑔𝑖 − 𝑛𝑖)!
 

This number takes into account all permutations of particles within level i. 



To get the total number of arrangements of particles among the k levels with n i particles in 

level i we have to multiply all the Wi and then account for permutations of particles in 

different levels without counting permutations within the same level again. One way to do 

this is to first remove the permutations within in each level by dividing by ni! and then 

multiplying the whole product by N!, which is the total permutations of all particles. 

The number of arrangements of all particles among all k levels is therefore: 

𝑊 = 𝑁! ∏
𝑔𝑖!

(𝑔𝑖 − 𝑛𝑖)! 𝑛𝑖!

𝑘

𝑖=1

 

To find the most probable distribution we take the logarithm of this expression and use 

Stirling’s formula to simplify it. 

ln 𝑊 = ln 𝑁! + ∑[ln 𝑔𝑖! − ln(𝑔𝑖 − 𝑛𝑖)! − ln 𝑛𝑖!]

𝑘

𝑖=1

 

Assuming that N, ni, gi and (gi - ni) are very large numbers we use Stirling’s formula to 

approximate this expression as: 

ln 𝑊 = 𝑁𝑙𝑛 𝑁 − 𝑁 + ∑[𝑔𝑖 ln 𝑔𝑖 − 𝑔𝑖 − (𝑔𝑖 − 𝑛𝑖) ln(𝑔𝑖 − 𝑛𝑖) + (𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖 ln 𝑛𝑖 + 𝑛𝑖]

𝑘

𝑖=1

= 𝑁𝑙𝑛 𝑁 − 𝑁 + ∑[𝑔𝑖  ln 𝑔𝑖 − 𝑔𝑖 ln(𝑔𝑖 − 𝑛𝑖) + 𝑛𝑖 ln(𝑔𝑖 − 𝑛𝑖) − 𝑛𝑖 ln 𝑛𝑖]

𝑘

𝑖=1

 

Obviously W is a maximum when ln W is a maximum. 

To find this maximum we vary ni and then set the resulting expression equal to zero with 

constraints included using Lagrange multipliers. 

It is useful to first investigate how an individual term in ln W varies when we vary the ni. 

All terms of ln W apart from the first can be written as follows: 

𝑇 = ∑ 𝑓(𝑛𝑗)

𝑘

𝑗=1

 

When we vary the ni we get: 

𝛿𝑇 = ∑
𝜕𝑇

𝜕𝑛𝑖
𝛿𝑛𝑖 =

𝑘

𝑖=1

∑
𝜕

𝜕𝑛𝑖
(∑ 𝑓(𝑛𝑗)

𝑘

𝑗=1

) 𝛿𝑛𝑖 =

𝑘

𝑖=1

∑ (∑ 𝑓′(𝑛𝑗)
𝜕𝑛𝑗

𝜕𝑛𝑖

𝑘

𝑗=1

) 𝛿𝑛𝑖

𝑘

𝑖=1

= ∑ (∑ 𝑓′(𝑛𝑗)𝛿𝑖𝑗

𝑘

𝑗=1

) 𝛿𝑛𝑖 = ∑ 𝑓′(𝑛𝑖)𝛿𝑛𝑖

𝑘

𝑖=1

𝑘

𝑖=1

 

This result makes it easy to calculate W in the following. 



Varying the first two terms (containing only N) gives: 

𝛿(𝑁𝑙𝑛 𝑁 − 𝑁) = 𝛿 ((∑ 𝑛𝑖

𝑘

𝑖=1

) ln (∑ 𝑛𝑗

𝑘

𝑗=1

) − ∑ 𝑛𝑖

𝑘

𝑖=1

)

= (∑ 𝛿𝑛𝑖

𝑘

𝑖=1

) ln (∑ 𝑛𝑗

𝑘

𝑗=1

) +
(∑ 𝑛𝑖

𝑘
𝑖=1 )(∑ 𝛿𝑛𝑖

𝑘
𝑖=1 )

∑ 𝑛𝑗
𝑘
𝑗=1

− ∑ 𝛿𝑛𝑖

𝑘

𝑖=1

= (∑ 𝛿𝑛𝑖

𝑘

𝑖=1

) ln (∑ 𝑛𝑗

𝑘

𝑗=1

) = ln 𝑁 ∑ 𝛿𝑛𝑖

𝑘

𝑖=1

 

In total we get: 

𝛿 ln 𝑊 = 

= ln 𝑁 ∑ 𝛿𝑛𝑖

𝑘

𝑖=1

+ ∑ [−𝑔𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) 𝛿𝑛𝑖 + 𝑛𝑖

−𝛿𝑛𝑖

𝑔𝑖 − 𝑛𝑖
− 𝛿𝑛𝑖 ln 𝑛𝑖 − 𝑛𝑖

𝛿𝑛𝑖

𝑛𝑖
]

𝑘

𝑖=1

= 

= ln 𝑁 ∑ 𝛿𝑛𝑖

𝑘

𝑖=1

+ ∑ [
𝑔𝑖 − 𝑛𝑖

𝑔𝑖 − 𝑛𝑖
+ ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 1] 𝛿𝑛𝑖

𝑘

𝑖=1

= 

= ∑[ln 𝑁 + ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖]𝛿𝑛𝑖

𝑘

𝑖=1

 

To find the maximum for constant N we vary the ni under the constraint that their sum is 

constant or in other words: ∑ 𝛿𝑛𝑖
𝑘
𝑖=1 = 0. 

Additionally we assume that the total inner energy of our system is constant: 

∑ 𝑛𝑖𝑢𝑖
𝑘
𝑖=1 = 𝑈 = 𝑐𝑜𝑛𝑠𝑡., which implies ∑ 𝑢𝑖𝛿𝑛𝑖

𝑘
𝑖=1 = 0. 

Using the method of Lagrange multipliers we can now maximize ln W under the constraints 

of constant particle number and energy, which leads to the following equation for each 

energy level i: 

ln 𝑁 + ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 𝛼 − 𝛽𝑢𝑖 = 0. 

The solution of this equation is: 

𝑔𝑖 − 𝑛𝑖

𝑛𝑖
=

1

𝑁
𝑒𝛼𝑒𝛽𝑢𝑖  

𝑛𝑖

𝑔𝑖
=

1
1
𝑁

𝑒𝛼𝑒𝛽𝑢𝑖+1
 

With energy conservation, but without particle conservation we get: 



ln 𝑁 + ln(𝑔𝑖 − 𝑛𝑖) − ln 𝑛𝑖 − 𝛽𝑢𝑖 = 0 

The solution of this equation is: 

𝑔𝑖 − 𝑛𝑖

𝑛𝑖
=

𝑔𝑖

𝑛𝑖
− 1 =

𝑒𝛽𝑢𝑖

𝑁
 

𝑛𝑖

𝑔𝑖
=

1
1
𝑁

𝑒𝛽𝑢𝑖+1
 

 


