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1. Given a vector field

F : R3 −→ R3 , F (x, y, z) =

x− y2

x2

z


Calculate the circulation of F along the mathematically positive ori-
ented unit circle in the (x, y)-plane

(a) by using the curl of a vector field.

(b) directly by an appropriate path.

Reason: Circulation Of A Vector Field.

Solution: Let D be the unit disk around the origin with boundary
∂D. By Stoke’s theorem we get∫

∂D

F (r) · dr =

∫
D

curl(F ) · n dS

The curl of F is given by

curl(F ) =

∂x∂y
∂z

 ∧
x− y2

x2

z

 =

 0
0

2x+ 2y


and has only a z-component. Parametrization of the unit disk in polar
coordinates ψ(r, ϕ) = (r cosϕ, r sinϕ, 0) with a normal vector obeying
the right hand rule, i.e. pointing to the positive z-direction

n(r, ϕ) = ∂rψ ∧ ∂ϕψ =

cosϕ
sinϕ

0

 ∧
−r sinϕ
r cosϕ

0

 =

0
0
r


Thus the circulation can be expressed as surface integral∫

∂D

F (r) dr =

∫
D

curl(F ) · n dS

=

∫ 1

0

dr

∫ 2π

0

dϕ

0
0
r

 ·
 0

0
2r cosϕ+ 2r sinϕ


=

∫ 1

0

dr

∫ 2π

0

dϕ 2r2(cosϕ+ sinϕ) = 0
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Alternatively, we can calculate the circulation directly, too.
We therefore parameterize the boundary of the unit disk by
γ(ϕ) = (cosϕ, sinϕ), γ̇(ϕ) = (− sinϕ, cosϕ, 0) and calculate∫

∂D

F (r) dr =

∫ 2π

0

F (γ(ϕ)) · ˙γ(ϕ) dϕ

=

∫ 2π

0

cosϕ− sin2 ϕ
cos2 ϕ

0

 ·
− sinϕ

cosϕ
0

 dϕ

=

∫ 2π

0

(cos3 ϕ+ sin3 ϕ− sinϕ cosϕ) dϕ

=
1

3

[
cos2 ϕ sinϕ+ 2 sinϕ

]2π
0

− 1

3

[
sin2 ϕ cosϕ+ 2 cosϕ

]2π
0

− 1

2

[
sin2 ϕ

]2π
0

= 0− 0− 2

3
+

2

3
− 0 + 0

= 0

2. An odd prime p can be written as p = x2 + y2 with integers x, y ∈ Z if
and only is p ≡ 1 mod 4.

Reason: Fermat’s Theorem About The Sum Of Two Squares.

Solution:

• Let p = 4k+1 and S := { (x, y, z) ∈ N3 |x2+4yz = p }. Then S has
two involutions (x, y, z) 7−→ (x, z, y) whose fixed points (x, y, y)
correspond to representations of p as sum of two squares, and

(x, y, z) 7−→


(x+ 2z, z, y − x− z), if x ≤ y − z
(2y − x, y, x− y + z), if y − z < x < 2y

(x− 2y, x− y + z, y), if x ≥ 2y

which has exactly one fixed point (1, 1, k). Two involutions over
the same finite set must have sets of fixed points with the same
parity, which is odd in our case due to the second involution. (It
is an easy proof by induction, that the order of the set of fixed
points of an involution on a finite set has the same parity as the
set has. Hence the parity is independent of a certain involution.)
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So the first involution has a nonzero fixed point (x0, y0, y0) which
means x2

0 + (2y0)2 = p.

If conversely p = x2 + y2, then x2 + y2 ≡ r mod 4 with r ∈
{ 0, 1, 2 } and p = 2n + 1 ≡ s mod 4 with s ∈ { 1, 3 }. Thus
p = x2 + y2 ≡ 1 mod 4.

• The above theorem can also be proven with the help of Minkowski’s
lattice theorem:

Let Γ ⊆ Rd be a lattice and C ⊆ Rd a convex, bounded and
with respect to the origin symmetric area. If vol(C) > 2d · vol(Γ),
where the volume of the lattice is meant to be the volume of the
primitive cell, then C contains besides the origin at least one more
lattice point.

Let p = 4k + 1. Then by Euler’s criterion(
−1

p

)
≡ (−1)

p−1
2 ≡ ((−1)2)k ≡ 1 mod p

−1 is a quadratic residue modulo p, i.e. there is an integer m such
that −1 ≡ m2 mod p or p | (m2 +1). Let î, ĵ be the standard basis
of R2. Set u = î+mĵ , v = pĵ and consider the lattice Γ = Zu+Zv.
If w = αu+ βv = αi+ (αm+ βp)j ∈ Γ then

‖w2‖ ≡ α2 + (αm+ βp)2 ≡ α2(1 +m2) ≡ 0 mod p

and p | ‖w‖2 for any w ∈ Γ. Furthermore we have vol(Γ) = p and
vol(C) = 2πp > 22 vol(Γ) for the open disc C = U(0;

√
2p). Then

by Minkowski’s theorem there exists a nonzero vector w ∈ Γ with
w ∈ C. Hence ‖w‖2 < 2p and p | ‖w‖2 so

p = ‖w‖2 = α2 + (αm+ βp)2

is the sum of two squares. The other direction follows as above.

3. Let Tn := Rn/Zn equipped with the quotient topology according to the
projection

π : Rn −→ Tn , π(a) = a+ Zn.

Show that Tn is a topological manifold.

Reason: Torus.

Solution: We have to show that Tn is Hausdorff, second countable,
and that every point has an open neighborhood which is homeomorphic

4
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to an open subset of Rn.

Rn is second countable, because we can choose open balls of rational
points with rational radius as basis. Quotient building doesn’t change
this property, i.e. the torus is second countable, too.

Let P,Q ∈ Tn be two distinct points. As π is surjective, there are
x, y ∈ Rn such that π(x) = P, π(y) = Q. The preimages of Q under
π is the set π−1(Q) = y + Zn. Choose ε > 0 small enough, such that
Bε(x) ⊆ Rn and Bε(y + k) ⊆ Rn are disjoint for all k ∈ Zn. Then
P ∈ π(Bε(x)) and Q ∈ Bε(y) are disjoint sets. Thus Tn is Hausdorff,
if π is open.

Let U ⊆ Rn be open. Then π(U) is open by the definition of the
quotient topology, if and only if π−1(π(U)) ⊆ Rn is open.

x ∈ π−1(π(U))⇐⇒ π(x) ∈ π(U)

⇐⇒ (∃ y ∈ U) π(x) = π(y)

⇐⇒ (∃ y ∈ U)x− y ∈ Zn

⇐⇒ (∃ y ∈ U)x ∈ y + Zn

⇐⇒ x ∈ U + Zn

⇐⇒ (∃ k ∈ Zn)x ∈ U + k

⇐⇒ x ∈
⋃
k∈Zn

U + k

Thus π−1(π(U)) =
⋃
k∈Zn U + k, and this is an open set in Rn.

Now let us fix a point a ∈ Rn and set Va := B1/2(a) ⊆ Rn, the open
ball around a, and Ua := π(Va) ⊆ Tn which is open as well by the
previous argument that π is open. The mapping ρ : Va −→ Ua with
y 7−→ π(y) is continuous, since it is the restriction of the continuous
function π, surjective by definition, and open as restriction of an open
function on open sets in domain and codomain. Hence we must show,
that ρ is injective, too. Assume two points x 6= y in Va such that
ρ(x) = π(x) = x + Zn = y + Zn = π(y) = ρ(y.) Since the diameter of
Va is 1, we have ‖x− y‖ < 1. But x− z ∈ Zn which implies ‖x− y‖ ≥
1, a contradiction. Thus ρ is continuous, open and bijective, i.e. a
homeomorphism. Its inverse ρ−1

a : Ua −→ Va is therefore a chart at a
and A := { ρa | a ∈ Rn } an atlas, because each point in Tn is at least
in one chart. Hence Tn is an n-dimensional topological manifold.

4. Let α ∈ R−{0}. Determine all functions f : R>0 −→ R>0 which satisfy
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for all x, y ∈ R>0

f(f(x) + y) = αx+
1

f

(
1

y

)
Reason: Functional Equation.

Hint: Use Cauchy’s first functional equation.

Solution: We will show that only α = 1 allows a solution, namely
f(x) = x.

We obviously have α > 0 for the expression on the left would otherwise
become negative for large x. Moreover

f(x) = f(y) =⇒

αx+
1

f

(
1

z

) = f(f(x) + z) = f(f(y) + z) = αy +
1

f

(
1

z

)
=⇒ x = y

f(x) is not bounded from above, since f(f(x) + 1) = αx +
1

f(1)
and

we can simply choose x large enough. Let β ∈ (0,∞). Then

f

(
f

(
βf(y−1)− 1

αf(y−1)

)
+ y

)
= α · βf(y−1)− 1

αf(y−1)
+

1

f(y−1)
= β

for any y > 0. With an y chosen such that f(y−1) > β−1 we get
βf(y−1)− 1

αf(y−1)
> 0 and so a preimage of β in the domain of f(x).

This means that f(x) is bijective, that is there is a one-to-one corre-
spondence between all y > 0 and all f(y). Hence we can write

f(f(x) + f(y)) = αx+
1

f

(
1

f(y)

) = αy +
1

f

(
1

f(x)

)
for the symmetry on the left hand side. If we fix y and set C :=

1

f

(
1

f(y)

) − αy we get αx+C =
1

f

(
1

f(x)

) > 0. We also have C > 0

6
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since otherwise we could choose x small enough and get a negative
function value. Now f(f(x) + f(y)) = αy + αx+ C.

x+ y = z + w =⇒ αx+ αy + C = αz + αw + C

=⇒ f(f(x) + f(y)) = f(f(z) + f(w))

=⇒ f(x) + f(y) = f(z) + f(w)

=⇒ f(x+ 1) + f(y + 1) = f(x+ y + 1) + f(1)

We thus get for the function g : R≥0 −→ R≥0 defined by g(x) :=
f(x+ 1) the functional equation g(x) + g(y) = g(x+ y) + g(0). We now
set h(x) := g(x)− g(0) ≥ −g(0) and get Cauchy’s functional equation

h(x) + h(y) = g(x)− g(0) + g(y)− g(0) = g(x+ y)− g(0) = h(x+ y).

If there was a function value h(t) < 0 then h(nt) = nh(t) would each
any negative number, which is impossible as −g(0) is a fixed lower
bound. So h(x) ≥ 0 for all x ≥ 0, and for 0 < uyv we have h(v) =
h(v − u) + h(u) ≥ h(u), i.e. h(x) is a monotone function.The only
solutions to Cauchy’s functional equation which are monotone are linear
functions h(x) = cx.

(see https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation)

Hence we get for x > 1 that f(x) = g(x−1) = h(x−1)−g(0) = cx+d
for suitable constants c, d. Let 0 < x ≤ 1 and set y = 3, z = 2, w = x+1
so

f(x) = f(z) + f(w)− f(y) = (2c+ d) + c(x+ 1) + d− 3c− d = cx+ d

which means that f(x) = cx+ d on its entire domain. As f(x) reaches
all positive values, and is positive itself, we conclude that c > 0 and
d = 0 for we would get negative or missing values otherwise. This
means

f(f(x) + y) = f(cx+ y) = c2x+ cy = αx+
1
c

y

= αx+
y

c

Comparing coefficients yields c2 = α and c2 = 1, hence f(x) = x.
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5. Show that the quaternion group G = {±1,±i,±j,±k} is a Hamilton
group, and cannot be written as a semidirect product in a nontrivial
way.

Reason: Group Theory.

