
Derivation of the Laplacian in Spherical Coordinates from First Principles. 

 

First, let me state that the inspiration to do this came from David Griffiths “Introduction to 

Electrodynamics” textbook Chapter 1, Section 4.  I have also borrowed Figure 1 and the first two sets of 

equations from that textbook for reference and to give us a starting place to build off of.  These are 

what I am calling the “First” Principles: 

 

 

 

Figure 1 

 
𝑥 = 𝑟 ⋅ sin(𝜃) 𝑐𝑜𝑠(𝜙)           𝑦 = 𝑟 ⋅ sin(𝜃) sin(𝜙)             𝑧 = 𝑟 ⋅ 𝑐𝑜𝑠(𝜃)                                    𝐸𝑞. 1 

 

 

𝑟 =  √𝑥2 + 𝑦2 + 𝑧2          𝜃 = tan−1 (
√𝑥2 + 𝑦2

𝑧
)          𝜙 = tan−1 (

𝑦

𝑥
)                                     𝐸𝑞 . 2 

 

We will begin by deriving a very general expression before returning to Equations 1 and 2 to determine 

the specifics. 

 

First, derive the Laplacian in Cartesian Coordinates: 

 

∇ ⋅ (∇𝑇𝑥,𝑦,𝑧)  =  ∇2𝑇(𝑥,𝑦,𝑧)  =  
𝜕2𝑇

𝜕𝑥2
 + 

𝜕2𝑇

𝜕𝑦2
 +  

𝜕2𝑇

𝜕𝑧2
                                                      𝐸𝑞. 3 

 

Now, substitute:  

 

𝑇(𝑥,𝑦,𝑧)  =  𝐺(𝑟,𝜃,𝜙)                                                                                     𝐸𝑞. 4 

 

And work out each of the Cartesian 2nd Derivatives in the new variables.  We shall do this one at a time.  

This can get rather complicated so I will try and do things piecemeal so the process is obvious.  I will 

begin with the “x” component first. 

 



The spherical variables of “𝐺”, which are “𝑟”, “𝜃”, and “𝜙”, are all equations of “𝑥,” “𝑦,” and “𝑧”, so we 

must use the chain rule.  

 

𝜕

𝜕𝑥
(𝐺(𝑟,𝜃,𝜙))  =  

𝜕𝐺

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
+

𝜕𝐺

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
+

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
                                                          𝐸𝑞. 5 

So: 

 

𝜕2𝐺

𝜕𝑥2
 =  

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
+

𝜕𝐺

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
+

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
)                                                             𝐸𝑞. 6 

 

Now distribute: 

 

𝜕2𝐺

𝜕𝑥2
 =  

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
) + 

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
) + 

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
)                                              𝐸𝑞. 7 

 

I will tackle these three components one at a time, starting with the “𝑟” variable: 

 

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
)  =  

𝜕

𝜕𝑥
⋅ (𝐺𝑟 ⋅

𝜕𝑟

𝜕𝑥
)                                                                        𝐸𝑞. 8 

 

Here I use “𝐺” with a subscript “𝑟” to denote the partial derivative of “𝐺” with respect to “𝑟”.  It is a bit of 

a mixing of notation, but I find it is easier to “see”.  We will need to use the Product Rule to work 

Equation 8 out: 

 

𝜕

𝜕𝑥
⋅ (𝐺𝑟 ⋅

𝜕𝑟

𝜕𝑥
) = 𝐺𝑟 ⋅

𝜕2𝑟

𝜕𝑥2
 +  

𝜕𝑟

𝜕𝑥
⋅

𝜕(𝐺𝑟)

𝜕𝑥
                                                                𝐸𝑞. 9 

 

If you note, the last part of Equation 9 contains the partial derivative of “𝐺” with respect to “𝑟” taken as a 

partial derivative with respect to “𝑥”.  The original “𝐺” equation was: 

 

𝐺(𝑟,𝜃,𝜙) 

 

Therefore, its derivative with respect to “𝑟” must also be an equation of the same variables, so using the 

chain rule once again on this last part: 

 

𝜕(𝐺𝑟)

𝜕𝑥
=  

𝜕(𝐺𝑟)

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
 +  

𝜕(𝐺𝑟)

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
 + 

𝜕(𝐺𝑟)

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
                                                     𝐸𝑞. 10 

 

So Equation 9 becomes (Whenever I make an insert substitution I will try to use a color indicator): 

 

𝜕

𝜕𝑥
⋅ (𝐺𝑟 ⋅

𝜕𝑟

𝜕𝑥
) = 𝐺𝑟 ⋅

𝜕2𝑟

𝜕𝑥2
 +  

𝜕𝑟

𝜕𝑥
⋅ (

𝜕(𝐺𝑟)

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
 +  

𝜕(𝐺𝑟)

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
 + 

𝜕(𝐺𝑟)

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
)                             𝐸𝑞. 11 

 

This whole expression can be now be substituted back into Equation 7: 



 

𝜕2𝐺

𝜕𝑥2
 =  𝐺𝑟 ⋅

𝜕2𝑟

𝜕𝑥2
 +  

𝜕𝑟

𝜕𝑥
⋅ (

𝜕(𝐺𝑟)

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
 + 

𝜕(𝐺𝑟)

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
 +  

𝜕(𝐺𝑟)

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
) 

+ 
𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
) +  

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
)                                                           𝐸𝑞. 12 

 

We now need to find the expansion of the two remaining pieces in Equation 12.  So far we have found 

1/6 of the total general expression and the magnitude of this conversion begins to become clear.  

Nevertheless, I shall carry on.  

