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Abstract

We consider in a pedagogical fashion alterations to Newtonian gravity due to the
postulate that all energy corresponds to active gravitational mass when applied
to the self-energy of the gravitational field. We show why a simple addition of
1

c
2

times the gravitational field energy to the matter density in Newton’s field

equation is inconsistent. A consistent prescription is shown and discussed. The
connection to general relativity is pointed out.

1. Introduction

The issue addressed in this letter arises if one wishes to model the self-coupling of

the gravitational field within Newtonian gravity. Simple non-linear alterations of

Newton’s field equation are often employed as simplified models for general relativ-

ity. The purpose of this letter is to show how this can be done and to point out

certain flaws in the usually accepted prescription, as for example given in [1][2].

To be more precise, we recall that the Newtonian gravitational field, ϕ, and

the density of (ponderable) matter, ρ, obey

∆ϕ = 4πGρ (1.1)

where G is Newton’s gravitational constant. The force per unit volume is given by

~f = −ρ~∇ϕ. (1.2)
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Together these equations imply that in order to build up a field ϕ from ϕ = 0 one

has to invest the work

A = − 1

8πG

∫

R3

‖~∇ϕ‖2 dV. (1.3)

If we add the assumption that all energy acts as active gravitational mass,

according to E = mc2, and also think of the integrand in (1.3) as representing

energy density, we might be tempted to consider the modified equation

∆ϕ = 4πG

(

ρ− 1

8πGc2
‖~∇ϕ‖2

)

(1.4)

with the aim to incorporate into Newtonian gravity the following

Principle (P). All energy acts as source for the gravitational field.

A field equation satisfying P must be non-linear. One might wonder whether

(1.4) gives a Newtonian model that satisfies P. If it were true that it shared this

qualitative feature with general relativity one might profitably employ this sin-

gle scalar equation to study certain qualitative features of general relativity in a

mathematically simpler environment. In fact, (1.4) is often proposed in pedagogi-

cal discussions to precisely this end. For example, in [2][3] the authors suggest that

some useful lessons concerning the energy-regulating power of the gravitational field

can be learned from model theories of charged particles based on (1.4). In passing

we remark that (1.4) can be written in a linear form by making the field-redefinition

ψ := exp(ϕ/2c2):

∆ψ =
2πG

c2
ρψ (1.5)

where the boundary conditions ϕ(r → ∞) = 0 translate to ψ(r → ∞) = 1. In the

following we shall for simplicity always assume ρ to have compact support B ⊂ R3.

In section 3 we discuss what is wrong with a theory based on (1.2,4) and suggest

a different and consistent theory in section 4. Section 5 briefly discusses some

properties of spherically symmetric solutions to the latter and section 6 points out

the relation to general relativity. Section 2 summarizes some facts from Newtonian

gravity. We employ the standard summation convention for repeated indices in

up-down positions and use the euclidean metric δab to raise and lower indices. ∇a

denotes the partial derivative with respect to xa. 3-component vectors are also

written with an arrow, ~ξ, with ~ξ · ~η = ξaη
a denoting the scalar product.
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2. Newtonian Recollections

To see what is wrong with (1.4) it is helpful to first give a derivation of (1.3).

Consider a one-parameter family of diffeomorphisms s 7→ σs such that σs=0 = id

and d
ds
|s=0σs(~x) = ~ξ(~x). We wish to use σs to redistribute the matter by dragging

it along this flow. Pulling back the 3-form ρdV by the inverse diffeomorphisms we

obtain ρsdV := (σ−1
s )∗(ρdV ) and hence for the Lie-derivative of the density ρ along

~ξ

δρ :=
dρs
ds

∣

∣

∣

s=0
= −~∇ · (ρ~ξ) (2.1)

where here and in the following we use the variational symbol, δ, for the derivative

at s = 0 and call it ‘the variation’ of the quantity in question.

The variation of the work done to the system is easily determined using (1.2):

δA = −
∫

R3

~ξ · ~f dV = −
∫

B

ϕ~∇ · (ρ~ξ) dV. (2.2)

Equations (2.1,2) imply

δA =

∫

B

ϕδρ dV. (2.3)

This equation is independent of the field equation. If we assume the validity of

(1.1) throughout the (adiabatic) motion we can use it to eliminate δρ and write

(2.3) solely in terms of ϕ. The result (1.3) then easily follows.