Solution: Let’s consider the subgroups of G. We clearly have the
subgroup {±1}, which is normal, since m(−1)m−1 = −1 for all m ∈ G.
Any other subgroup U contains at least one pure quaternion or its
negative, say w.l.o.g. k ∈ U. Then k2 = −1 and −k = k3 are also in U,
i.e. 〈k〉 = Z4 ⊆ U and thus U = Z4, since any bigger subgroup would
already have to be the entire group. Now jkj−1 = ij−1 = −ij = −k ∈
U and analogue iki−1 ∈ U, i.e. U is a normal subgroup, too. Hence G
is a Dedekind group (all subgroups are normal), and a Hamilton group
(Dedekind and non abelian). Therefore any semidirect product in G is
already a direct product. Thus G ∼= Z4×Z2 would be the only possible
split, however, Z2 ⊆ Z4 in all possible combinations, and the product
cannot be direct.

6. (a) Calculate

1

2
− 1

12
+

1

40
− 1

112
∓ . . . =

∞∑
k=0

(−1)k
1

(2k + 1)2k+1
.

(b) Prove
1

2!
+

2

3!
+

3

4!
+ . . . = 1 .

Reason: Trick For Infinite Series.

Solution:

(a) We introduce a parameter and define

f(x) :=
x

2
− x3

12
+
x5

40
− x7

112
∓ . . . =

∞∑
k=0

(−1)k
x2k+1

(2k + 1)2k+1

f ′(x) =
1

2
− x2

4
+
x4

8
− x6

16
∓ . . . =

∞∑
k=0

(−1)k
x2k

2k+1
=

1

2 + x2

8
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As f(0) = 0 we get

f(1) =
∞∑
k=0

(−1)k
1

(2k + 1)2k+1

= f(1)− f(0) =

∫ 1

0

f ′(x) dx

=

∫ 1

0

dx

2 + x2
=

[
1√
2
· tan−1

(
x√
2

)]1

0

=
1√
2
· tan−1

(
1√
2

)
≈ 0.43521

(b)

F (x) :=
x

2!
+
x2

3!
+
x3

4!
+ . . . =

1

x
ex − 1− 1

x

F ′(x) = − 1

x2
ex +

1

x
ex +

1

x2

=⇒ 1

2!
+

2

3!
+

3

4!
+ . . .

=

(
1

2!
+

2

3!
x+

3

4!
x2 + . . .

)
(1)

= F ′(1) =

(
− 1

x2
ex +

1

x
ex +

1

x2

)
(1)

= 1

7. Prove

tan−1(1/2) + tan−1(1/3) = π/4 = 4 tan−1(1/5)− tan−1(1/239)

and use the power series representation

tan−1(x) = x− x3

3
+
x5

5
− x7

7
∓ . . . =

∞∑
k=0

(−1)k
x2k+1

2k + 1

to determine how many terms would it take to compute π up to 100
digits by π = 4 tan−1(1) and by the formulas above.

Reason: Algorithmic Precision.

Solution:

z = a+ ib = reiϕ = r(cosϕ+ i sinϕ) , tanϕ =
b

a

9
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From (2 + i)(3 + i) = 5(1 + i) we get that the angles on the left
tan−1(1/2), tan−1(1/3) add up to the one on the right, π/4.

For the next identity we consider

(5 + i)4 = (24 + 10i)2 = 476 + 480i

(5 + i)4(−239 + i) = −114244(1 + i)

4 tan−1(1/5) + (π − tan−1(1/239)) = 5/4π

4 tan−1(1/5)− tan−1(1/239) = π/4

In order to compute π to 100 digits with the alternating series, we need
the nth term being smaller than 10−100. That is, with x = 1, 2k > 10100

or k > 1
2

Googol.

tan−1(1/2) : 22k+1 ·2k > 10100 or (2k+1) log(2)+log(2k) > 100 log(10)

We concentrate on the slower first term and get

k > d−1

2
+ 50

log 10

log 2
e = 166

and improve it to

k > 166− 1

2
log(2 · 166) > 166− b log 332

2
c = 164

tan−1(1/3) : 32k+1 · 2k > 10100 or (2k + 1) log(3) + log(2k) > 100 log(10)

k > d−1

2
+ 50

log 10

log 3
e = 105

k > 105− b log 210

2
c = 103

tan−1(1/5) : 52k+1 · 2k > 10100 or (2k + 1) log(5) + log(2k) > 100 log(10)

k > d−1

2
+ 50

log 10

log 5
e = 72

k > 72− b log 144

2
c = 70

tan−1(1/239) : 2392k+1 · 2k > 10100 or (2k + 1) log(39) + log(2k) > 100 log(10)

k > d−1

2
+ 50

log 10

log 239
e = 21

k > 21− b log 42

2
c = 20

10
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Thus we need a Googol steps to compute π with the standard tangent
series up to 100 digits from tan−1(1), 164 + 103 = 267 steps with the
second formula and 70 + 20 = 90 steps with the third.

8. Calculate the following integrals

(a)

∫ 2π

0

e(eit) dt

(b)

∫
|z|=1

sin(z2)

(sin z)2
dz

(c)

∫
|z|=1

sin
(
e1/z
)
dz

(d)

∫ ∞
−∞

1

x2 − 2x+ 2
dx

Reason: Function Theory.

Solution:

(a) Consider the closed path γ : [0, 2π] −→ C , γ(t) = eit such that∫ 2π

0

e(eit) dt =

∫ 2π

0

e(eit)

ieit
ieit dt =

1

i

∫
γ

ez

z
dz =

2πi

i
e0 = 2π

by Cauchy’s integral formula.

(b) Consider the entire functions f(z) = sin(z2) and g(z) = (sin z)2

where the zeros of g(z) are all πZ. Then f/g is holomorphic in
{z ∈ C : |z| < π} − {0}. Both functions have a twofold zero at
z = 0, since f ′(0) = g′(0) = 0 and f ′′(0), g′′(0) 6= 0. Thus f/g has
a removable singularity at z = 0 and

∫
|z|=1

(f(z)/g(z))dz = 0.

(c) (Residue Theorem)∫
|z|=1

sin
(
e1/z
)
dz = 2πi Res(z = 0) sin

(
e1/z
)

We develop sin
(
e1/z
)

into a Laurent series at z = 0 to calculate the
residue. The function w 7−→ sin (ew) is holomorphic everywhere
on C and can be developed into a power series with infinite ra-
dius of convergence, say sin (ew) =

∑∞
k=0 akw

k. Thus sin
(
e1/z
)

=∑∞
k=0 akz

−k and Res(z = 0) sin
(
e1/z
)

= a1 = sin (ew)′
∣∣
w=0

=
cos(1), all in all ∫

|z|=1

sin
(
e1/z
)
dz = 2πi cos(1).

11
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(Cauchy’s integral formula)

∫
|z|=1

sin
(
e1/z
)
dz =

∫ π

−π
sin
(
e(e−is)

)
ieis ds =

∫ π

−π

sin
(
e(eit)

)
e2it

ieit dt

=

∫
|w|=1

sin(ew)

w2
dw = 2πi (sin(ew))′

∣∣
w=0

= 2πi cos(1)

(d) Let f(z) =
1

z2 − 2z + 2
where the denominator z2 − 2z + 2 =

(z− 1)2 + 1 = (z− (1 + i))(z− (1− i)) has zeros zj = 1± i, hence
f is holomorphic on C− {z1, z2} with first order poles zj.

Let r > 1 and γr : [0, π] −→ C given as γr(t) = 1 + reit. Then we
get from the residue theorem∫ 1+r

1−r
f(x) dx +

∫
γr

f(z) dz = 2πi Res(z = 1 + i)f(z).

As the pole z = 1 + i is of first order, we have

Res(z = 1+i)f(z) = lim
z→1+i

(z−1−i)f(z) = lim
z→1+i

1

z − (1− i)
=

1

2i

Furthermore∫
γr

f(z) dz =

∫ π

0

f(1 + reit)rieit dt =

∫ π

0

rieit

(1 + reit − 1)2 + 1
dt

so∣∣∣∣∫
γr

f(z) dz

∣∣∣∣ ≤ ∫ π

0

r

|r2e2it + 1|
dt ≤

∫ π

0

r

r2 − 1
dt =

πr

r2 − 1

r→∞−→ 0

f is a rational real function which hasn’t any real poles. The
degree of the denominator polynomial is two less than that of the
numerator, so the integral we are looking for exists as improper
Riemannian integral, i.e.∫ ∞
−∞

1

x2 − 2x+ 2
dx = lim

r→∞

∫ 1+r

1−r
f(x) dx

= 2πiRes(z = 1 + i)f(z)− lim
r→∞

∫
γr

f(z) dz

= π

12
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9. Suppose someone gives you a coin and claims that this coin is biased;
that it lands on heads only 48% of the time with an error margin of
2%. You decide to test the coin for yourself. If you want to be 95%
confident that this coin is indeed biased, how many times must you flip
the coin? Compare the estimations by the weak law of large numbers
and by the central limit theorem!

Reason: Coin Flips.

Solution: Let X be the random variable such that X = 1 if the
coin lands on heads and X = 0 for tails. Thus µ = 0.48 = p and
σ2 = p(1 − p) = 0.48 · 0.52 = 0.2496. To test the coin flip we flip it n
times and allow for a 2% error of precision, i.e. ε = 0.02. This means we
are testing the probability of the coin landing on heads being between
(0.46, 0.50).

(a) (WLLN) By the law of large numbers, we want n such that

P
(∣∣X̄ − 0.48

∣∣ > 0.02
)
≤ 0.2496

n(0.02)2

So for a 95% confidence interval we need

0.2496

n(0.02)2
= 0.05⇐⇒ n = 12, 480

(b) (CLT)

P

(
Sn
n

; 0.50

)
= P

(
Sn − 0.48n

n
< 0.02

)

= P

 Sn − 0.48n
√
n · 0.2496 <

0.02
√
n√

0.2496


≥ P

(
Sn − 0.48n√
n · 0.2496

≤ 0.04
√
n

)
≈ Φ(0.04

√
n) ≥ 0.95

which means 0.04
√
n = 1.645, i.e. n = 1, 692.

As we can see, the weak law of large numbers is not as powerful or
accurate as the central limit theorem. However, it can still be used to
a certain degree of accuracy.

13
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10. A hat-check boy at a congress held at Hilbert’s hotel completely loses
track of which of hats belong to which owners, and hands them back
at random to their owners as the latter leave. What is the probability
P that nobody receives their own hat back?

Reason: Combinatorics.

Solution: Let Dn denote the number of derangements on a finite
ordered set S of cardinality n. If sm is the m-th element of S. If
Am := {σ ∈ Sym(S) |σ(sm) = sm}, then the number W of permu-
tations, with at least one fixed element is

W =

∣∣∣∣∣
n⋃

m=1

Am

∣∣∣∣∣
By the inclusion-exclusion-principle we get

W =
n∑

m1=1

|Am1| −
∑

1≤m1<m2≤n

|Am1 ∩ Am2|

+
∑

1≤m1<m2<m3≤n

|Am1 ∩ Am2 ∩ Am3 | ∓ . . .

Each value Am1∩ . . .∩Amk
represents the set of permutations which fix

p values m1, . . . ,mk. Note that the number of permutations which fix
k values only depends on k, not on the particular values of m. There
are thus

(
n
k

)
terms in each summation

W =
n∑
k=1

(−1)k−1

(
n

k

)
|A1 ∩ . . . ∩ Ak|

|A1 ∩ . . . ∩ Ak| is the number of permutations fixing k elements in
position. This is equal to the number of permutations which rearrange
the remaining n− k elements, which is (n− k)!, i.e.

W =
n∑
k=1

(−1)k−1

(
n

k

)
(n− k)! = n!

n∑
k=1

(−1)k−1

k!

So finally we have

Dn = | Sym(S)| −W = n!
n∑
k=0

(−1)k

k!

and from that

P = lim
n→∞

Dn

n!
= lim

n→∞

n∑
k=0

(−1)k

k!
=
∞∑
k=0

(−1)k

k!
= e−1 =

1

e
≈ 36.8%

14
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11. (HS-1) Prove that

1

1 + x+
1

y

+
1

1 + y +
1

z

+
1

1 + z +
1

x

≤ 1

for all positive real numbers x, y, z

Reason: Inequality.