 

Continuing my partial derivative short hand, the “𝜃” portion becomes: 

 

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
)  =  

𝜕

𝜕𝑥
⋅ (𝐺𝜃 ⋅ 𝜃𝑥)  =  𝐺𝜃 ⋅

𝜕(𝜃𝑥)

𝜕𝑥
 + 𝜃𝑥 ⋅

𝜕(𝐺𝜃)

𝜕𝑥
                                          𝐸𝑞. 13 

 

And consequently, as with Equation 10, the last bit becomes: 

 

𝜕(𝐺𝜃)

𝜕𝑥
=  

𝜕(𝐺𝜃)

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
 + 

𝜕(𝐺𝜃)

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
 +  

𝜕(𝐺𝜃)

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
                                                    𝐸𝑞. 14 

 

Putting Equation 14 into 13, putting both (purple) into Equation 12, and also converting as much as 

possible to my short hand notation, we now have: 

 

𝜕2𝐺

𝜕𝑥2
 =  (𝐺𝑟 ⋅ 𝑟𝑥𝑥  +  𝑟𝑥 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑥  + 𝐺𝑟𝜃 ⋅ 𝜃𝑥  +  𝐺𝑟𝜙 ⋅ 𝜙𝑥)) 

+ (𝐺𝜃 ⋅ 𝜃𝑥𝑥 + 𝜃𝑥 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑥  + 𝐺𝜃𝜃 ⋅ 𝜃𝑥  +  𝐺𝜃𝜙 ⋅ 𝜙𝑥)) + 
𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
)              𝐸𝑞. 15 

 

Now to finish off with the “𝜙” portion: 

 

𝜕

𝜕𝑥
⋅ (

𝜕𝐺

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
) =  

𝜕

𝜕𝑥
⋅ (𝐺𝜙 ⋅ 𝜙𝑥)  =  𝐺𝜙 ⋅ 𝜙𝑥𝑥  +  𝜙𝑥 ⋅

𝜕(𝐺𝜙)

𝜕𝑥
                                           𝐸𝑞. 16 

 

As before, we need to work out that final term: 

 

𝜕(𝐺𝜙)

𝜕𝑥
 =  

𝜕(𝐺𝜙)

𝜕𝑟
⋅

𝜕𝑟

𝜕𝑥
 +  

𝜕(𝐺𝜙)

𝜕𝜃
⋅

𝜕𝜃

𝜕𝑥
 +  

𝜕(𝐺𝜙)

𝜕𝜙
⋅

𝜕𝜙

𝜕𝑥
                                                  𝐸𝑞. 17 

 

Putting Equations 16 and 17 into Equation 15, we now have: 

 

 

 

 



𝜕2𝐺

𝜕𝑥2
 =  (𝐺𝑟 ⋅ 𝑟𝑥𝑥  +  𝑟𝑥 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑥  + 𝐺𝑟𝜃 ⋅ 𝜃𝑥  +  𝐺𝑟𝜙 ⋅ 𝜙𝑥)) 

                + (𝐺𝜃 ⋅ 𝜃𝑥𝑥 +  𝜃𝑥 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑥  +  𝐺𝜃𝜃 ⋅ 𝜃𝑥  +  𝐺𝜃𝜙 ⋅ 𝜙𝑥))     

+ (𝐺𝜙 ⋅ 𝜙𝑥𝑥  +  𝜙𝑥 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑥  +  𝐺𝜙𝜃 ⋅ 𝜃𝑥  +  𝐺𝜙𝜙 ⋅ 𝜙𝑥))                              𝐸𝑞. 18 

 

This is 1/3 of the final General Equation, our solution to converting Equation 3.  Aligning the 

components in the fashion above allows for some interesting patterns to emerge.  In fact we can use 

these patterns to extrapolate the other two thirds of the final equation by simply being clever and 

replacing variables accordingly.  This is how I am going to proceed.  However, the reader may choose 

to work the rest of the General Equation out in long hand as proof for themselves.  

 

Dealing with the “𝑦” component of Equation 3 we have: 

 

𝜕2𝐺

𝜕𝑦2
 =  (𝐺𝑟 ⋅ 𝑟𝑦𝑦  +  𝑟𝑦 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑦  +  𝐺𝑟𝜃 ⋅ 𝜃𝑦  + 𝐺𝑟𝜙 ⋅ 𝜙𝑦)) 

  +  (𝐺𝜃 ⋅ 𝜃𝑦𝑦 + 𝜃𝑦 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑦  +  𝐺𝜃𝜃 ⋅ 𝜃𝑦  +  𝐺𝜃𝜙 ⋅ 𝜙𝑦))      

+ (𝐺𝜙 ⋅ 𝜙𝑦𝑦  +  𝜙𝑦 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑦  +  𝐺𝜙𝜃 ⋅ 𝜃𝑦  +  𝐺𝜙𝜙 ⋅ 𝜙𝑦))                                     𝐸𝑞. 19 

 

And the “𝑧” component of Equation 3 becomes: 

 

𝜕2𝐺

𝜕𝑧2
 =  (𝐺𝑟 ⋅ 𝑟𝑧𝑧  + 𝑟𝑧 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑧  +  𝐺𝑟𝜃 ⋅ 𝜃𝑧  + 𝐺𝑟𝜙 ⋅ 𝜙𝑧)) 

+  (𝐺𝜃 ⋅ 𝜃𝑧𝑧 + 𝜃𝑧 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑧  +  𝐺𝜃𝜃 ⋅ 𝜃𝑧  +  𝐺𝜃𝜙 ⋅ 𝜙𝑧))    

+ (𝐺𝜙 ⋅ 𝜙𝑧𝑧  +  𝜙𝑧 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑧  +  𝐺𝜙𝜃 ⋅ 𝜃𝑧  +  𝐺𝜙𝜙 ⋅ 𝜙𝑧))                                       𝐸𝑞. 20 

 

So finally, we can now write Equation 3 in the form (This is anew new color coding scheme): 

 

∇2𝐺(𝑟,𝜃,𝜙)  =  
𝜕2𝐺

𝜕𝑥2
 +  

𝜕2𝐺

𝜕𝑦2
 + 

𝜕2𝐺

𝜕𝑧2
 =  (𝐺𝑟 ⋅ 𝑟𝑥𝑥  + 𝑟𝑥 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑥  + 𝐺𝑟𝜃 ⋅ 𝜃𝑥  + 𝐺𝑟𝜙 ⋅ 𝜙𝑥)) +                  𝐸𝑞. 21 