From (1.1,2) it follows that the force per unit mass may be derived from a

symmetric stress tensor, fa = −∇btab, where

tab =
1

4πG

(

(∇aϕ)(∇bϕ)− 1
2
δab‖~∇ϕ‖2

)

(2.4)

so that

δA = −
∫

R3

faξ
a dV =

∫

R3

ξa∇btab dV =

∫

R3

∇(aξb)tab dV. (2.5)

Here we assumed ‖~ξ(r → ∞)‖ < ar for some real constant a and that derivatives

of ϕ fall off as fast as r−2. Vector fields which satisfy ∇(aξb) = 0 (Killing equation)

generate rigid motions and are given by ~ξ(~x) = ~k (translations) and ~ξ(~x) = ~k × ~x

(rotations), for constant ~k. For those δA = 0, as it must be by the principle of

action = reaction. Otherwise the system would self-accelerate.
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Finally we define the gravitational mass as the total flux of the gravitational

field ~ϕ out to infinity:

Mg := lim
r→∞

1

4πG

∫

S2
r

~n · ~∇ϕdo. (2.6)

S2
r denotes a two-sphere of radius r, ~n its (outward pointing) normal, and do the

surface element on S2
r . The limit of integrals in (1.14) is sometimes abbreviated by

∫

S2
∞

.

Why Inconsistent?

Since in Newtonian theory Mg = Mm :=
∫

ρdV , Mg only depends on the amount

but not on the distribution of matter and clearly P cannot be satisfied. Now,

replacing (1.1) by (1.4), one obtains the following formula for the variation δMg

δMg =

∫

B

N−1
∑

n=0

1

n!

( ϕ

c2

)n

δρ dV +
1

N !c2N
1

4πG

∫

R3

ϕN δ(∆ϕ) dV (3.1)

where we have used (1.4) N times to replace ∆ϕ. For a regular matter distribution

ϕ will be bounded, say ϕ(~x) < K , ∀~x ∈ R3. Also, the integral over 1
4πGδ(∆ϕ)

just represents δMg so that the last term on the right hand side is majorized by
1
N ! (K/c

2)N δMg. It vanishes in the limit N → ∞. In this limit the sum on the

right side is just the exponential function. Thus we obtain the result:

δMg =

∫

B

δρ exp(ϕ/c2) dV (3.2)

which, recalling (2.3), deviates from δA/c2 by all the higher-than-linear terms in the

expansion of the exponential. Hence (1.2,4) violates P. This is not really surprising,

since (1.3) was derived under the assumption of (1.1,2). Changing it to (1.2,4) also

invalidates (1.3). A correct procedure must iterate the step that led from (1.1)

to (1.4). For example, the next (second) step would be to determine a modified

expression for the gravitational field energy from (1.2,4) and then change (1.4)

accordingly. Eventually this procedure should converge to a self-consistent field

equation. However, as we will see in the next section, such a self-consistent field

equation can actually be guessed directly.
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At the end of this section we also point out another flaw in the combination

(1.2,4). Using (1.5) to replace ρ in (1.2) one easily derives

fa = − exp(−ϕ/c2)∇b(exp(ϕ/c2) tab) (3.3)

with tab from (2.4). From this expression it follows that the force density is not the

divergence of a stress tensor. There are many ways to isolate the part that obstructs

the right hand side of (2.11) to be written as the divergence of a symmetric tensor.

Two obvious ways are

fa =−∇btab −
1

8πGc2
‖~∇ϕ‖2∇aϕ (3.4a)

=−∇b
[

(1 + ϕ/c2)tab
]

+
1

8πGc2
∆ϕ∇aϕ

2. (3.4b)

The system (1.2,4) thus potentially violates the principle action = reaction.1

4. A Consistent Modification

Equation (3.2) was derived assuming (1.4) but not (1.2). If we maintain (1.4,5)

but call φ = c2 exp(ϕ/c2) rather than ϕ the gravitational potential, we have (3.2)

just expressing the validity of P, i.e. c2δMg = δA with δA given by (2.3). This

re-interpretation implies that (1.2) has to be replaced by

~f = −ρ~∇φ (4.1)

and that (1.4,5) written in terms of ϕ reads

∆φ =
4πG

c2

(

ρφ+
c2

8πG

‖~∇φ‖2
φ

)