Solution: 0 ≤ (xyz−1)2 = x2y2z2−2xyz+1 and thus 2 ≤ xyz+
1

xyz
.

Therefore

6 + 2x+ 2y + 2z +
2

x
+

2

y
+

2

z
+ xy + yz + zx

+
1

xy
+

1

yz
+

1

zx
+
y

x
+
z

y
+
x

z

≤ xyz +
1

xyz
+ 4 + 2x+ 2y + 2z +

2

x
+

2

y
+

2

z
+ xy + yz + zx

+
1

xy
+

1

yz
+

1

zx
+
y

x
+
z

y
+
x

z

⇐⇒(
1 + x+

1

y

)
·
(

1 + y +
1

z

)
+

(
1 + y +

1

z

)
·
(

1 + z +
1

x

)
+

(
1 + z +

1

x

)
·
(

1 + x+
1

y

)
≤
(

1 + x+
1

y

)
·
(

1 + y +
1

z

)
·
(

1 + z +
1

x

)
12. (HS-2) Which is the smallest natural number greater than one such

that the following statement holds:
In any set of n natural numbers are at least two numbers, whose sum
or difference is dividable by seven.

Reason: Pigeon Hole Principle.

Solution: We can exclude n = 2 by {1, 2} and n = 3 by {1, 2, 3}.
We also exclude n = 4 by {4, 5, 6, 7} which has sums {9, 10, 11, 12, 13}
and differences {3, 2, 1}. We will now show that n = 5 has the required
property. If a set of five natural numbers contains two numbers with
the same remainder by division by seven, them their difference is divid-
able by seven. Hence we may assume that all remainders are pairwise

15
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different: five out of {0, 1, 2, 3, 4, 5, 6}. Hence there are at most two re-
mainders in R = {1, 2, 3, 4, 5, 6} which do not occur. However, we have
three pairs (1, 6), (2, 5), (3, 4) whose sum is dividable by seven. Since
we can exclude at most two of them, the statement follows.

13. (HS-3) Determine[
1√

1 +
√

2
+

1√
3 +
√

4
+

1√
5 +
√

6
+ . . .+

1√
n2 − 4 +

√
n2 − 3

+
1√

n2 − 2 +
√
n2 − 1

]
for any odd natural number n ≥ 3 where [n] = bnc is the greatest
integer smaller or equal n.

Reason: Arithmetics.

Solution: Set

a =
1√

1 +
√

2
+

1√
3 +
√

4
+

1√
5 +
√

6
+. . .+

1√
n2 − 4 +

√
n2 − 3

+
1√

n2 − 2 +
√
n2 − 1

and

b =
1√

2 +
√

3
+

1√
4 +
√

5
+

1√
6 +
√

7
+. . .+

1√
n2 − 3 +

√
n2 − 2

+
1

√
n2 − 1 +

√
n2

Note that
1√

k +
√
k + 1

>
1√

k + 1 +
√
k + 2

for any positive k, so a > b or

0 < a− b =
1√

1 +
√

2
−
(

1√
2 +
√

3
− 1√

3 +
√

4

)
−
(

1√
4 +
√

5
− 1√

5 +
√

6

)
− . . .

. . .−
(

1√
n2 − 3 +

√
n2 − 2

− 1√
n2 − 2 +

√
n2 − 1

)
− 1
√
n2 − 1 +

√
n2

<
1√

1 +
√

2
− 1
√
n2 − 1 +

√
n2

<
1√

1 +
√

2
< 1

On the other hand
1√

k +
√
k + 1

=
√
k + 1−

√
k so

a =
(√

2− 1
)

+
(√

4−
√

3
)

+ . . .+
(√

n2 − 1−
√
n2 − 2

)
b =

(√
3−
√

2
)

+
(√

5−
√

4
)

+ . . .+
(√

n2 −
√
n2 − 1

)
a+ b = n− 1

Thus n − 1 < 2a < n or n−1
2

< a < n
2
, and since n is odd we get

[a] = bac =
n− 1

2
.
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14. (HS-4) Given a point P inside an equilateral triangle 4ABC with area
1, show that for the lengths x, y, z of the perpendiculars of P onto the
sides of the triangle holds

x+ y + z = 4
√

3

Reason: Geometry.

Solution: The area of an equilateral triangle of side length a is F =

1 =
a2

4
·
√

3, i.e. a =
2
4
√

3
. The straights AP,BP ,CP divide the triangle

into three smaller triangles with areas
az

2
,
ax

2
,
az

2
. Thus

1 =
az

2
+
ax

2
+
az

2
=
x+ y + z

4
√

3

15. (HS-5) Prove: If for the edges of a tetrahedron ABCD holds

AD = BD = CD = 1 and AB = BC = CA ,

then its surface is smaller than
3
√

3

2
.

Reason: Geometry.

Solution:

Set a = AB = BC = CA and AH the height of the triangle 4ABC

17
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on BC with length h =
a

2
·
√

3. Since the intersection M of all heights

in 4ABC is the barycenter which divides the height 2 : 1, we have

AM =
2

3
h =

a

3
·
√

3 and an area F1 =
a

2
· h =

a2

4
·
√

3.

Each of the triangles 4ABD,4BCD,4CAD has isosceles of length 1
and a base line of length a. The corresponding height is also the median,

so Pythagoras yields a height

√
1− a2

4
, hence each of these triangles

has an area F2 =
a

2

√
1− a2

4
. The surface area of the tetrahedron is

thus

F = F1 + 3F2 =
a2

4
·
√

3 +
3a

2

√
1− a2

4

The points D and M have both the same distances to A,B,C, which
means that DM is perpendicular to the plane 4ABC. This makes
4AMD a right triangle at M and so

0 < AM < AD ⇐⇒ 0 <
a

3
·
√

3 < 1 ⇐⇒ 0 < a <
√

3

Hence

0 < (3− a2)2 =⇒ 0 < 36− 24a2 + 4a4

=⇒ −3a4 + 12a2 < 36− 12a+ a4 = (6− a2)2

=⇒ 3a2(4− a2) < (6− a2)2

As all factors are positive (0 < a2 < 3), we may apply the root function
and get

a ·
√

3 ·
√

4− a2 = a · 2 ·
√

3 ·
√

1− a2

4
< 6− a2

=⇒

a2

4
·
√

3 + a · 3

2
·
√

1− a2

4
= F <

3

2
·
√

3

18
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2 November 2020

1. Let u(x, t) satisfy the one dimensional diffusion equation ut = Duxx in
a space-time rectangle R = {0 ≤ x ≤ l, 0 ≤ t ≤ T}, then the maximum
value of u(x, t) is assumed either on the initial line (t = 0) or on the
boundary lines (x = 0 or x = l). D > 0.

Reason: (Weak) maximum principle for the diffusion equation.

Solution: From Analysis we know: For a maximum in the inner of
the definition area, the first derivatives have to vanish, and the second
derivatives have to satisfy certain inequalities, e.g. uxx ≤ 0. If we knew
(which is not the case), that uxx 6= 0 at the maximum, then we have
uxx < 0 and simultaneously ut = 0, i.e. ut 6= Duxx, a contradiction.
But uxx = 0 is possible, so we need some more effort.

Let M be the maximum of u(x, t) on the three boundaries t = 0, x =
0 and t = l. Note that a continuous function which is defined on a
bounded, closed set, is bounded and assumes its maximum on this set,
so M exists. We have to show that u(x, t) ≤M on the whole rectangle
R. Let ε > 0 and v(x, t) := u(x, t) + εx2. (Next goal is to show that
v(x, t) ≤M + εl2 in R.) We have for t = 0, x = 0 and x = l

v(x, t) ≤M + εl2

Furthermore

vt −Dvxx = ut −D(u+ εx2)xx = ut −Duxx − 2εD = −2εD < 0

which corresponds to a diffusion inequality. Assume that v assumes its
maximum at an inner point (x0, t0), i.e. 0 < x0 < l and 0 < t0 < T.
Then vt = 0 and vxx ≤ 0 at (x0, t0), but this contradicts the inequality
above. Hence there is no maximum possible for v(x, t) in the interior
of R.

Next assume that v(x, t) has a maximum on the upper boundary of
R (t0 = T, 0 < x < l). Again, vxx(x0, t0) ≤ 0. As v(x0, t0) > v(x0, t0−δ),
we get

vt(x0, t0) = lim
δ↓0

v(x0, t0)− v(x0, t0 − δ)
δ

≥ 0

and thus again a contradiction to the above inequality. But somewhere
in R, there must be a maximum of v(x, t). Thus, it has to be on the
basic line or on the boundaries of R, and v(x, t) ≤M + εl2 is valid for
the whole R. Thus

u(x, t) = v(x, t)− εx2 ≤M + ε(l2 − x2).
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Since this is true for all ε > 0, we get for all (x, t) ∈ R

u(x, t) ≤M.

2. Show that M = {(an) ∈ `2(C) | ∀n : |an| ≤ n−1} ⊆ `2(C) is bounded
and compact.

Reason: Compactness in `2(C).

Solution: Let (x(n))n ⊆M be a sequence, then |x(n)
k | ≤ k−1 and (x

(n)
k )n

is a bounded sequence of complex numbers for any k ∈ N. By Cantor’s
diagonalisation method we can choose a subsequence (x(nj)) ⊆ (x(n))
such that for all k ∈ N

lim
j→∞

x
(nj)
k = xk

for some xk ∈ C. Since |x(nj)
k | ≤ k−1, we also have |xk| ≤ k−1 for all

k ∈ N. This means x := (xk)k ∈M and

‖x(nj) − x‖2
2 ≤

s∑
k=1

|x(nj)
k − xk|2︸ ︷︷ ︸

j→∞−→ 0 for all s∈N

+
∞∑

k=s+1

(
2

k

)2

︸ ︷︷ ︸
s→∞−→ 0

Thus ‖x(nj) − x‖2 −→ 0 for j → ∞ and M is sequence compact and
therefore bounded.

3. Show by two different methods that the normed space C := (C1([0, 1]), ‖.‖∞)
is not a Banach space.

Reason: Banach Space.

Solution:

(a) Solution 1. [ ∣∣∣∣x− 1

2

∣∣∣∣+

√
1

n

]2

≥
(
x− 1

2

)2

+
1

n
≥ 0

=⇒((
x− 1

2

)2

+
1

n

)1/2

−
∣∣∣∣x− 1

2

∣∣∣∣ ≤
√

1

n
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Therefore the differentiable functions fn(x) :=

((
x− 1

2

)2

+
1

n

)1/2

∈

C1([0, 1]) converge to the function f(x) =

∣∣∣∣x− 1

2

∣∣∣∣ which is not dif-

ferentiable at x = 1/2 ∈ [0, 1]. Hence C is not complete, i.e. no
Banach space.

(b) Solution 2.

Let’s consider the differential operator D : (C1([0, 1]), ‖.‖∞) −→
(C([0, 1]), ‖.‖∞) and a sequence (fn)

n→∞−→ f in C1([0, 1]) with
f ′n

n→∞−→ g ∈ C([0, 1]). Since we have a uniform convergence∫ x

0

g(s) ds =

∫ x

0

lim
n→∞

f ′n(s) ds = lim
n→∞

∫ x

0

f ′n(s) ds

= lim
n→∞

(fn(x)− f(0)) = f(x)− f(0)

Thus Df = f ′ = g for all x ∈ (0, 1], and because g is continuous,
Df(0) = f ′(0) = g(0), i.e. Df = g. We have therefore shown that
the graph

Γ(D) = {(f,Df) | f ∈ (C1([0, 1]), ‖.‖∞)}

is closed, which is equivalent to the boundedness of D. However,
the differential operator isn’t bounded. This contradiction implies
that (C1([0, 1]), ‖.‖∞) cannot be a Banach space.