(𝐺𝜃 ⋅ 𝜃𝑥𝑥 + 𝜃𝑥 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑥  + 𝐺𝜃𝜃 ⋅ 𝜃𝑥  + 𝐺𝜃𝜙 ⋅ 𝜙𝑥)) + (𝐺𝜙 ⋅ 𝜙𝑥𝑥  + 𝜙𝑥 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑥  + 𝐺𝜙𝜃 ⋅ 𝜃𝑥  + 𝐺𝜙𝜙 ⋅ 𝜙𝑥)) + 

(𝐺𝑟 ⋅ 𝑟𝑦𝑦  +  𝑟𝑦 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑦  + 𝐺𝑟𝜃 ⋅ 𝜃𝑦  + 𝐺𝑟𝜙 ⋅ 𝜙𝑦)) + (𝐺𝜃 ⋅ 𝜃𝑦𝑦 + 𝜃𝑦 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑦  + 𝐺𝜃𝜃 ⋅ 𝜃𝑦  + 𝐺𝜃𝜙 ⋅ 𝜙𝑦)) + 

(𝐺𝜙 ⋅ 𝜙𝑦𝑦  + 𝜙𝑦 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑦  + 𝐺𝜙𝜃 ⋅ 𝜃𝑦  + 𝐺𝜙𝜙 ⋅ 𝜙𝑦)) +  (𝐺𝑟 ⋅ 𝑟𝑧𝑧  + 𝑟𝑧 ⋅ (𝐺𝑟𝑟 ⋅ 𝑟𝑧  + 𝐺𝑟𝜃 ⋅ 𝜃𝑧  + 𝐺𝑟𝜙 ⋅ 𝜙𝑧)) + 

(𝐺𝜃 ⋅ 𝜃𝑧𝑧 + 𝜃𝑧 ⋅ (𝐺𝜃𝑟 ⋅ 𝑟𝑧  + 𝐺𝜃𝜃 ⋅ 𝜃𝑧  + 𝐺𝜃𝜙 ⋅ 𝜙𝑧)) +  (𝐺𝜙 ⋅ 𝜙𝑧𝑧  + 𝜙𝑧 ⋅ (𝐺𝜙𝑟 ⋅ 𝑟𝑧  + 𝐺𝜙𝜃 ⋅ 𝜃𝑧  + 𝐺𝜙𝜙 ⋅ 𝜙𝑧)) 

 

Obviously, at this point some rearrangement is called for.  I will take two steps to clean things up.  First, I 

will distribute where I can (Equation 22), and then I will group together all the partial derivatives of “𝐺” 

that are alike (Equation 23).  But first recall that when working with partial derivatives: 

 

𝐹𝑖𝑗 = 𝐹𝑗𝑖           𝑜𝑟          
𝜕

𝜕𝑗
⋅ (

𝜕𝐹

𝜕𝑖
) =  

𝜕

𝜕𝑖
⋅ (

𝜕𝐹

𝜕𝑗
) 



So: 

 

∇2𝐺(𝑟,𝜃,𝜙)  =  
𝜕2𝐺

𝜕𝑥2
 +  

𝜕2𝐺

𝜕𝑦2
 + 

𝜕2𝐺

𝜕𝑧2
 =  (𝐺𝑟 ⋅ 𝑟𝑥𝑥  +  𝐺𝑟𝑟 ⋅ (𝑟𝑥)2  +  𝐺𝑟𝜃 ⋅ 𝑟𝑥 ⋅ 𝜃𝑥  +  𝐺𝑟𝜙 ⋅ 𝑟𝑥 ⋅ 𝜙𝑥)  +             𝐸𝑞. 22 

(𝐺𝜃 ⋅ 𝜃𝑥𝑥 + 𝐺𝜃𝑟 ⋅ 𝜃𝑥 ⋅ 𝑟𝑥  +  𝐺𝜃𝜃 ⋅ (𝜃𝑥)2  +  𝐺𝜃𝜙 ⋅ 𝜃𝑥 ⋅ 𝜙𝑥)  + (𝐺𝜙 ⋅ 𝜙𝑥𝑥  +  𝐺𝜙𝑟 ⋅ 𝜙𝑥 ⋅ 𝑟𝑥  +  𝐺𝜙𝜃 ⋅ 𝜙𝑥 ⋅ 𝜃𝑥  +  𝐺𝜙𝜙 ⋅ (𝜙𝑥)2)  + 

(𝐺𝑟 ⋅ 𝑟𝑦𝑦  +  𝐺𝑟𝑟 ⋅ (𝑟𝑦)
2

 +  𝐺𝑟𝜃 ⋅ 𝑟𝑦 ⋅ 𝜃𝑦  +  𝐺𝑟𝜙 ⋅ 𝑟𝑦 ⋅ 𝜙𝑦) + (𝐺𝜃 ⋅ 𝜃𝑦𝑦 +  𝐺𝜃𝑟 ⋅ 𝜃𝑦 ⋅ 𝑟𝑦  +  𝐺𝜃𝜃 ⋅ (𝜃𝑦)
2

 +  𝐺𝜃𝜙 ⋅ 𝜃𝑦 ⋅ 𝜙𝑦)  + 

(𝐺𝜙 ⋅ 𝜙𝑦𝑦  +  𝐺𝜙𝑟 ⋅ 𝜙𝑦 ⋅ 𝑟𝑦  +  𝐺𝜙𝜃 ⋅ 𝜙𝑦 ⋅ 𝜃𝑦  +  𝐺𝜙𝜙 ⋅ (𝜙𝑦)
2

)  +  (𝐺𝑟 ⋅ 𝑟𝑧𝑧  +  𝐺𝑟𝑟 ⋅ (𝑟𝑧)2  +  𝐺𝑟𝜃 ⋅ 𝑟𝑧 ⋅ 𝜃𝑧  +  𝐺𝑟𝜙 ⋅ 𝑟𝑧 ⋅ 𝜙𝑧) + 

(𝐺𝜃 ⋅ 𝜃𝑧𝑧 + 𝐺𝜃𝑟 ⋅ 𝜃𝑧 ⋅ 𝑟𝑧  +  𝐺𝜃𝜃 ⋅ (𝜃𝑧)2  +  𝐺𝜃𝜙 ⋅ 𝜃𝑧 ⋅ 𝜙𝑧)  +  (𝐺𝜙 ⋅ 𝜙𝑧𝑧  +  𝐺𝜙𝑟 ⋅ 𝜙𝑧 ⋅ 𝑟𝑧  +  𝐺𝜙𝜃 ⋅ 𝜙𝑧 ⋅ 𝜃𝑧  +  𝐺𝜙𝜙 ⋅ (𝜙𝑧)2) 

