Consider a hollow conical frustum as shown below:

The outer radius of the frustum at any height z above its base is derived as follows:
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To(z) = (Tro,b + Ero,t)

Here 1, , and 1, ; denote the outer radii at the bottom and the top of the frustum, respectively. The
inner radius of the frustum at any height z above its base is then derived as follows:
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Here 1;, and 1; . denote the inner radii at the bottom and the top of the frustum, respectively. The
cross-sectional area of the frustum at any height z above its base is then derived as follows:
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The volume of the frustum is determined by integrating its area over its height as follows:

h
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Combining these equations together we obtain:
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We can now calculate the centre of gravity (COG) of the frustum as follows:
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Note: Because the frustum is symmetric about the z-axis, COG, = C0Gy, = 0. The COG is then
derived as follows:
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If we let:
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A= (ro,b + 21y o, + 37t ) — (ri,b + 21 p7ie + 315t )

B = (To,b2 +TopTor + ro,tz) - (ri,b2 +Tiptic + ri,tz)

Then the COG of a hollow conical frustum may be written as follows:
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