4. Let

A :=


5 0 1 6
3 3 5 2
0 0 3 0
6 0 3 0

 ∈M4(Z7)

(a) Determine the characteristic polynomial χA(x) of A.

(b) Determine bases of the eigenspaces.

(c) Determine a matrix S ∈ GL4(Z7) such that S−1AS is a diagonal
matrix. Which one?

(d) Calculate A31.

Reason: Finite Fields.

Solution:
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(a)

det(A− xI) = det


5− x 0 1 6

3 3− x 5 2
0 0 3− x 0
6 0 3 −x



= (3− x) det

5− x 1 6
0 3− x 0
6 3 −x


= (3− x)2 det

[
5− x 6

6 −x

]
= (3− x)2((x− 5)x− 1) = (3− x)2(x2 − 5x− 1)

= (3− x)3(2− x)

(b) For the eigenvalue 3 we have to solve the linear equation system

A− 3I =


2 0 1 6 0
3 0 5 2 0
0 0 0 0 0
6 0 3 4 0

 =⇒


1 0 4 3 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0


and we see immediately the three eigenvectors (0, 1, 0, 0)τ , (1, 0, 5, 0)τ

and (1, 0, 0, 2)τ as basis of EA(3).

For the eigenvalue 2 we have to solve the linear equation system

A− 2I =


3 0 1 6 0
3 1 5 2 0
0 0 1 0 0
6 0 3 5 0

 =⇒


1 0 0 2 0
0 1 0 3 0
0 0 1 0 0
0 0 0 0 0


which is solved by the basis eigenvector (2, 3, 0, 6)τ of EA(2). Note
that A is diagonalizable since the dimensions of the eigenspaces
coincide with the algebraic multiplicities of the eigenvalues.

(c) The eigenvectors provide us the transformation matrix

S =


0 1 1 2
1 0 0 3
0 5 0 0
0 0 2 6


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S−1AS =


3 1 −3 · 5−1 −3 · 2−1

0 0 5−1 0
3 0 −3 · 5−1 −1
−1 0 5−1 2−1




5 0 1 6
3 3 5 2
0 0 3 0
6 0 3 0




0 1 1 2
1 0 0 3
0 5 0 0
0 0 2 6



=


3 1 5 2
0 0 3 0
3 0 5 6
6 0 3 4




0 3 3 4
3 0 0 6
0 1 0 0
0 0 6 5

 =


3 0 0 0
0 3 0 0
0 0 3 0
0 0 0 2

 =: D

(d)

A31 = (SDS−1)31 = SD31S−1 = S diag(331, 331, 331, 231)S−1

= S diag(3 · (36)5, 3 · (36)5, 3 · (36)5, 2 · (26)5)S−1

= S diag(3 · 15, 3 · 15, 3 · 15, 2 · 15)S−1 = SDS−1 = A

5. Let f(x, y) = 34x2 + 24xy + 41y2 + 20x + 110y + 50. Determine the
Euclidean normal form of the conic section

Qf = {(x, y)τ ∈ R2 | f(x, y) = 0}.

What are its foci and vertices in the normal form?

Reason: Quadratic Forms.

Solution: Two compute the normal form we consider the two matrices

A =

[
34 12
12 41

]
, M =

 34 24/2 20/2
24/2 41 110/2
20/2 110/2 50

 =

34 12 10
12 41 55
10 55 50


and compute the eigenvalues of A.

χA(x) = (34− x)(41− x)− 144 = x2 − 75x+ 1250 = (x− 50)(x− 25)

To receive the eigenvector basis we solve[
34− 25 12 0

12 41− 25 0

]
=

[
9 12 0
12 16 0

]
=⇒

[
3 4 0
0 0 0

]
and [

−16 12 0
12 −9 0

]
=⇒

[
−4 3 0
0 0 0

]

23



https://www.physicsforums.com/ 07/20-12/20

and get EA(25) = R · (−4, 3)τ , EA(50) = R · (3, 4)τ . Now we norm the
basis and define the orthonormal matrix

T :=
1

5
·
[
−4 3
3 4

]
∈ O2(R).

Now we have

T τAT =
1

25

[
−4 3
3 4

] [
34 12
12 41

] [
−4 3
3 4

]
=

[
−4 3
6 8

] [
−4 3
3 4

]
=

[
25 0
0 50

]
= diag(25, 50)

We set D :=
1

5

−4 3 0
3 4 0
0 0 5

 ∈ O3(R) and finally get

DτMD =
1

25

−4 3 0
3 4 0
0 0 5

34 12 10
12 41 55
10 55 50

−4 3 0
3 4 0
0 0 5



=

−4 3 5
6 8 10
2 11 10

−4 3 0
3 4 0
0 0 5

 =

25 0 25
0 50 50
25 50 50



=
1

25

1 0 1
0 2 2
1 2 2

 =:
1

25
M ′

We now need a vector (x0, y0)τ ∈ R2 such that

[
1 0
0 2

]
·
[
x0

y0

]
+

[
1
2

]
=

[
0
0

]
is as simple as possible, so we choose x0 = y0 = −1. Next we define

D′ =

1 0 −1
0 1 −1
0 0 1

 and compute

M ′′ = D′ τM ′D′ =

 1 0 0
0 1 0
−1 −1 1

1 0 1
0 2 2
1 2 2

1 0 −1
0 1 −1
0 0 1



=

1 0 1
0 2 2
0 0 −1

1 0 −1
0 1 −1
0 0 1

 =

1 0 0
0 2 0
0 0 −1


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From that we get that the normal form of Qf is described by the equa-
tion x2 + 2y2 − 1 = 0 or

x2 +
y2(
1√
2

)2 = 1

which is an ellipse with a = 1 and b =
1√
2
. Hence the foci are

(1/
√

2, 0), (−1/
√

2, 0), and the vertices are (0,±
√
a2 − b2) = (0,±1/

√
2),

and (1, 0), (−1, 0).

6. Let u(x, t) be a solution of the one dimensional diffusion equation ut =
Duxx. Assume that

C :=

∫ ∞
−∞

u(x, t) dx

is independent of t, which corresponds to a constant population, and u
is small at infinity, which means that

lim
x→±∞

xu(x, t) = 0 = lim
x→±∞

x2 ∂

∂x
u(x, t)

If

σ2(t) =
1

C

∫ +∞

−∞
x2u(x, t) dx

then
σ2(t) = 2Dt + σ2(0)

In the special case of an initial population (i.e. for t = 0) which is
concentrated near x = 0 (like a δ-function) then we get σ2(t) ≈ 2Dt.

Reason: Population Distribution.

Solution: Using the fact that u is a solution of the diffusion equation
and integrating by parts twice yields:

C

D

dσ2

dt
=

1

D

∂

∂t

∫ ∞
−∞

x2u dx =
1

D

∫ ∞
−∞

x2∂u

∂t
dx =

∫ ∞
−∞

x2∂
2u

∂x2
dx

=

[
x2∂u

∂x

]∞
−∞︸ ︷︷ ︸

=0

−
∫ ∞
−∞

2x
∂u

∂x
dx = −[2xu]∞−∞︸ ︷︷ ︸

=0

+

∫ ∞
−∞

2u dx

= 2

∫ ∞
−∞

u(x, t) dx = 2C
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thus
dσ2

dt
= 2D =⇒ σ2(t) = 2Dt+ σ2(0)

Last, we consider the special case that the particles start in a small
interval around x = 0, e.g. such that u(x, 0) = 0 for all |x| > ε. Then
we get automatically∫ ∞

−∞
x2u(x, 0) dx =

∫ ε

−ε
x2u(x, 0) dx ≤ ε2

∫ ε

−ε
u(x, 0) dx = ε2C ,

i.e. σ2(0) = ε2 ≈ 0.

7. Let G be a group of order 351. Show that G has a non trivial normal
subgroup.

Reason: Sylow Subgroups.

Solution: 351 = 13 · 33. By the third Sylow theorem we get that the
number n13 of 13−Sylow subgroups P is congruent one modulo 13 and
a divisor of [G : P ] = 351 : 13 = 27. Thus n13 ∈ {1, 27}. In case
n13 = 1 we are done, since this is equivalent to P E G being normal
by the second Sylow theorem. Let’s consider the case n13 = 27. Each
of the 27 13−Sylow subgroups is of prime order, so they intersect each
other only trivially. This means we have 27 · 12 elements of order 13,
and the remaining 27 elements generate the 3−Sylow subgroups. Each
of these subgroups Q has the order 27 by the first Sylow theorem, i.e.
the number n3 of 3−Sylow subgroups is n3 = 1 which again by the
second Sylow theorem means, that Q E G is a normal subgroup.

In any case, their is a normal subgroup in G.

8. Show that the diffusional Lotka-Volterra system (a > 0)

ut = u(1− v) +D∆u (1)

vt = av(u− 1) +D∆v (2)

with equal diffusion coefficient D > 0 and homogeneous Neumann
boundary conditions

∂u

∂n
(x, t) = 0 =

∂v

∂n
(x, t)

for x ∈ ∂Ω , Ω ⊆ Rn of finite volume and n outward normal, ∆ the
Laplace operator, tends to a spatially uniform state for t→∞, i.e.

lim
t→∞
∇u = lim

t→∞
∇v = 0
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Hint: Consider the energy of the system s = a(u− log u) + (v− log v).

Reason: Murray, 1975, Lotka-Volterra.

Solution: Let the initial conditions be u(x, 0) = u0(x) and v(x, 0) =
v0(x) for x ∈ Ω. We define s(x, t) as

s = a(u− log u) + (v − log v)

i.e. for D = 0 it would satisfy

st = a
(
ut −

ut
u

)
+
(
vt −

vt
v

)
= aut(1− u−1) + vt(1− v−1)

= au(1− v)(1− u−1) + av(u− 1)(1− v−1)

= a(1− v)(u− 1) + a(u− 1)(v − 1) = 0

so the question is: How does the corresponding differential equation for
s look like for D > 0?

In this case we get by differentiation

st = a(1− u−1)(u(1− v) +D∆u) + (1− v−1)(av(u− 1) +D∆v)

= aD(1− u−1)∆u+D(1− v−1)∆v

= aD

(
∆u− ∆u

u

)
+D

(
∆v − ∆v

v

)
∆s = a(∆u−∆ log u) + (∆v −∆ log v)

= a

(
∆u− ∆u

u
+
|∇u|2

u2

)
+

(
∆v − ∆v

v
+
|∇v|2

v2

)
Thus

st −D∆s = −D
(
a
|∇u|2

u2
+
|∇v|2

v2

)
≤ 0

This can be interpreted in such a way that the energy is dissipated by
the diffusion terms. The boundary conditions for s are

∂s

∂n
(x, t) = 0 for x ∈ ∂Ω ,

the initial conditions s0(x) := s(x, 0) = a(u0 − log u0) + (v0 − log v0).

Via integration over Ω we can define the total amount of energy in the
system at time t by

S(t) =

∫
Ω

s(x, t) dx
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Using the Neumann boundary condition and Green formula yields

Ṡ(t) =
dS

dt
=

∫
Ω

st dx =

∫
Ω

D∆s−D
(
a
|∇u|2

u2
+
|∇v|2

v2

)
dx

= D

∫
∂ Ω

∂S

∂n
dS︸ ︷︷ ︸

=0

−D
∫

Ω

a
|∇u|2

u2
+
|∇v|2

v2
dx ≤ 0

Obviously, S is monotone non-increasing; there are two possibilities:
it tends to a finite limit or it tends to −∞ for t → ∞. By definition,
s(x, t) ≥ a+ 1, so

S(t) =

∫
Ω

s(x, t) dx ≥ (a+ 1)|Ω| ,

so S indeed tends to a finite limit, which requires

lim
t→∞

Ṡ(t) = −D lim
t→∞

∫
Ω

a
|∇u|2

u2
+
|∇v|2

v2
dx = 0

The only possibility to satisfy this, is that ∇u,∇v both tend to 0 for
t→∞, i.e. the system tends to a spatially uniform state.