 

And then: 

 

∇2𝐺(𝑟,𝜃,𝜙)  =   𝐺𝑟 ⋅ 𝑟𝑥𝑥 + 𝐺𝑟 ⋅ 𝑟𝑦𝑦 + 𝐺𝑟 ⋅ 𝑟𝑧𝑧 + 𝐺𝑟𝑟 ⋅ (𝑟𝑥)2 + 𝐺𝑟𝑟 ⋅ (𝑟𝑦)
2

+ 𝐺𝑟𝑟 ⋅ (𝑟𝑧)2 + 𝐺𝑟𝜃 ⋅ 𝑟𝑥 ⋅ 𝜃𝑥 + 𝐺𝑟𝜃 ⋅ 𝑟𝑦 ⋅ 𝜃𝑦 +  

𝐺𝑟𝜃 ⋅ 𝑟𝑧 ⋅ 𝜃𝑧 + 𝐺𝜃𝑟 ⋅ 𝜃𝑥 ⋅ 𝑟𝑥 + 𝐺𝜃𝑟 ⋅ 𝜃𝑦 ⋅ 𝑟𝑦 + 𝐺𝜃𝑟 ⋅ 𝜃𝑧 ⋅ 𝑟𝑧 + 𝐺𝑟𝜙 ⋅ 𝑟𝑥 ⋅ 𝜙𝑥 + 𝐺𝑟𝜙 ⋅ 𝑟𝑦 ⋅ 𝜙𝑦 + 𝐺𝑟𝜙 ⋅ 𝑟𝑧 ⋅ 𝜙𝑧 + 𝐺𝜙𝑟 ⋅ 𝜙𝑥 ⋅ 𝑟𝑥 + 

𝐺𝜙𝑟 ⋅ 𝜙𝑦 ⋅ 𝑟𝑦 + 𝐺𝜙𝑟 ⋅ 𝜙𝑧 ⋅ 𝑟𝑧 + 𝐺𝜃 ⋅ 𝜃𝑥𝑥 + 𝐺𝜃 ⋅ 𝜃𝑦𝑦 + 𝐺𝜃 ⋅ 𝜃𝑧𝑧 + 𝐺𝜃𝜃 ⋅ (𝜃𝑥)2 + 𝐺𝜃𝜃 ⋅ (𝜃𝑦)
2

+ 𝐺𝜃𝜃 ⋅ (𝜃𝑧)2 + 𝐺𝜃𝜙 ⋅ 𝜃𝑥 ⋅ 𝜙𝑥 + 

𝐺𝜃𝜙 ⋅ 𝜃𝑦 ⋅ 𝜙𝑦 + 𝐺𝜃𝜙 ⋅ 𝜃𝑧 ⋅ 𝜙𝑧 + 𝐺𝜙𝜃 ⋅ 𝜙𝑥 ⋅ 𝜃𝑥 + 𝐺𝜙𝜃 ⋅ 𝜙𝑦 ⋅ 𝜃𝑦 + 𝐺𝜙𝜃 ⋅ 𝜙𝑧 ⋅ 𝜃𝑧 + 𝐺𝜙 ⋅ 𝜙𝑥𝑥 + 𝐺𝜙 ⋅ 𝜙𝑦𝑦 + 𝐺𝜙 ⋅ 𝜙𝑧𝑧 

𝐺𝜙𝜙 ⋅ (𝜙𝑥)2 + 𝐺𝜙𝜙 ⋅ (𝜙𝑦)
2

+ 𝐺𝜙𝜙 ⋅ (𝜙𝑧)2                                                                 𝐸𝑞. 23 

 

A point to note from Equation 2, “𝜙” is only a function of “𝑥” and “𝑦”.  We can use this fact to eliminate a 

few of the terms, these being “𝜙” derivatives with respect to “𝑧”, in Eq. 23.  The next logical step after 

that will be to factor out the partial derivatives from the remaining like terms.  I have color coded the 

like terms in Equation 24 for easy viewing: 

 

∇2𝐺(𝑟,𝜃,𝜙)  =  𝐺𝑟 ⋅ (𝑟𝑥𝑥 + 𝑟𝑦𝑦 + 𝑟𝑧𝑧) + 𝐺𝑟𝑟 ⋅ ((𝑟𝑥)2 + (𝑟𝑦)
2

+ (𝑟𝑧)2) + 2𝐺𝑟𝜃 ⋅ (𝑟𝑥 ⋅ 𝜃𝑥 + 𝑟𝑦 ⋅ 𝜃𝑦 + 𝑟𝑧 ⋅ 𝜃𝑧) 

2𝐺𝑟𝜙 ⋅ (𝑟𝑥 ⋅ 𝜙𝑥 + 𝑟𝑦 ⋅ 𝜙𝑦) + 𝐺𝜃 ⋅ (𝜃𝑥𝑥 + 𝜃𝑦𝑦 + 𝜃𝑧𝑧) + 𝐺𝜃𝜃 ⋅ ((𝜃𝑥)2 + (𝜃𝑦)
2

+ (𝜃𝑧)2) + 

2𝐺𝜃𝜙 ⋅ (𝜃𝑥 ⋅ 𝜙𝑥 + 𝜃𝑦 ⋅ 𝜙𝑦) + 𝐺𝜙 ⋅ (𝜙𝑥𝑥 + 𝜙𝑦𝑦) + 𝐺𝜙𝜙 ⋅ ((𝜙𝑥)2 + (𝜙𝑦)
2

)                                𝐸𝑞. 24 

 

You will notice that we have reduced the equation to a somewhat more manageable state than that of 

Equation 21.  Equation 24 is essentially the final form of the General Laplacian in Spherical Coordinates.  

