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7.1.3 Motional emf

Inthe last section I listed several possible sources of electromotive force in a circuit, batteries
being the most familiar. But I did not mention the most common one of all: the generator.
Generators exploit motional emf’s, which arise when you move a wire through a magnetic
field. Figure 7.10 shows a primitive model for a generator. In the shaded region there is a
uniform magnetic field B, pointing into the page, and the resistor R represents whatever it
is (maybe a light bulb or a toaster) we're trying to drive current through. If the entire loop
is pulled to the right with speed v, the charges in segment ab experience a magnetic force
whose vertical component gvB drives current around the loop, in the clockwise direction.
The emf is

5=j£fmag.d1=v3h, (7.1

where £ is the width of the loop. (The horizontal segments bc and ad contribute nothing.
since the force here is perpendicular to the wire.)

Notice that the integral you perform to calculate £ (Eq. 7.9 or 7.11) is carried out at one
instant of time—take a “snapshot” of the loop, if you like, and work from that. Thus dl. for
the segment ab in Fig. 7.10, points straight up, even though the loop is moving to the right.
You can’t quarrel with this—it’s simply the way emf is defined—but it is important to be
clear about it.

Figure 7.10
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In particular, although the magnetic force is responsible for establishing the emf, it is
certainly not doing any work—magnetic forces never do work. Who, then, is supplying the
energy that heats the resistor? Answer: The person who’s pulling on the loop! With the
current flowing, charges in segment ab have a vertical velocity (call it u) in addition to the
horizontal velocity v they inherit from the motion of the loop. Accordingly, the magnetic
force has a component qu B to the left. To counteract this, the person pulling on the wire
must exert a force per unit charge

fpull =uB

to the right (Fig. 7.11). This force is transmitted to the charge by the structure of the wire.
Meanwhile, the particle is actually moving in the direction of the resultant velocity w, and
the distance it goes is (h/ cos 8). The work done per unit charge is therefore

h
/fpull -dl = (uB) (—) sin@ =vBh=¢&
cos@

(sin @ coming from the dot product). As it turns out, then, the work done per unit charge
is exactly equal to the emf, though the integrals are taken along entirely different paths
(Fig. 7.12) and completely different forces are involved. To calculate the emf you integrate
around the loop at one instant, but to calculate the work done you follow a charge in its
motion around the loop; fyuy contributes nothing to the emf, because it is perpendicular to
the wire, whereas fi, contributes nothing to work because it is perpendicular to the motion
of the charge.*

There is a particularly nice way of expressing the emf generated in a moving loop. Let
® be the flux of B through the loop:

¢E/B-da. (7.12)

For the rectangular loop in Fig. 7.10,

b = Bhx.

4For further discussion, see E. P. Mosca, Am. J. Phys. 42,295 (1974).
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As the loop moves, the flux decreases:

do dx

— = Bh— = —Bhv.

d dr Y

(The minus sign accounts for the fact that dx/dr is negative.) But this is precisely the
emf (Eq. 7.11); evidently the emf generated in the loop is minus the rate of change of flux
through the loop:

do
E=——. A3
7 (7.13)

This is the flux rule for motional emf. Apart from its delightful simplicity, it has the virtue
of applying to nonrectangular loops moving in arbitrary directions through nonuniform
magnetic fields; in fact, the loop need not even maintain a fixed shape.

Proof: Figure 7.13 shows a loop of wire at time 7 and also a short time dt later.
Suppose we compute the flux at time 7, using surface S, and the flux at time
t + dt, using the surface consisting of S plus the “ribbon” that connects the
new position of the loop to the old. The change in flux, then, is

dq):@(t-i-dt)—q)(t):q)ﬁbbon:/ B-da.
ribbon

Focus your attention on point P: in time d¢ it moves to P’. Let v be the velocity
of the wire, and u the velocity of a charge down the wire; w = v 4+ u is the
resultant velocity of a charge at P. The infinitesimal element of area on the
ribbon can be written as

da = (vxdl)dt