9. (a) Let R be a Notherian local commutative ring with 1 and maximal
ideal M. If A E R is an ideal in R such that A/MA ∼=R {0}, then
A = (0).

(b) Let R be an integral domain, and dimRP = 0 for all P ∈ Spec(R),
then R is a field. The dimension is the Krull dimension.

Reason: Ring Theory.

Solution:

(a) The Jacobson radical of a local ring is its maximal ideal. A as ideal
of a Noetherian ring is a finitely generated submodule. Thus we
can conclude by Nakayama’s Lemma that MA 6= A or A = {0}.
We excluded the first possibility, so A = {0}.

(b) The Krull dimension of an integral domain is defined by

dimR = max{n ∈ N |P0 ( . . . ( Pn , Pj E R prime ideal }
(∗)
= sup{dimRM |M E R maximal ideal }
= 0

per given condition. So every prime ideal is maximal. Particularly
{0} ( R is a prime, hence maximal, and R = R/{0} a field.
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(*) locality of the dimension:

https://www.mathematik.uni-kl.de

/~gathmann/class/commalg-2013/commalg-2013-c11.pdf

10. Let α ∈ C a root of the polynomial f(x) = x3 − 3x − 1 ∈ Q[x].
Show that f(x) is irreducible, and that there is an automorphism σ ∈
Aut(Q(α)/Q) with σ(α) = 2− α2. If α is chosen closest to zero, what
is +
√

12− 3α2 in the splitting field of f(x)? This means in terms of a
polynomial in α, not numerical.

Reason: Field Extension.

Solution: Assume we have a rational root of f(x). Then we get p3 −
3pq2 = q3 with coprime integers p, q ∈ Z, which cannot be both odd or
both even. p even and q odd is also impossible, hence p = 2k + 1 and
q = 2l. But now we get (2k + 1)3 ≡ 0 mod 4 which is not possible.
This shows that f(x) is irreducible over Q.

f(2− α2) = (2− α2)3 − 3(2− α2)− 1

= 8− 12α2 + 6α4 − α6 − 6 + 3α2 − 1

= −(α6 − 6α4 − 2α3 + 9α2 + 1 + 6α)− 2α3 + 6α + 2

= −(α3 − 3α− 1)2 − 2(α3 − 3α− 1)

= 0

Assume α = 2−α2. Then 2α = −1±
√

3 and f(α) 6= 0. Hence we have
found two distinct roots α, 2−α2 of f(x), i.e. Q(a) is the decomposition
field of f(x), because Q(α)[x] contains two of three and therewith all
linear factors of f(x). Thus Q(α) ) Q is a Galois extension and the
automorphism group operates transitive on the roots of f(x), which
proves the existence of σ.

f(x) has local extrema at x = ±1 with f(−1) = 1 and f(1) = −3. This
implies that all roots are real. With f(−1/3) = −1/27 ≈ 0 we have a
root near x = −1/3. The other roots must be greater than 1 and less
than −1. Long division by x− α yields

x3−3x−1 = (x−α)·
(
x+

1

2

(
α +
√

12− 3α2
))
·
(
x+

1

2

(
α−
√

12− 3α2
))

Since we know that 1/3 ≈ α and f(2− α2) = 0, we have

2− α2 = −1

2

(
α±
√

12− 3α2
)
⇐⇒ ±

√
12− 3α2 = 2α2 − 4− α
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Since the right hand side is negative for our choice of α, we have

+
√

12− 3α2 = −2α2 + α + 4 .

11. (HS-1) Determine all a ∈ R such that

x(x+ 1)(x+ 2)(x+ 3) = a

has no real solution, a unique real solution, exactly two, three, or four
real solutions, more than four real solutions.

Reason: Equation Solving.

Solution: (0, 2, 4, 3, 2). If we set z := x+ (0 + 1 + 2 + 3)/4 = x+ 3/2
then the equation reads

a = x(x+ 1)(x+ 2)(x+ 3) =

(
z − 3

2

)(
x− 1

2

)(
z +

1

2

)(
z +

3

2

)
=

(
z2 − 9

4

)(
z2 − 1

4

)
= z4 − 5

2
z2 +

9

16

⇐⇒

z2 =
5

4
±
√

25

16
− 9

16
+ a =

5

4
±
√

1 + a

(a) a = 9/16 =⇒ z ∈ {0,−
√

5/2,+
√

5/2} =⇒ x ∈

{
−3

2
,−3±

√
10

2

}
(b) a < −1 doesn’t allow any real solution.

(c) a = −1 =⇒ x ∈

{
−3±

√
5

2

}

(d) −1 < a < 9/16 =⇒ x = −3

2
±
√

5

4
±
√

1 + a

(e) a > 9/16 =⇒ z2 =
5

4
+
√

1 + a =⇒ x = −3

2
±
√

5

4
+
√

1 + a

12. (HS-2) An international conference has 30 scientists who speak English,
Russian or Spanish. The number of people who speak exactly two
languages is more than twice as big, but less than thrice as much as
the number of people who speak only one language, which are as many
as speak all three languages. Those who speak only English are more
than those who speak only Russian, but less than those who speak
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only Spanish. The number of those who speak only English is less
than thrice the number of people who speak only Russian. How many
people do speak only English, Russian, Spanish, and how many all
three languages? (The conference language is French.)

Reason: Combinatorics.

Solution: Let’s denote the number of people who speak only Russian
by R, only English by E, only Spanish by S, and people who speak
one language by U , two languages by T and all three languages by A.
Thus we are given the conditions:

(a) 3U > T > 2U

(b) U = A

(c) S > E > R

(d) 3R > E

We are not interested in T , so we eliminate it by the condition 30 =
U + T + A = T + 2U and get 5U > 30 > 4U which is only possible
for U = E + R + S = A = 7. Since S > E > R we must have
S = 4 > E = 2 > R = 1 which can be seen by checking R = 1 first.

13. (HS-3) Calculate (manually!)

z =
655333 + 655343 + 655353 + 655363 + 655373 + 655383 + 655393

32765 · 32766 + 32767 · 32768 + 32768 · 32769 + 32770 · 32771

Reason: Calculation.

Solution: Set n := 215 = 32768

z =
(2n− 3)3 + (2n− 2)3 + (2n− 1)3 + (2n)3 + (2n+ 1)3 + (2n+ 2)3 + (2n+ 3)3

(n− 3)(n− 2) + (n− 1)n+ n(n+ 1) + (n+ 2)(n+ 3)

=
7 · (2n)3 + 3 · (2n)2 · (−3− 2− 1 + 1 + 2 + 3)

4n2 + n · (−3− 2− 1 + 1 + 2 + 3) + 6 + 6

+
3 · (2n) · ((−3)2 + (−2)2 + (−1)2 + 12 + 22 + 32)− 33 − 23 − 13 + 13 + 23 + 33

4n2 + n · (−3− 2− 1 + 1 + 2 + 3) + 6 + 6

=
56n3 + 168n

4n2 + 12
=

4 · 14 · n · (n2 + 3)

4 · (n2 + 3)
= 14n = 7 · 216 = 458752

14. (HS-4) Show that (n ∈ N0)

fn(x) = 1 + x+
x2

2!
+ . . .+

xn

n!
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has at most one real zero.

Reason: Exponential Function.

Solution: We show by induction the stronger statement: If n is even,
then fn(x) > 0; and if n is odd, then fn(x) has exactly one zero. This is
true for n = 0, 1 so we may assume n ≥ 2. Note that f ′n(x) = fn−1(x).

If n is odd, then by induction hypothesis f ′n(x) = fn−1(x) > 0 and
fn(x) is strictly monotone increasing. But limx→−∞ fn(x) = −∞ and
limx→+∞ fn(x) = +∞, so there is exactly one zero for fn(x).

If n is even, then by induction hypothesis f ′n(x0) = fn−1(x0) = 0 for
exactly one point x0. Now f ′′n(x0) = fn−2(x0) > 0, hence x0 is a global

minimum. As fn(x0) = fn−1(x0) +
xn0
n!

=
xn0
n!

> 0 for even n, we have

shown that fn(x) > 0 everywhere.

15. (HS-5) Find all λ ∈ R such that

sin4 x− cos4 x = λ(tan4 x− cot4 x)

has no, exactly one, exactly two, more than two real solutions in
(

0,
π

2

)
Reason: Trigonometry.

Solution: The equation holds for all λ ∈ R in case x = π/4. Further-
more we have an invariance x←→ (π/2)− x on the interval given, i.e.

every solution in
(

0,
π

4

)
corresponds uniquely to a solution in

(π
4
,
π

2

)
.

This already excludes the possibilities of no solution and exactly two

solutions, plus we may assume x ∈
(

0,
π

4

)
.

Define L :
(

0,
π

4

)
−→ R by the quotient

L(x) =
sin4 x− cos4 x

tan4 x− cot4 x
=

sin4 x− cos4 x

sin4 x

cos4 x
− cos4 x

sin4 x

=
sin4 x cos4 x

sin4 x+ cos4 x

for sin4 x 6= cos4 x which is given on the interval
(

0,
π

4

)
. Now

L(x) =
sin4(2x)

16(1− 2 sin2 x cos2 x)
=

sin4(2x)

8(2− sin2(2x))

This shows that L(x) is strictly monotone increasing on
(

0,
π

4

)
and

assumes every value in

(
0,

1

8

)
exactly once.

32



https://www.physicsforums.com/ 07/20-12/20

We have exactly three solutions for any value λ ∈
(

0,
1

8

)
, and exactly

one solution for any value λ ∈ R−
(

0,
1

8

)
.
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3 October 2020

1. Let (an) ⊆ R be a sequence of real numbers such that an ≤ n−3 for all
n ∈ N. Given the family A of functions fn : [0, 1] −→ R defined by
fn(x) =

∑∞
k=n ak sin(kx) for n ∈ N, show that every sequence (gn) ⊆ A

contains a subsequence (gnk
) which converges uniformly on [0, 1].

Reason: Arzelà-Ascoli.

Solution:

|gn(x)| ≤
∞∑
k=n

∣∣∣∣sin(kx)

k3

∣∣∣∣ ≤ ∞∑
k=1

kx

k3
≤

∞∑
k=1

1

k2
=
π2

6
=: L <∞

i.e. ‖gn‖∞ ≤ L for all n ∈ N.

We show that (gn) is uniformly continuous. Let ε > 0 and δ = ε/L.
Then we have for all x, y ∈ [0, 1] with |x− y| < δ and all n ∈ N

|gn(x)−gn(y)| ≤
∞∑
k=n

∣∣∣∣sin(kx)− sin(ky)

k3

∣∣∣∣ ≤ ∞∑
k=1

|x− y|
k2

=
π2

6
|x−y| < ε

Since gn ∈ C([0, 1]) for all n ∈ N, we may apply the theorem of Arzelà-
Ascoli. Thus there is a subsequence (gnk

) ⊆ (gn) which converges
uniformly on [0, 1].

2. Let π : Rn −→ Tn be the canonical projection and f := π|[0,1]n its re-
striction on the closed unit cube. Show with the help of f : [0, 1]n −→
Tn, that a quotient map in general doesn’t have to be open.

Solution: The set U0 :=

]
−1

2
,
1

2

[n
⊆ Rn is open, so U := U0∩[0, 1]n =[

0,
1

2

[n
⊆ [0, 1]n is open in the subspace topology. However, f(U) ⊆ Tn

is not open, since π−1(f(U)) = π−1

([
0,

1

2

[n
+ Zn

)
=

[
0,

1

2

[n
⊆ Rn is

not open. Hence f isn’t open.