However, it’s still a large, ungainly beast and needs to be further simplified if we ever hope to use it.  

The first step in doing this will be to take the various derivates of the spherical term equations "𝑟, 𝜃, 𝜙", 

substitute them in, and hope that some of this craziness cancels out. 

 

First let me identify all of the various derivatives we will need to take and put them back into proper 

notation: 

 

𝑟𝑥  =   
𝜕𝑟

𝜕𝑥
      𝑟𝑦  =   

𝜕𝑟

𝜕𝑦
      𝑟𝑧  =   

𝜕𝑟

𝜕𝑧
      𝑟𝑥𝑥  =   

𝜕2𝑟

𝜕𝑥2
      𝑟𝑦𝑦  =   

𝜕2𝑟

𝜕𝑦2
      𝑟𝑧𝑧  =   

𝜕2𝑟

𝜕𝑧2
 

𝜃𝑥  =   
𝜕𝜃

𝜕𝑥
      𝜃𝑦  =   

𝜕𝜃

𝜕𝑦
      𝜃𝑧  =   

𝜕𝜃

𝜕𝑧
      𝜃𝑥𝑥  =   

𝜕2𝜃

𝜕𝑥2
      𝜃𝑦𝑦  =   

𝜕2𝜃

𝜕𝑦2
      𝜃𝑧𝑧  =   

𝜕2𝜃

𝜕𝑧2
 

𝜙𝑥  =   
𝜕𝜙

𝜕𝑥
      𝜙𝑦  =   

𝜕𝜙

𝜕𝑦
     𝜙𝑥𝑥  =   

𝜕2𝜙

𝜕𝑥2
      𝜙𝑦𝑦  =   

𝜕2𝜙

𝜕𝑦2
 



 

We’ll take these in order one at a time.  For convenience and space saving, I will make the following 

temporary substitution in all of the following derivatives: 

 

𝑟2  =   𝑥2 + 𝑦2 + 𝑧2  =   𝑢 

And so: 

 

𝑟𝑥  =   
𝜕𝑟

𝜕𝑥
 =   

𝜕

𝜕𝑥
(√𝑢 )  =   

𝑥

√𝑢
 =   

𝑟 ⋅ 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
 =   𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)                                𝐸𝑞. 25 

 

It follows then that: 

𝑟𝑦  =   
𝜕𝑟

𝜕𝑦
 =   𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)                                                                        𝐸𝑞. 25 

𝑟𝑧  =   
𝜕𝑟

𝜕𝑧
 =   𝑐𝑜𝑠(𝜃)                                                                               𝐸𝑞. 26 

 

And now to differentiate these three equations again: 

 

𝑟𝑥𝑥  =   
𝜕2𝑟

𝜕𝑥2
 =   

𝜕

𝜕𝑥
(

𝑥

√𝑢
)  =   

√𝑢 −   𝑥2(𝑢)(−1
2⁄ )

𝑢
 =   

𝑢

√𝑢
−  

𝑥2

√𝑢
𝑢

 =   
𝑢 −   𝑥2

𝑢√𝑢
 

 

𝑟2 − 𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙)

𝑟3
 =   

1 − 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙)

𝑟
                                                   𝐸𝑞. 27 

And: 

 

𝑟𝑦𝑦  =   
𝜕2𝑟

𝜕𝑦2
 =   

1 − 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙)

𝑟
                                                                𝐸𝑞. 28 

 

𝑟𝑧𝑧  =   
𝜕2𝑟

𝜕𝑧2
 =   

1 − 𝑐𝑜𝑠2(𝜃)

𝑟
                                                                        𝐸𝑞. 29 

 

Luckily, the “𝑟” equation has a symmetry that we can use to quickly compute the various derivatives 

once we have taken a single or double derivative with respect to any variable.  In this case, I choose “𝑥” 

and so “𝑦” and “𝑧” followed easily.  Unfortunately, the “𝜃” equation is not so elegant, particularly the 

second partial derivatives. 

 

As a refresher, let me give you the generic form of the inverse cosine derivative: 

 

𝜕(𝑐𝑜𝑠−1(𝑤)) =   
−𝑑𝑤

√1 − 𝑤2
 

 

Also note the following as it will come in handy soon: 

 



√𝑢 − 𝑧2  =   √𝑥2 + 𝑦2  =   √𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃) (𝑐𝑜𝑠2(𝜙) + 𝑠𝑖𝑛2(𝜙))  =   𝑟 ⋅ 𝑠𝑖𝑛(𝜃) 

 

And so: 

 

𝜃𝑥  =   
𝜕𝜃

𝜕𝑥
 =   

𝜕

𝜕𝑥
(𝑐𝑜𝑠−1 (

𝑧

√𝑢
))  =   

𝑧 ⋅ 𝑥

𝑢√𝑢√1 −
𝑧2

𝑢

 =   
𝑧 ⋅ 𝑥

𝑢√𝑢 − 𝑧2
 =   

 

𝑟2 ⋅ 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟2 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
 =   

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
                                                         𝐸𝑞. 30 

 

The “𝑦” partial derivative follows easily: 

 

𝜃𝑦  =   
𝜕𝜃

𝜕𝑦
 =   

𝜕

𝜕𝑦
(cos−1 (

𝑧

√𝑢
))  =   

𝑧 ⋅ 𝑦

𝑢√𝑢√1 −
𝑧2

𝑢

 =   
𝑧 ⋅ 𝑦

𝑢√𝑢 − 𝑧2
 =   

 

𝑟2 ⋅ 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟2 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
 =   

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟
                                                         𝐸𝑞. 31 

 

And for “𝑧”: 

 