. (4.2)

To be sure, for explicit calculations one would preferably use (1.5) where ψ =

c
√
φ. φ must satisfy the boundary conditions φ(r → ∞) = c2. The Newtonian

approximation is obtained from expanding φ = c2 + ϕ + O(ϕ2) and keeping only

linear terms in (4.2). Note that in the expression (2.6) for Mg we must write φ

1 To manifestly show a violation one should prove existence of a regular solution to (1.4) with

ϕ(r → ∞) = 0 for which
∫

faξ
a 6= 0 for some generator ~ξ of a rigid motion.
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instead of ϕ. But for r → ∞ only the linear term in ϕ contributes to the surface

integral so that (3.2) is still valid. This is why (3.2) indeed expresses the validity

of P for (4.1,2). To be sure, once (4.1,2) are established, the equation c2δMg = δA

is most easily proven directly. For completeness we give a short direct proof in the

appendix. The point of our derivation of (3.2) was that it suggested the definition

of φ in terms of ϕ and hence (4.2). It is interesting to note that (4.2) is precisely

the equation that Einstein already proposed before the advent of general relativity

in 1912 [4].

Equations (4.1,2) also manifestly implie the principle action = reaction in the

sense above. Indeed, we now have fa = −ρ exp(ϕ/c2)∇aϕ. Replacing −ρ∇aϕ by the

right hand side of (3.3) just cancels the exponential function outside the derivative

so that the remaining divergence can be rewritten in terms of φ. This leads to the

desired formula, fa = −∇btab, with

tab =
1

4πGc2

{

1

φ

[

(∇aφ)(∇bφ) − 1
2δab‖~∇φ‖

2
]

}

. (4.3)

We may interpret the two terms on the right hand side of (4.2) as energy

densities due to ponderable matter and the gravitational field respectively. The sum

of both determines the convergence ∆φ of the gravitational field −~∇φ. Both terms

are positive since φ is positive. This is in contrast to (1.4), where the Newtonian

gravitational field energy was negative definite, which is usually said to have its

origin in the attractivity of gravity. But of course here gravity is also attractive.

What is different here is that the (rest-) energy of matter depends on the value of

the gravitational potential at its location. This allows that a contraction of a matter

distribution enhances the field energy although the total energy decreases. This is

achieved by displacing the matter into regions of smaller gravitational potential and

thereby sufficiently decreasing the matter part of the energy.

The total gravitational energy is given by

Etotal := c2Mg =

∫

B

ρφ dV +
c2

8πG

∫

R3

‖~∇φ‖2
φ

dV =: Ematter + Efield (4.4)

where the expression for Efield can also be written in terms of an integral over B

(the support of ρ) only. To see this we recall that for large distances from the source
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we have the expansions for φ and ψ

φ

c2
= 1− GMg

c2r
+O(r−2) (4.5a)

ψ = 1− GMg

2c2r
+O(r−2) (4.5b)

so that Etotal can also be expressed as an integral of c4

2πG
∆ψ = c2ρψ (using (1.5))

over B. Replacing Etotal by this expression in Efield = Etotal − Ematter one obtains

Efield = c2
∫

B

ρ

√

φ

c2

(

1−
√

φ

c2

)

dV. (4.6)

5. Solution for Homogeneous Spherical Star

In this section we determine the gravitational field for the externally prescribed

mass distribution

ρ =







3Mm

4πR3 for r < R

0 for r ≥ R

(5.1)

whereMm is the total (‘bare’) mass of matter: Mm =
∫

B
ρ dV . It will be convenient

to introduce the ‘matter radius’ Rm and the ‘gravitational radius’ Rg:

Rm =
GMm

c2
, Rg =

GMg

c2
(5.2)

and the abbreviation

ω =

√

3Rm

2R

1

R
. (5.3)

We use (1.5), set ψ(r) = χ(r)/r, and obtain

χ′′ =

{

ω2 χ for r < R
0 for r ≥ R.