It remains to show that f : [0, 1]n −→ Tn is a quotient map, i.e that
a set U ⊆ Tn is open if and only if f−1(U) ⊆ [0, 1]n is open. Hence we
must show

f−1(U) ⊆ [0, 1]n open ⇐⇒ π−1(U) ⊆ Rn open

which is equivalent to

f−1(U) ⊆ [0, 1]n closed ⇐⇒ π−1(U) ⊆ Rn closed
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The implication that f−1(A) ⊆ [0, 1]n is closed for closed sets A ⊆ Tn
is the continuity of π and the definition of the subspace topology. So
let us conversely assume that f−1(A) ⊆ [0, 1]n is closed for some set
A ⊆ Tn. Then f−1(A) is compact, because [0, 1]n is compact. Since
continuous functions map compact sets on compact sets,

π(f−1(A) = f(f−1(A)) = A ⊆ Tn

is also compact. However, Tn is Hausdorff, so compact subsets are
closed. Hence A is closed what had to be shown.

3. Let D = { z ∈ C : |z| < 1 } be the complex open unit disk and let
0 < a < 1 be a real number. Suppose f : D −→ C is a holomorphic
function such that f(a) = 1 and f(−a) = −1.

(a) Prove that supz∈D{|f(z)|} ≥ 1

a
.

(b) Prove that if f has no root, then supz∈D{|f(z)|} ≥ exp

(
1− a2

4a
π

)
.

Reason: Holomorphic Function.

Solution:

(a) Consider g(z) =
f(z)− f(−z)

2z
for z 6= 0 and let g(0) = f ′(0).

Then g is a holomorphic function, too, with g(a) = 1/a. By trian-
gle inequality and the maximum principle we have for a < r < 1

sup
z∈D
|f(z)| ≥ max

|z|=r
|f(z)| ≥ r ·max

|z|=r

|f(z)|+ |f(−z)|
2r

≥ r ·max
|z|=r
|g(z)| = r · |g(a)| = r

a

from which the statement follows for r → 1− 0.

(b) Let M := supz∈D |f(z)|. Since f is not constant, |f | < M ev-
erywhere in D. And from f(a) = 1 we know, that M > 1. The
function f is nonzero on the simply connected set D, so it has a
logarithm; i.e. there is a holomorphic function g(z) : D −→ C
such that f(z) = exp(g(z)). W.l.o.g. we assume g(a) = 0. From
f(−a) = −1 we get g(−a) = kπ i with some odd integer k, and
from |f | < M we get <(g) < logM. Denote by H the half-plane
<(z) < logM . Then g : D −→ H. Next we define the linear
fractional transformations

ϕ : D −→ D, ϕ(z) =
z + a

1 + az
, ϕ−1(z) =

z − a
1− az
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and
ψ : H −→ D, ψ(z) =

z

2 logM − z
.

Now h := ψ ◦ g ◦ ϕ : D −→ D with h(0) = 0. Schwarz’s

lemma applied to h and the point ϕ−1(−a) =
−2a

1 + a2
gives us∣∣∣∣h( −2a

1 + a2

)∣∣∣∣ ≤ 2a

1 + a2
. Thus

2a

1 + a2
≥
∣∣h(ϕ−1(−a))

∣∣ = |ψ(g(−a))| =
∣∣∣∣ kπ i

2 logM − kπi

∣∣∣∣
=

1√(
2 logM

|k|π

)2

+ 1

So

logM ≥ |k|π
2

√(
1 + a2

2a

)2

− 1

=
|k|π

2
· 1− a2

2a
≥ 1− a2

4a
π.

Remark: The estimates in the problem are sharp. For example,

we have equality for f(z) =
z

a
in part (a), and in part (b) for

f(z) = −i exp

(
iz − a2

iz + 1
· π

2a

)
.

4. Let 0 < p ≤ a, b, c, d, e ≤ q and show that

(a+ b+ c+ d+ e)

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
≤ 25 + 6

(√
p

q
−
√
q

p

)2

.

This is a special case of a general inequality. Which is the general case
and how is it proven?

Reason: Inequality.

Solution:

f(a, b, c, d, e) := (a+ b+ c+ d+ e)

(
1

a
+

1

b
+

1

c
+

1

d
+

1

e

)
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is a convex function of each of the variables. Hence the maximum is
taken on one of the 32 vertices of the 5-cube given by p ≤ a, b, c, d, e ≤ q.
If there are n p′s and 5−n q′s, then we have to maximize the quadratic
function

f(n) = (np+ (5− n)q)

(
n

p
+

5− n
q

)
= 25 + n(5− n)

(√
p

q
−
√
q

p

)2

.

So f(n) takes its maximum at n = 5/2, i.e. n ∈ {2, 3} where it has the

value 25 + 6

(√
p

q
−
√
q

p

)2

.

The general theorem (Kantorovich’s inequality) is: Let x1, . . . , xn ∈
[a, b], where 0 < a < b, then

(x1 + . . .+ xm)

(
1

x1

+ · · ·+ 1

xm

)
≤ (a+ b)2

4ab
m2.

The same argumentation as above results in the quadratic function

f(n) = −n2

(√
a

b
−
√
b

a

)2

+mn

(√
a

b
−
√
b

a

)2

+m2

with a maximum at n = m/2 and a value

f(m/2) = −m
2

4

(√
a

b
−
√
b

a

)2

+
m2

2

(√
a

b
−
√
b

a

)2

+m2

=
m2

4

(√
a

b
−
√
b

a

)2

+
4m2

4

=
m2

4

(√
a

b
+

√
b

a

)2

=
m2

4
· (a+ b)2

ab

5. Let n > 1 be an integer. There are n lamps L0, . . . , Ln−1 arranged
in a circle. Each lamp is either ON (1) or OFF (0). A sequence of
steps S0, . . . , Si, . . . is carried out. Step Sj affects the state of Lj only
(leaving the states of all other lamps unaltered) as follows:

If Lj−1 is ON, Sj changes the state of Lj from ON to OFF or from
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OFF to ON;

If Lj−1 is OFF, Sj leaves the state of Lj unchanged.

The lamps are labeled modulo n, that is L−1 = Ln−1, L0 = Ln, etc.
Initially all lamps are ON. Show that

(a) there is a positive integer M(n) such that after M(n) steps all the
lamps are ON again;

(b) if n = 2k, then all lamps are ON after (n2 − 1) steps;

(c) if n = 2k + 1, then all lamps are ON after (n2 − n+ 1) steps.

Reason: Algorithm.

Solution:

(a) Let xj ∈ { 0, 1 } represent the state of lamp Lj. Operation Sj
affects the state of Lj, which in the previous round has been set
to the value xj−n. At the moment when Sj is being performed,
lamp Lj−1 is in the state xj−1. Consequently,

xj ≡ xj−n + xj−1 mod 2, (1)

This is true for all j ≥ 0. Note that the initial state (all lamps
ON) corresponds to

x−n = x−n+1 = . . . = x−2 = x−1 = 1. (2)

The state of the system at instant j can be represented by the vec-
tor vj = (xj−n, . . . , xj−1) , v0 = (1, . . . , 1). Since there are only n
feasible vectors, repetitions must occur in the sequence v0, v1, v2, . . .
The operation that produces vj+1 from vj is invertible. Hence, the
equality vj+m = vj implies vm = v0; the initial state recurs in at
most 2n steps proving the first part.

Let’s consider equation (1):

xj ≡ xj−n + xj−1 mod 2

≡ (xj−2n + xj−n−1) + (xj−1−n + xj−2) mod 2

≡ xj−2n + 2xj−n−1 + xj−2 mod 2

≡ xj−3n + 3xj−2n−1 + 3xj−n−2 + xj−3 mod 2

≡ . . .
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After r iterations we arrive at the equality

xj =
r∑
i=0

(
r

i

)
xj−(r−i)n−i mod 2 (3)

holding for all j, r such that j − (r − i)n− i ≥ −n.
If r = 2k, then the binomial coefficients are all even except the
two outer ones, and we obtain

xj ≡ xj−rn + xj−r (for r = 2k), (4)

provided the subscripts do not go below −n, i.e., for j ≥ (r− 1)n.

(b) If n = 2k, choose j ≥ n2 − n = (2k − 1)2k, and with r = n, we
obtain from (4)

xj ≡ xj−n2 + xj−n ≡ xj−n2 + (xj − xj−1) mod 2.

Hence xj−n2 ≡ xj−1 mod 2, showing that the sequence (xj) is
periodic with period n2 − 1.

(c) If n = 2k + 1, choose j ≥ n2 − n = (2k + 1)2k, and set in (4) r =
n− 1, obtaining

xj ≡ xj−rn + xj−r mod 2

≡ xj−n2+n + xj−n+1 mod 2

≡ xj−n2+n + (xj+1 − xj) mod 2

≡ xj−n2+n + xj+1 + xj mod 2

Hence xj−(n2−n+1) ≡ xj, showing the sequence is periodic with
period n2 − n+ 1.

6. The pseudosphere is the rotational surface of the tractrix, e.g. param-
eterized by

f : R2 −→ R3 , f(x, y) =

cos(y)/ cosh(x)
sin(y)/ cosh(x)
x− tanh(x)

 .
Show that the pseudosphere has a constant negative Gauß curvature.
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Reason: Curvature Pseudo-Sphere.

Solution:

fx =


−cos(y) sinh(x)

cosh2(x)

−sin(y) sinh(x)

cosh2(x)
sinh2(x)

cosh2(x)

 , fy =


− sin(y)

cosh(x)
cos(y)

cosh(x)
0

 , fx × fy =


−cos(y) sinh2(x)

cosh3(x)

−sin(y) sinh2(x)

cosh3(x)

− sinh(x)

cosh3(x)


Thus we get

‖fx × fy‖2 =
sinh4(x)

cosh6(x)
+

sinh2(x)

cosh6(x)
=

sinh2(x)

cosh4(x)

(
sinh2(x) + 1

cosh2(x)

)
=

sinh2(x)

cosh4(x)

and in case x ≥ 0

N =
fx × fy
‖fx × fy‖

=


−cos(y) sinh(x)

cosh(x)

−sin(y) sinh(x)

cosh(x)

− 1

cosh(x)

 =


− cos(y) tanh(x)
− sin(y) tanh(x)

− 1

cosh(x)


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Now we calculate

Nx =


− cos(y)

cosh2(x)

− sin(y)

cosh2(x)
sinh(x)

cosh2(x)

 , Ny =

 sin(y) tanh(x)
− cos(y) tanh(x)

0



Observe that DpN = Dpf · Ap with Ap =

 1

sinh(x)
0

0 − sinh(x)

 such

that the Gauß curvature is given by

κp = detAp = −1 for all p ∈ R2.

The sign of the determinant of Ap does not change, if x changes its sign
and so skips signs in DpN , because Ap is a 2 × 2 matrix. The Gauß
curvature is thus negative, too, in case x < 0.

7. Let g be a Lie algebra with trivial center Z(g) = {0} over a field of
characteristic not equal two and

A(g) = {ϕ : g
linear−→ g | [ϕ(X), Y ] = [ϕ(Y ), X] for all X, Y ∈ g}

= lin{α, β 6= 0 | [α, β] = αβ − βα = β}

Show that image im β and kernel ker β of β are ideals in g.

Hint: A(g) is a g-module by X.ϕ = [adX,ϕ].

Reason: Lie Algebras.

Solution: Let L,K ∈ ker β , B = β(A), D = β(C) ∈ im β.

β(α(K)) = α(β(K))− [α, β](K) = −β(K) = 0

β(A+ α(A)) = B + α(β(A))− [α, β](A) = B + α(B)− β(A) = α(B)

[L,B] = [L, β(A)] = −[β(L), A] = 0

[X, β([L,K])] = −[β(X), [L,K]] = [β(L), [K,X]] + [β(K), [X,L]] = 0

=⇒ β([L,K]) ∈ Z(g) = {0}
=⇒ [L,K] ∈ ker β

[X, [β(A), β(C)]] = −[X, [β2(A), C]] = −[β2(X), [A,C]] = −[X, β2([A,C])]

=⇒ [β(A), β(C)] + β2([A,C]) ∈ Z(g) = {0}
=⇒ [β(A), β(C)] = β(−β([A,C])) ∈ im β
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The calculations show that K := ker β and I := im β are A(g) invariant,
commuting subalgebras of g.