𝜃𝑧  =   
𝜕𝜃

𝜕𝑧
 =   

𝜕

𝜕𝑧
(𝑐𝑜𝑠−1 (

𝑧

√𝑢
))  =   

− (
(√𝑢 −

𝑧2

√𝑢
)

𝑢 )

√1 −
𝑧2

𝑢

 =   

− (
(

𝑢

√𝑢
−

𝑧2

√𝑢
)

𝑢 )

√1 −
𝑧2

𝑢

 =   

− (
(𝑢 − 𝑧2)

𝑢√𝑢
)

√1 −
𝑧2

𝑢

 = 

 

                        
−(𝑢 − 𝑧2)

𝑢√𝑢√1 −
𝑧2

𝑢

 =   
−(𝑢 − 𝑧2)

𝑢√𝑢 − 𝑧2
 =   

−√𝑢 − 𝑧2

𝑢
 =   

−𝑟 ⋅ 𝑠𝑖𝑛(𝜃)

𝑟2
 =   

− 𝑠𝑖𝑛(𝜃)

𝑟
                                 𝐸𝑞. 32 

 

Now for the fun part.  In order to take the second partial derivatives, we must use the dreaded quotient 

rule: 

 

𝜃𝑥𝑥  =   
𝜕2𝜃

𝜕𝑥2
 =   

𝜕

𝜕𝑥
(

𝑧 ⋅ 𝑥

𝑢√𝑢 − 𝑧2
)  =   

(𝑢√𝑢 − 𝑧2)𝑧 − 𝑧 ⋅ 𝑥 ((
𝑢 ⋅ 𝑥

√𝑢 − 𝑧2
) + 2𝑥√𝑢 − 𝑧2)

𝑢2(√𝑢 − 𝑧2)
2  = 

 

(𝑟2 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃))𝑧 − 𝑧 ⋅ 𝑥 ((
𝑟2 ⋅ 𝑥

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) + 2𝑥 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃))

𝑟4(𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃))
 = 



 

𝑟4 ⋅ 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)  − (
𝑟4 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
) − 2𝑟4 ⋅ 𝑠𝑖𝑛3(𝜃) 𝑐𝑜𝑠2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟6 𝑠𝑖𝑛2(𝜃)
 = 

 

𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
 −

𝑐𝑜𝑠2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
−

2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
 = 

 

𝑐𝑜𝑠(𝜃)(1 − 𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)
 =   

𝑐𝑜𝑠(𝜃)(𝑠𝑖𝑛2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)
               𝐸𝑞. 33 

 

As you can see, the second partial derivatives of “𝜃” do not simplify nearly as nicely as the others we 

have taken so far.  It is just something we will have to deal with for now. 

 

𝜃𝑦𝑦  =   
𝜕2𝜃

𝜕𝑦2
 =   

𝜕

𝜕𝑦
(

𝑧 ⋅ 𝑦

𝑢√𝑢 − 𝑧2
)  =   

(𝑢√𝑢 − 𝑧2)𝑧 − 𝑧 ⋅ 𝑦 ((
𝑢 ⋅ 𝑦

√𝑢 − 𝑧2
) + 2𝑦√𝑢 − 𝑧2)

𝑢2(𝑢 − 𝑧2)
 = 

 

(𝑟2 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃))𝑧 − 𝑧 ⋅ 𝑦 ((
𝑟2 ⋅ 𝑦

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) + 2𝑦 ⋅ 𝑟 ⋅ 𝑠𝑖𝑛(𝜃))

𝑟4(𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃))
 = 

 

𝑟4 ⋅ 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)  − (
𝑟4 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)
) − 2𝑟4 ⋅ 𝑠𝑖𝑛3(𝜃) 𝑠𝑖𝑛2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟6 𝑠𝑖𝑛2(𝜃)
 = 

 

𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
 −

𝑠𝑖𝑛2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
−

2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) 𝑐𝑜𝑠(𝜃)

𝑟2 𝑠𝑖𝑛(𝜃)
 

 

𝑐𝑜𝑠(𝜃)(1 − 𝑠𝑖𝑛2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)
 =   

𝑐𝑜𝑠(𝜃)(𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)
               𝐸𝑞. 34 

 

You might be able to see it already, but when we put “𝜃𝑥𝑥” and “𝜃𝑦𝑦" together later we will be able to 

cancel A LOT of the terms out.  But for now, let’s finish “𝜃𝑧𝑧”.  At first glance, it appears to be another 

quotient rule, but in fact it is not and therefore much easier to calculate: 

 

𝜃𝑧𝑧  =   
𝜕2𝜃

𝜕𝑧2
 =  −

𝜕

𝜕𝑧
(

√𝑢 − 𝑧2

𝑢
)  =   −

𝜕

𝜕𝑧
(

√𝑥2 + 𝑦2

𝑢
)  =   −

𝜕

𝜕𝑧
(𝑢−1√𝑥2 + 𝑦2)  = 

 

2𝑧 ⋅ 𝑢−2√𝑥2 + 𝑦2  =   
2𝑧√𝑥2 + 𝑦2

𝑢2
 =   

2 𝑟 ⋅ 𝑐𝑜𝑠(𝜃) (𝑟 ⋅ 𝑠𝑖𝑛(𝜃))

𝑟4
  =   

2 ⋅ 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

𝑟2
                  𝐸𝑞. 35 

 

And finally, we get to the “𝜙” derivatives.  By the way, the generic form of the arctan derivate is: 



 

𝜕(𝑡𝑎𝑛−1(𝑤)) =   
𝑑𝑤

1 + 𝑤2
 

 

𝜙
𝑥

 =   
𝜕𝜙

𝜕𝑥
 =   

𝜕

𝜕𝑥
(𝑡𝑎𝑛−1 (

𝑦

𝑥
))  =   

(
−𝑦
𝑥2 )

1 + (
𝑦2

𝑥2⁄ )

 =   
−𝑦

𝑥2 + 𝑦2
 =   

−𝑟 ⋅ 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
 =   

− 𝑠𝑖𝑛(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
                                                                    𝐸𝑞. 36 