(5.4)

The general solution which makes φ (and hence ψ) finite at r = 0 is

ψ(r) =

{

K sinh(ωr)
r

for r < R

1− Rg

2r for r ≥ R.
(5.5)
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The integration constants K and Rg are determined by the requirement that φ (and

hence ψ) should be continuously differentiable at r = R:

Rg = 2R

[

1− tanh(ωR)

ωR

]

(5.6)

K =
1

ω cosh(ωR)
. (5.7)

Fixing the radius R in (4.6) gives usRg as function ofRm, i.e., the gravitational

mass as function of the bare mass. In terms of the dimensionless quantities y =

Rg/R and x = Rm/R this reads:

y = f(x) = 2

[

1− tanh(3x/2)
1

2

(3x/2)
1

2

]

(5.8)

which for x ≥ 0 maps monotonically [0,∞] → [0, 2]. For small x one has f(x) =

x − 3
5
x2 + 51

140
x3 + O(x4). The fact that f(x) < 2 ∀x ∈ R+ means that the

gravitational mass is bounded by a quantity depending only on the geometry (here

R) of the mass distribution:

Mg < R
2c2

G
. (5.9)

Note that this is achieved with all contributions to the gravitational mass on the

right hand side of (3.3) being positive. No subtractions are taking place. Rather,

high matter densities ρ are suppressed by the small potentials φ produced by them

(i.e. ‘red-shifted’ in general relativistic terminology). This can be seen in detail

from the following expressions:

Etotal =
2Rc4

G

[

1− tanh(ωR)

ωR

]

(5.10a)

=Mmc
2

[

1− 3Rm

5R
+O(R2

m/R
2)

]

(5.10b)

Ematter =
Rc4

G

[

tanh(ωR)

ωR
+ tanh2(ωR)− 1

]

(5.11a)

=Mmc
2

[

1− 6Rm

5R
+O(R2

m/R
2)

]

(5.11b)

Efield =
3Rc4

G

[

1− tanh(ωR)

ωR
− 1

3
tanh2(ωR)

]

(5.12a)

=Mmc
2

[

3Rm

5R
+O(R2

m/R
2)

]

(5.12b)
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where the second expressions on the right hand sides are expansions of the first in

terms of Rm/R. Also, recall that Rmc
4/G = Mmc

2. Note the familiar 5
3 -term in

(5.10b) for the Newtonian binding energy.

Decreasing R for fixed Rm we see from (5.10b-12b) that to first approximation

this enhances the field energy and at the same time decreases the matter energy

twice as fast, so as to decrease the total energy by the same amount by which the

field energy increased. Clearly the total energy must decrease in accordance with

the attractivity of the gravitational interaction.

Coming back to (5.9) we next show that it remains valid for any spherically

symmetric matter distribution. In particular, it remains valid for more realistic

matter distributions (of compact support r < R) which are determined by a coupled

system of (4.2) with some equations of state for the matter. The proof is simply

this: For r ≥ R (5.4) is solved by χ+(r) = r − Rg/2 and by some function χ−(r)

for r ≤ R. Continuity and differentiability of φ at r = R is equivalent to

χ−(R) = R− 1
2Rg (5.13)

χ′
−(R) = 1. (5.14)

Suppose χ(R) ≤ 0, then χ′′ = 2πG
c2
ρχ with ρ ≥ 0 implies χ′′(r) ≤ 0 for all r ≤ R,

with strict inequality if r lies in the support of ρ. Equations (5.13, 14) now imply

that the curve r → χ−(r) lies below the curve r → r− 1
2Rg for r ≤ R, which in turn

implies χ(r = 0) < −1
2Rg < 0, where the last inequality just expresses the positivity

of the gravitational mass. But this contradicts the regularity of the gravitational

potential which requires a finite value of ψ(r = 0) and thus χ(r = 0) = 0. Hence

we must have χ(R) > 0 or, by (5.13), Rg < 2R.