Let γ ∈ A(g) such that X.γ = 0 for all X ∈ g. Then

0 = (X.γ)(Y ) = [X, γ(Y )]− γ([X, Y ]) = [X, γ(Y )] + γ([Y,X])

= [X, γ(Y )]− (Y.γ)(X) + [Y, γ(X)] = 2[X, γ(Y )]

=⇒ γ(Y ) ∈ Z(g) = {0} =⇒ γ = 0

Hence A.α 6= 0 and B.β 6= 0 for some A,B ∈ g. Since X.α,X.β ∈ A(g)
we can write

X.α = λ(X)α + µ(X)β

X.β = ν(X)α + ω(X)β

X.β = X.[α, β] = [X.α, β] + [α,X.β] = λ(X)β + ω(X)β = ν(X)α + ω(X)β

=⇒ ν(X) = λ(X) = 0 =⇒ X.α = µ(X)β , X.β = ω(X)β

X.α = µ(X)β , X.β = ω(X)β

This implies especially that I E g and kerω ⊇ K E g are ideals:

[X, β(Y )] = (X.β)(Y ) + β([X, Y ]) = ω(X)β(Y ) + β([X, Y ]) ∈ im β

β([X,K]) = (X.β)(K)− [X, β(K)] = ω(X)β(K) = 0

ω(K)β(X) = (K.β)(X) = β([X,K]) = 0

8. (HS-1) Given a positive integer n. Assume that 4n and 5n start with
the same digit in the decimal system. Show that this digit has to be 2
or 4.

Reason: Numbers.

Solution: Let z be the leading digit of 4n and 5n, so

z · 10r ≤ 4n = 22n < (z + 1) · 10r

z · 10s ≤ 5n < (z + 1) · 10s

If we square the second and multiply both, we get

z3·10r+2s ≤ 102n < (z+1)3·10r+2s =⇒ 1 ≤ z3 ≤ 102n−r−2s < (z+1)3 ≤ 1000

This means that 2n− r − 2s ∈ {0, 1, 2}.
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(a) 2n− r − 2s = 0

In this case we have z = 1. If 1 · 10r < 4n, then we would get by
the procedure above that z3 · 10r+2s = 1 · 102n < 102n which is
impossible. Hence 4n = 10r which is only possible for n = r = 0
since 5 - 4n. But this contradicts our choice of n.

(b) 2n− r − 2s = 1

Here we get z3 ≤ 101 = 10 which means z = 2.

(c) 2n− r − 2s = 2

Here we get z3 ≤ 102 = 100 < (z + 1)3 and so z ≤ 3
√

100 =
4.64 . . . < z + 1 which means z = 4.

9. (HS-2) A parcel service charges a price proportional to the sum height
plus length plus width per box. Could it be, that there is a case where
it is cheaper to put a more expensive package into a cheaper box?

Reason: Optimization.

Solution: Assume we have boxes B = B(a, b, c) ⊆ A = A(x, y, z).
We define the sets Aδ := {x ∈ R3 | d(A, x) ≤ δ} and similar Bδ of
all points not farther away from the boxes than δ. Each of these sets
consists of the box itself, 6 boxes of height δ above each surface, 12
quarter cylinders of radius δ along each edge, and eight eighth of a ball
of radius δ above each vertex. Hence the volumes are

|Aδ| = xyz + 2(xy + xz + yz)δ + π(x+ y + z)δ2 +
4

3
πδ3

|Bδ| = abc+ 2(ab+ ac+ bc)δ + π(a+ b+ c)δ2 +
4

3
πδ3

Since B ⊆ A we have Bδ ⊆ Aδ for any positive real number δ, too.
Thus

abc

δ2
+

2(ab+ ac+ bc)

δ
+ π(a+ b+ c) ≤ xyz

δ2
+

2(xy + xz + yz)

δ
+ π(x+ y + z)

Since this has to hold for any δ, we can take the limit to infinity and
see, that the inequality only holds if

a+ b+ c ≤ x+ y + z

which means our answer is NO: We cannot save money by using cheaper
boxes.
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10. (HS-3) Let a be a positive integer and (an)n∈N0 the sequence defined
by

a0 := 1 , an := a+
n−1∏
k=0

ak (n ≥ 1)

(a) There are infinitely many primes which divide at least one number
of the sequence.

(b) There is a prime which does not divide any of the numbers in the
sequence.

Reason: Primes.

Solution: gcd(a, a0) = 1 and

gcd(a, an) = gcd

(
a, a+

n−1∏
k=0

ak

)
= gcd

(
a,

n−1∏
k=0

ak

)
= 1

by induction.

(a) Let p1, . . . , pN be primes each dividing at least one an. Then there
is a minimal M , such that all these primes are divisors of some
numbers of a0, . . . , aM . This means however, that all pi |

∏M−1
k=0 ak.

Thus we get from the above consideration, that none of the pi
divides a, hence none of them divides eM > 1. We thus get a
prime factor pN+1 of eM which wasn’t on the list. But if we can
always add a prime to the list, it cannot be finite.

(b) If a > 1 then it has a prime factor which does not divide any an
because we saw that gcd(a, an) = 1.

Now let a = 1 and set mi :=
∏i

k=0 ak. That is

m0 = a0 = 1 , mk+1 = mkak+1 = mk(a+mk) = mk(1 +mk)

We observe thatm0 ≡ 1 mod 5 , m1 ≡ 2 mod 5 , m2 ≡ 1 mod 5 , . . .
As mk+1 only depends on mk, we see that all remainders have to
be 1 or 2, and the mk are never divisible by 5. But ak |mk so 5
can never be a divisor of any an.

11. (HS-4) Let a, b, c be positive real numbers such that a+ b+ c+2 = abc.
Show that (a + 1)(b + 1)(c + 1) ≥ 27. Under which condition does
equality hold?

Reason: Inequality.
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Solution: We set x = a+ 1, y = b+ 1, z = c+ 1 and have to show that
xyz ≥ 27 under the assumption that

xyz = (a+ 1)(b+ 1)(c+ 1)

= (ab+ a+ b+ 1)(c+ 1)

= abc+ ac+ bc+ ab+ a+ b+ c+ 1

= ac+ bc+ ab+ 2a+ 2b+ 2c+ 3

= (ab+ a+ b+ 1) + (ac+ a+ c+ 1) + (bc+ b+ c+ 1)

= (a+ 1)(b+ 1) + (a+ 1)(c+ 1) + (b+ 1)(c+ 1)

= xy + yz + xz

With AM ≥ GM we get xyz = xy + yz + xz ≥ 3 3
√
x2y2z2 which is

equivalent to xyz ≥ 27 since all numbers are positive.

Equality holds if and only if xy = yz = xz, i.e. x = y = z. This is true
for x = y = z = 3 or a = b = c = 2.

45



https://www.physicsforums.com/ 07/20-12/20

4 September 2020

1. Given a group G then the intersection of all maximal subgroups of G
is called Frattini subgroup Φ(G). If G hasn’t a maximal subgroup, we
set Φ(G) = G. Show that Φ(G) E G is a normal subgroup, and that
Φ(G) is nilpotent in case G is finite.

Reason: Frattini Subgroup.

Solution: The intersection of all maximal subgroups of G is invariant
under group automorphisms

ϕ(Φ(G)) = ϕ

 ⋂
M�G

maximal

M

 ⊆ ⋂
M�G

maximal

ϕ(M) =
⋂
M�G

maximal

M = Φ(G)

and thus especially under inner automorphisms, i.e. conjugation, i.e.
Φ(G) / G.

Assume |G| =: n is finite and P ≤ Φ(G) a nontrivial p-group, i.e. the
order of any element of P is a power of the prime p |n. Such subgroups
exist by Sylow’s first theorem for prime factors of n, or by Cauchy’s
theorem below.

(a) Lemma: If a group H of order pn (p prime) acts on a finite set S
and if S0 := {x ∈ S |h.x = x for all h ∈ H } denotes the set of
fixed points of S under the action, then |S| ≡ |S0| mod p.

Proof: An orbit x̃ = H.x contains exactly one element if and
only if x ∈ S0. Hence S can be written as a disjoint union S =
S0 ∪ x̃1 ∪ x̃2 ∪ . . . ∪ x̃m with |x̃k| > 1 for all k. Hence |S| =
|S0|+ |x̃1|+ |x̃2|+ · · ·+ |x̃m|. Now p | |x̃k| for each k since |x̃k| > 1
and |x̃k| = [H : H.xk] | |H| = pn by the orbit-stabilizer theorem.
Thus |S| ≡ |S0| mod p.

(b) Cauchy’s Theorem.

If G is a finite group whose order |G| = n is divisible by a prime
p, then G contains an element of order p.

Proof: Let S be the set of p-tuples of group elements

{ (a1, a2, . . . , ap) | ak ∈ G and a1a2 · · · ap = 1 }.

Since ap = (a1a2 · · · ap−1)−1 is uniquely determined by the other
elements, if follows that |S| = np−1. As p |n, |S| ≡ 0 mod p. The
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cyclic group Zp acts on S by

k.(a1, a2, . . . , ap) = (a1+k, a2+k, . . . , ap, a1, . . . , ak) (k ∈ Zp)

(With ba = (a−1a)(ba) = a−1(ab)a = 1 if ab = 1 we see by
induction, that (ak+1, ak+2, . . . , ak) ∈ S. It’s easy to verify for
x ∈ S, 0, k, k′ ∈ Zp that 0.x = x and (k + k′).x = k.(k′.x), and
that the action is well-defined.)

Now x = (a1, . . . , ap) ∈ S0 is a fixed point if and only if a1 = a2 =
. . . = ap and (1, 1, . . . , 1) ∈ S0, so S0 6= 0. By the previous Lemma
we get |S0| ≡ |S| ≡ 0 mod p and at least p elements in S0, that
is, there is a 6= 1 such that (a, a, . . . , a) ∈ S0 and hence ap = 1.
Since p is prime, |a| = p.

(c) Corollary: A finite group P is a p-group if and only if |P | is a
power of p.

Proof: If P is a p-group and q | |P | a prime, then P contains an
element of order q by Cauchy’s theorem. Since every element has
order a power of p, q = p. Hence |P | is a power of p. The converse
is an immediate consequence of Lagrange’s theorem, that the order
of every group element divides the order of the (finite) group.

(d) P has a nontrivial center: C(P ) 6= {1}.

Proof: Consider the class equation of P :

|P | = |C(P )|+
∑
|P : CP (xi)|

where CP (x) = { p ∈ P | px = xp } is the centralizer of x ∈ P , and
the action is conjugation. If |P : CP (xi)| = 1 then P = CP (xi)
and xi ∈ C(P ), and we are done. Otherwise each |P : CP (xi)| > 1
and divides |P | = pn(n ≥ 1), so p divides each |P : CP (xi)| and
divides |P |, and therefore divides |C(P )|. As |C(P )| ≥ 1 because
1 ∈ C(P ), C(P ) has at least p elements.

(e) Every finite p-group P is nilpotent.

Proof: Let G be a group. The center C(G) of G is a normal sub-
group. Let C2(G) be the inverse image of C(G/C(G)) under the
canonical projection G � G/C(G). Then C2(G) is normal in G
and contains C(G). Continue this process by defining inductively:
C1(G) = C(G) and Ci(G) is the inverse image of C(G/Ci−1(G))
under the canonical projection G� G/Ci−1(G). Thus we obtain
a sequence of normal subgroups of G, called the ascending central
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series of G : 1 ≤ C1(G) ≤ C2(G) ≤ . . . A group is called nilpotent
if G = Cn(G) for some n ∈ N.

An equivalent definition can be given by commutator groups: Let
G(0) = G and G(i) = [G,G(i−1)]. Then G is nilpotent if G(n) = 1
for some n ∈ N. The series G ≥ G(1) ≥ G(2) ≥ . . . is called de-
scending central series.