 

And: 

 

𝜙
𝑦

 =   
𝜕𝜙

𝜕𝑦
 =   

𝜕

𝜕𝑦
(𝑡𝑎𝑛−1 (

𝑦

𝑥
))  =   

(
1
𝑥

)

1 + (
𝑦2

𝑥2⁄ )

 =   
1

𝑥 +
𝑦2

𝑥

 =   
1

(
𝑥2 + 𝑦2

𝑥
)

  =   
𝑥

𝑥2 + 𝑦2
 = 

 

𝑟 ⋅ 𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
 =   

𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
                                                                     𝐸𝑞. 37 

 

And now the second partial derivatives: 

 

𝜙𝑥𝑥  =   
𝜕2𝜙

𝜕𝑥2
 =  −

𝜕

𝜕𝑥
(

𝑦

𝑥2 + 𝑦2
)  =   −

𝜕

𝜕𝑥
(𝑦(𝑥2 + 𝑦2)−1)  =   

2𝑥𝑦

(𝑥2 + 𝑦2)2
                      𝐸𝑞. 38 

 

I’m not going to simplify this one any further, and you will see why in just a moment: 

 

𝜙𝑦𝑦  =   
𝜕2𝜙

𝜕𝑦2
 =  

𝜕

𝜕𝑦
(

𝑥

𝑥2 + 𝑦2
)  =   

𝜕

𝜕𝑦
(𝑥(𝑥2 + 𝑦2)−1)  =   

−2𝑥𝑦

(𝑥2 + 𝑦2)2
                          𝐸𝑞. 39 

 

That will cancel out nicely! 

 

Now we are ready to begin our massive substitution mission of the derivatives back into Equation 24.  I 

will use the Equation 24 color coding scheme to substitute the equation out piece meal:  

 

𝐺𝑟 ⋅ (𝑟𝑥𝑥 + 𝑟𝑦𝑦 + 𝑟𝑧𝑧)  =   
𝜕𝐺

𝜕𝑟
⋅ (

1 − 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙)

𝑟
+

1 − 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙)

𝑟
+

1 − 𝑐𝑜𝑠2(𝜃)

𝑟
)  = 

 

𝜕𝐺

𝜕𝑟
⋅ (

−(𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) + 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) + 𝑐𝑜𝑠2(𝜃) − 3)

𝑟
)  =   

𝜕𝐺

𝜕𝑟
⋅ (

2

𝑟
)                     𝐸𝑞. 40   

 

 



𝐺𝑟𝑟 ⋅ ((𝑟𝑥)2 + (𝑟𝑦)
2

+ (𝑟𝑧)2)  =   
𝜕2𝐺

𝜕𝑟2
⋅ (𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) + 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) + 𝑐𝑜𝑠2(𝜃))  =   

𝜕2𝐺

𝜕𝑟2
        𝐸𝑞. 41 

 

 

2𝐺𝑟𝜃 ⋅ (𝑟𝑥 ⋅ 𝜃𝑥 + 𝑟𝑦 ⋅ 𝜃𝑦 + 𝑟𝑧 ⋅ 𝜃𝑧)  = 

 

2
𝜕

𝜕𝜃
(

𝜕𝐺

𝜕𝑟
) ⋅ (𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙) ⋅

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
+ 𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) ⋅

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟
− 𝑐𝑜𝑠(𝜃)

𝑠𝑖𝑛(𝜃)

𝑟
)  = 

 

2
𝜕

𝜕𝜃
(

𝜕𝐺

𝜕𝑟
) ⋅ (

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠2(𝜙)

𝑟
+

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛2(𝜙)

𝑟
−

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

𝑟
)  = 

 

2
𝜕

𝜕𝜃
(

𝜕𝐺

𝜕𝑟
) ⋅ (

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

𝑟
−

𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)

𝑟
)  =   0                                                   𝐸𝑞. 42 

 

Equation 42 is the best result I seen so far!  Let’s keep on going: 

 

2𝐺𝑟𝜙 ⋅ (𝑟𝑥 ⋅ 𝜙𝑥 + 𝑟𝑦 ⋅ 𝜙𝑦)  = 

 

2
𝜕

𝜕𝑟
(

𝜕𝐺

𝜕𝜙
) ⋅ ((𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜙)) ⋅ (

− 𝑠𝑖𝑛(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) + (𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙)) ⋅ (

𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
))  = 

 

2
𝜕

𝜕𝑟
(

𝜕𝐺

𝜕𝜙
) ⋅ ((

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) − (

𝑠𝑖𝑛(𝜃) 𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
))  =   0                                𝐸𝑞. 43 

 

𝐺𝜃 ⋅ (𝜃𝑥𝑥 + 𝜃𝑦𝑦 + 𝜃𝑧𝑧)  = 

 

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)(𝑠𝑖𝑛2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)
+

𝑐𝑜𝑠(𝜃)(𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙))

𝑟2 𝑠𝑖𝑛(𝜃)

+
2 ⋅ 𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜃)

𝑟2 )  = 

 

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 (
𝑠𝑖𝑛2(𝜙) + 𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) + 2 ⋅ 𝑠𝑖𝑛2(𝜃)

𝑠𝑖𝑛(𝜃)
))  = 

 

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 (
1 − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑐𝑜𝑠2(𝜙) − 2 ⋅ 𝑠𝑖𝑛2(𝜃) 𝑠𝑖𝑛2(𝜙) + 2 ⋅ 𝑠𝑖𝑛2(𝜃)

𝑠𝑖𝑛(𝜃)
))  = 

 

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 (
1 − 2 ⋅ 𝑠𝑖𝑛2(𝜃)(𝑐𝑜𝑠2(𝜙) + 𝑠𝑖𝑛2(𝜙)) + 2 ⋅ 𝑠𝑖𝑛2(𝜃)

𝑠𝑖𝑛(𝜃)
))  = 

 



𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 (
1 − 2 ⋅ 𝑠𝑖𝑛2(𝜃) + 2 ⋅ 𝑠𝑖𝑛2(𝜃)