Finally we mention that the finite (negative) bare mass for the point-charge

model of ref. [V] crucially depends on taking ϕ (and (1.4)) rather than φ as gravita-

tional potential. In the latter case it unfortunately turns out to be infinite. At this

state of affairs the finite bare mass obtained in [V] is not a consequence of P, but

rather an artifact of (1.4), which violates P. But P seems crucial for any model of

general relativity and hence (1.4) does not seem suited to model general relativity

for questions concerning the energy regulating power of the gravitational field.
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6. Connection with General Relativity

Let us consider a Lorentz metric in which only the time-time component of the

metric differs from its Minkowski value. We write

ds2 = −2φ dt2 + d~x · d~x (6.1)

and require that for large spatial distances this approaches the Minkowski metric:

lim
‖~x‖→∞

φ(~x) = 1
2c

2. (6.2)

Using the parameter t, the equations for a timelike geodesic curve boil down to

(~̇x = d~x/dt)

~̈x = −~∇φ+ φ−1(~̇x · ~∇φ)~̇x (6.3)

which, neglecting terms ∝ (v/c)2 for the moment, are just the Newtonian equations

of motion for a point mass in the external potential φ. Setting for the moment

2φ = ψ2, the components of the Ricci tensor are most easily calculated with respect

to the orthonormal tetrad: et̂ = ψ−1∂t, eâ = ∂a for a = 1, 2, 3 (the hat over the

indices signifies the orthonormality). We obtain:

Râĉ = −ψ−1ψ,a,c (6.4)

Rt̂t̂ = ψ−1∆ψ (6.5)

where ∆ is just the ordinary Laplacian ∂a∂a and ∂aψ = ψ,a. The scalar curvature

then follows (summation over â):

R = Rââ −Rt̂t̂ = −2ψ−1∆ψ. (6.6)

Let us now consider Einstein’s equations

Rµν =
8πG

c4
(

Tµν − 1
2
gµνT

λ
λ

)

(6.7)

with an energy momentum tensor Tµν = ρuµuν for stationary pressureless dust of

rest-mass-density ρ and 4-velocity u = cψ−1∂t. If we varied the Einstein-Hilbert
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action only within the class of metrics of the form (6.1) we would obtain only the

t̂t̂-component of (6.7), which explicitly reads: ∆ψ = 4πG
c2
ρψ. In terms of φ we have

∆φ =
8πG

c2

(

ρφ+
c2

16πG

‖~∇φ‖2
φ

)

. (6.8)

This is almost (4.3) except for an additional factor of two in the G-dependence.

But note that the boundary condition (6.2) differs from (4.5a) by a factor 1
2which

implies that (6.8) and (4.2) have the same Newtonian limit. A solution of (4.2), like

(5.5), can be easily turned into a solution to (5.6) if we multiply it by 1
2 and replace

G by 2G. Thus we conclude that (3.3) is essentially the time-time-component of

Einstein’s equations. Note however that we cannot solve the full set of Einstein’s

equations with the ansatz (5.1). In fact, adding the trace of the spatial part to

the t̂t̂-part, the left hand side is zero according to (5.4, 5) whereas the right side

is easily seen to be proportional to Tt̂t̂. So there is no solution, at least if the

matter satisfies the dominant energy condition |Tt̂t̂| ≥ |Tâĉ|. Note that the trace

of Einstein’s equations (5.7), R = −8πG
c4
T , is already in contradiction to their t̂t̂-

component, since T = Tââ − Tt̂t̂ = −Tt̂t̂ = −ρc2 so that with (5.6) the trace part

reads ∆ψ = −4πG
c2
ψ which differs in sign from the equation above. This shows how

Einstein’s scalar equation of 1912 [4] is related to the time-time-component of the

general relativistic tensor equation.

Appendix

In this appendix we wish to give a short direct proof that (4.2) satisfies P, i.e., that

δA = c2δMg.

Using the generally valid equation (2.3), now with φ replacing ϕ, we must

eliminate ρ via (3.3). This is most easily done if we set φ = c2ψ2 and use (1.5). We

obtain:

δA =
c4

2πG

∫

R3

ψ2 δ

[

∆ψ

ψ

]

dV =
c4

2πG

∫

R3

[ψ∆(δψ)− (∆ψ) δψ] dV (A.1)

=
c4

2πG

∫

S2
∞

~n ·
[

ψ~∇(δψ)− (~∇ψ) δψ
]

do. (A.2)

11



Now, the conditions for large r imply that ~∇ψ falls off as fast as 1/r2 and δψ as fast

as 1/r. Hence the second term in the last bracket does not contribute. Therefore

we may reverse its sign and obtain

δA =
c4

2πG
δ

∫

S2
∞

(~n · ~∇ψ)ψ dV =
c2

4πG
δ

∫

S2
∞

~n · ~∇φ dV = c2δMg.
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