𝑠𝑖𝑛(𝜃)
))  =   

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 ⋅ 𝑠𝑖𝑛(𝜃)
)                                      𝐸𝑞. 44 

 

𝐺𝜃𝜃 ⋅ ((𝜃𝑥)2 + (𝜃𝑦)
2

+ (𝜃𝑧)2)  =   
𝜕2𝐺

𝜕𝜃2
⋅ ((

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
)

2

+ (
𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟
)

2

+ (
− 𝑠𝑖𝑛(𝜃)

𝑟
)

2

)  = 

 

𝜕2𝐺

𝜕𝜃2
⋅ (

𝑐𝑜𝑠2(𝜃) 𝑐𝑜𝑠2(𝜙) + 𝑐𝑜𝑠2(𝜃) 𝑠𝑖𝑛2(𝜙) + 𝑠𝑖𝑛2(𝜃)

𝑟2 )  =   
𝜕2𝐺

𝜕𝜃2
⋅ (

1

𝑟2
)                                𝐸𝑞. 45 

 

2𝐺𝜃𝜙 ⋅ (𝜃𝑥 ⋅ 𝜙𝑥 + 𝜃𝑦 ⋅ 𝜙𝑦)  =   2
𝜕

𝜕𝜙

𝜕𝐺

𝜕𝜃
⋅ ((

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
) ⋅ (

− 𝑠𝑖𝑛(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) + (

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟
) ⋅ (

𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
))  = 

 

2
𝜕

𝜕𝜙

𝜕𝐺

𝜕𝜃
⋅ ((

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙)

𝑟
) ⋅ (

− 𝑠𝑖𝑛(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
) + (

𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜙)

𝑟
) ⋅ (

𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
))  = 

 

2
𝜕

𝜕𝜙

𝜕𝐺

𝜕𝜃
⋅ ((

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜙)

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
) − (

𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜙)

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
))  =   0                                     𝐸𝑞. 45 

 

𝐺𝜙 ⋅ (𝜙𝑥𝑥 + 𝜙𝑦𝑦)  =   
𝜕𝐺

𝜕𝜙
⋅ ((

2𝑥𝑦

(𝑥2 + 𝑦2)2
) + (

−2𝑥𝑦

(𝑥2 + 𝑦2)2
))  =   0                                  𝐸𝑞. 47 

 

𝐺𝜙𝜙 ⋅ ((𝜙𝑥)2 + (𝜙𝑦)
2

)  =   
𝜕2𝐺

𝜕𝜙2
⋅ ((

− 𝑠𝑖𝑛(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
)

2

+ (
𝑐𝑜𝑠(𝜙)

𝑟 ⋅ 𝑠𝑖𝑛(𝜃)
)

2

)  = 

 

𝜕2𝐺

𝜕𝜙2
⋅ (

𝑠𝑖𝑛2(𝜙) + 𝑐𝑜𝑠2(𝜙)

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
)  =   

𝜕2𝐺

𝜕𝜙2
⋅ (

1

𝑟2 ⋅ 𝑠𝑖𝑛2(𝜃)
)                                               𝐸𝑞. 48 

 

Substituting all of these Equations, 40 - 48, back into Equation 24, you get the ALMOST completed 

results of:   

 

∇2𝐺(𝑟,𝜃,𝜙)  =  
𝜕𝐺

𝜕𝑟
⋅ (

2

𝑟
) +

𝜕2𝐺

𝜕𝑟2
+

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 ⋅ sin(𝜃)
) +

𝜕2𝐺

𝜕𝜃2
⋅ (

1

𝑟2
) +

𝜕2𝐺

𝜕𝜙2 ⋅ (
1

𝑟2 ⋅ sin2(𝜃)
)            𝐸𝑞. 49 

 

In fact, this IS the final result.  Some clever person later came along and condensed the expression a 

little more.  I would guess if for nothing else then to make it all fit nicely in a text book!   

 

We have come this far, so no reason to stop now.  The first two terms, red and blue, are the result of a 

product rule expansions, as you can see: 

 

𝜕𝐺

𝜕𝑟
⋅ (

2

𝑟
) +

𝜕2𝐺

𝜕𝑟2
 =   

1

𝑟2
⋅

𝜕

𝜕𝑟
(𝑟2 ⋅

𝜕𝐺

𝜕𝑟
) 



 

And: 

 

𝜕𝐺

𝜕𝜃
⋅ (

𝑐𝑜𝑠(𝜃)

𝑟2 ⋅ sin(𝜃)
) +

𝜕2𝐺

𝜕𝜃2
⋅ (

1

𝑟2
)  =   (

1

𝑟2 ⋅ sin (𝜃)
) ⋅

𝜕

𝜕𝜃
(sin (𝜃) ⋅

𝜕𝐺

𝜕𝜃
) 

 

A word of caution, occasionally the “𝜃” and “𝜙” terms are swapped in the initial stage when deriving 

Equations 1.  The end result is the same, but the variables are switched.  The Laplacian we have derived 

here is typically how it is found in Physics textbooks. 

 

So finally, after 11 pages of work, we have arrived at our answer: 

 

∇2𝐺(𝑟,𝜃,𝜙)  =  
1

𝑟2

𝜕

𝜕𝑟
(𝑟2

𝜕𝐺

𝜕𝑟
) + (

1

𝑟2 ⋅ sin (𝜃)
)

𝜕

𝜕𝜃
(sin (𝜃)

𝜕𝐺

𝜕𝜃
) + (

1

𝑟2 ⋅ sin2(𝜃)
)

𝜕2𝐺

𝜕𝜙2  

 

It’s pretty clear why the derivation of this formula is left up to the student.  You would need an entire 

subsection in a text book to clearly show the steps.  Having seen it magically appear out of the author’s bag 

of tricks in a few of my classes with little comment on why it takes this form, I felt compelled to find out for 

myself. 

 

If you have taken the time to come this far, thank you for reading. 

 

 

 

-Lyle Arnett 

 