Now P and all its nontrivial quotients are p-groups, and therefore
have nontrivial centers. If P is Abelian, then it is nilpotent. Oth-
erwise P 6= C(P ). If P 6= Ci(P ), then Ci(P ) is strictly contained
in Ci+1(P ). Since P is finite, Cn(P ) must equal P for some n.

(f) Frattini’s argument: Φ(G)NG(P ) = G.

Proof: NG(P ) = { g ∈ G | gPg−1 ⊆ P } is the normalizer of P in
G. Recall P ≤ Φ(G) has been chosen as a p-subgroup of Φ(G).

Let g ∈ G. Then gPg−1 is a subgroup of Φ(G). By Sylow’s second
theorem there is an element f ∈ Φ(G) such that f(gPg−1)f−1 ⊆
P . So x := fg ∈ NG(P ) and G 3 g = f−1x ∈ Φ(G)NG(P ).

(g) P E Φ(G) is normal.

Proof: Let NG(P ) ⊆ M ( G be contained in a proper subgroup
M of G. Then Φ(G) ⊆ M ∩ Φ(G)NG(P ) ⊆ M which is a contra-
diction. Hence G = NG(P ) and P is normal in G, and especially
normal in Φ(G).

(h) Φ(G) is nilpotent.

Proof: We will show that Φ(G) is the direct sum of its p-groups.
Thus we have a direct sum of normal, nilpotent subgroups, which
is therefore nilpotent, too. This follows e.g. from Fitting’s theo-
rem, but can also be proven directly.

Proof: Let p1, p2, ..., ps be the distinct primes dividing the or-
der of Φ(G), and let Pi be pi-groups for 1 ≤ i ≤ s. For any t,
1 ≤ t ≤ s we show inductively that P1P2 · · ·Pt is isomorphic to
P1 × P2 × · · · × Pt. As each Pi is normal in Φ(G) so P1P2 · · ·Pt is
a subgroup of Φ(G). Let H be the product P1P2 · · ·Pt−1 and let
K = Pt,so by induction H is isomorphic to P1 × P2 × · · · × Pt−1.
In particular, |H| = |P1|∆|P2| · · · |Pt−1|. Since |K| = |Pt|, the
orders of H and K are relatively prime. Lagrange’s Theorem im-
plies the intersection of H and K is equal to 1. By definition,
P1P2 · · ·Pt = HK, hence HK is isomorphic to H × K which is
equal to P1 × P2 × · · · × Pt. This completes the induction. Now
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we take t = s to obtain the result.

Remark: The subgroup of a group G which is generated by all
nilpotent normal subgroups is called Fitting subgroup F (G). If G
is finite, we have

[F (G), F (G)] ≤ Φ(G) ≤ F (G)

F (G)/Φ(G) = F (G/Φ(G))

2. The n-th Fermat number Fn = 22n + 1 is prime for n ∈ N if and only if

3(Fn−1)/2 ≡ −1 mod Fn.

3 is a primitive root modulo Fn in this case.

Reason: Fermat Primes (Pépin, 1877).

Solution: We see from 322
n−1 ≡ −1 mod Fn that the remainder class

of 3 in (Z/(Fn))∗ has the order 22n , i.e. (Z/(Fn))∗ has at least 22n =
Fn−1 elements. This is only possible, if Fn is prime and 3 is a primitive
root modulo Fn.

Now we show that this condition is necessary, too. Let Fn be prime.
From Fn ≡ 1 mod 4 we get(

3

Fn

)
=

(
Fn
3

)
=

(
2

3

)
= −1

where we used quadratic reciprocity and Fn ≡ 22n +1 ≡ (−1)2n +1 ≡ 2
mod 3. With Euler’s criterion we now find

3(Fn−1)/2 ≡ −1 mod Fn.

3. Show that none of the numbers

11 , 111 , 1111 , 11111 , 111111 , . . .

can be written as a sum of two squares.

Reason: Number Theory.

Solution: The numbers n = 11 , 111 , 1111 . . . are all congruent 11
mod 100 and so congruent 3 mod 4. Such a number has at least one
odd prime factor p ≡ 3 mod 4 which occurs in an odd power, since
otherwise we would only have prime factors congruent 1 mod 4 and
even powers of prime factors congruent 3 mod 4. Pairing two prime
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factors congruent 3 mod 4 results in a factor 1 mod 4. But all factors
congruent 1 mod 4 remain congruent 1 mod 4 by multiplication. In
order for n ≡ 3 mod 4, n has to have a prime factorization

n = p ·
I∏
i=1

p2νi
i ·

J∏
j=1

q
µj
j (∗)

with primes p, pi ≡ 3 mod 4 , qj ≡ 1 mod 4. Let’s assume now n can
be written as n = x2 + y2. If d = gcd(x, y) > 1, then d2 |n and we
can cancel it out without affecting p since all prime divisors of d occur
twice. Hence we may assume that x, y are coprime, to the expense
that we changed the value of n, but we still have n = x2 + y2 with x, y
coprime, and a factorization (∗).

Since p - x, because otherwise p |n− x2 = y2 and p | y, but we assumed
them to be coprime, x is a unit modulo p, say tx ≡ 1 mod p. From
p |n = x2 + y2 we get y2 ≡ −x2 mod p and thus

(ty)2 = t2y2 ≡ −t2x2 ≡ −1 mod p.

With Euler’s criterion we calculate(
−1

p

)
= (−1)

p−1
2 = (−1)

4k+2
2 = (−1)2k+1 = −1

i.e. −1 is no quadratic residue modulo p, which means there is no
number z2 ≡ −1 mod p, contradicting z = ty which we just found.

4. Let G = 〈a, b | ap = bq = 1, (aba) = br, as = bt〉 be a group of order
twelve which operates on R4 by

a.v =
1

2
·


1

√
3 0 0

−
√

3 1 0 0

0 0 1 −
√

3

0 0
√

3 1

 .v, b.v =


0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0

 .v.
(a) Determine the group G and its presentation (p, q, r, s, t).

(b) Which group is

H = 〈a, b | a6 = b2 = 1, (aba) = b〉 ?

(c) The above groups are obviously not Abelian. There is another
non Abelian group L of order twelve. Which one and what is
(p, q, r, s, t) in that case?
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Reason: Group Theory.

Solution:

(a) Since aord a(v) = 1(v) for all v ∈ R4 we have to calculate the order
of the given, regular matrices:[

1
√

3

−
√

3 1

]2

=

[
−2 2

√
3

−2
√

3 −2

]
,

[
1

√
3

−
√

3 1

]3

=

[
−8 0
0 −8

]
[

0 I
−I 0

]2

=

[
−I 0
0 −I

]
so ord a = 6 and ord b = 4 and a3 = b2. Now

1

4

[
A 0
0 B

]
·
[

0 I
−I 0

]
·
[
A 0
0 B

]
=

1

4

[
0 AB
−BA 0

]
=

[
0 I
−I 0

]
hence aba.v = b.v for all v ∈ R4 and thus aba = b and

G = 〈a, b | a6 = b4 = 1, (aba) = b1, a3 = b2〉.

The elements are G = { 1, a, a2, a3, a4, a5, b, ab, a2b, a3b, a4b, a5b }
This means that G = Dic3, the dicyclic group of order 12.

(b) We have elements of order 6 and order 2 in

H = 〈a, b | a6 = b2 = 1, (aba) = b〉

The subgroup generated by a is normal: banb−1 = a−n, whereas
the subgroup generated by b is not: aba−1 = aba5 = ba4 /∈ 〈b〉.
Hence H ∼= Z6 o Z2

∼= D6, the dihedral group of order 12.

(c) The third non Abelian group of order 12 is the alternating group
L = A4 = 〈a, b | ap = bq = 1, (aba) = br, as = bt〉. It contains all
even permutations of { 1, 2, 3, 4 }. (123), (234) ∈ A4, so there are
at least two elements of order 3, from which we can choose one
as generator, say a = (123). The cycles of the Klein subgroup
V4 are all of order two. Now (12)(34)(123)(12)(34) = (142) and
(123)(12)(34)(132) = (14)(23) show that V4 / A4 is a normal sub-
group, and that a 3−cycle generates no normal subgroup, hence
A4
∼= V4 o Z3. It can be shown that a and (12)(34) generate A4,

but for our desired presentation, we need a generator b such that
aba = br is a relation. We can rule out r = 0 since it would
imply aba = 1 =⇒ ab = a−1 = a2 =⇒ a = b. But aba = b
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cannot be true either, as aV4a /∈ V4. Thus we have to choose
another 3-cycle; b := (234). Since ab = (123)(234) = (12)(34)
we already know by the omitted calculation above, that a and
b generate the group. In addition we have a3 = b3 = 1 and
aba = (12)(34)(123) = (243) = b−1 = b2, so finally we get

A4
∼= V4oZ3

∼= 〈a = (123), b = (234)|a3 = b3 = 1, (aba) = b2, a3 = b3〉

5. Let A be an associative, finite dimensional algebra with 1 over a field
F, M 6= 0 an A-module, and 0 6= P ⊆ AA a submodule of A as right
A-module. Show that

(a) M is irreducible if and only if 0 and 1 are the only idempotent
elements of the endomorphism ring EndA(M).

(b) P is a direct summand of AA if and only if there is an idempotent
element e ∈ A such that P = eA.

Reason: Modules.

Solution:

(a) If M is reducible, then there are submodules 0 6= L,K ⊆ M
such that L ⊕ K = M. The projection πK ∈ EndA(M) on K
is idempotent and πK /∈ { 0, 1 }. If conversely e ∈ EndA(M) is
idempotent, then M = e(M) ⊕ (1M − e)(M). If e /∈ { 0, 1 }, then
e(M), (1M − e)(M) 6= 0 and M is reducible.

(b) Let P be a direct summand and A = P ⊕ Q. Then we can write
A 3 1 = e+ f.

e− e2 = (1− e)e = fe ∈ P ∩Q = 0

hence e = e2 and fe = 0. By the same argument we get f 2 = f
and ef = 0. Moreover we have eA ⊆ PA = P and for p ∈ P

p = 1 · p = (e+ f) · p = ep+ fp = ep ∈ eA

since fp ∈ P ∩Q = 0.
Let conversely be e ∈ A an idempotent, and set P := eA. Then

f := 1− e = 1− 2e+ e = 1− 2e+ e2 = (1− e)2 = f 2

is also an idempotent and we have 1 = e + f and ef = fe = 0.
Hence A = eA⊕ fA = P ⊕ fA.
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6. We consider the topological space C∞ = C ∪ {∞} equipped with dis-
tance

χ(x, y) :=



‖x− y‖2√
1 + ‖x‖2

2

√
1 + ‖y‖2

2

if x, y 6=∞

1√
1 + ‖x‖2

2

if x 6=∞, y =∞

1√
1 + ‖y‖2

2

if x =∞, y 6=∞

0 if x = y =∞

Show that χ defines a metric such that C := (C∞, χ) is a compact
topological space.

Reason: Compact Space.

Solution: The chordal metric χ as defined is half the Euclidean dis-
tance in R3 under the stereographic projection

π : R3 ⊃ S2
(0,0,1) − {(0, 0, 2)} −→ C , π(a, b, c) =

(
2a

2− c
+ i · 2b

2− c

)

of the Riemann sphere: 2χ(x, y)
(∗)
= ‖π−1(x)− π−1(y)‖2.

Let us consider the stereographic projection. A point P = u + iv =
(u, v, 0) on the complex plane corresponds to the point on the sphere

{ (x, y, z) |x2 + y2 + (z − 1)2 (∗∗)
= 1 } which is part of the line through

P and the north pole N = (0, 0, 2), hence the point π−1(P ) = (x, y, z)
that satisfies (∗∗) and (x, y, z) = (0, 0, 2) + λ(u, v,−2) for some λ ∈ R.
Solving these for λ yields λ = 4/(4 + u2 + v2) and

π−1(P ) = π−1(u+ iv) =
1

4 + u2 + v2
· (4u, 4v, 2u2 + 2v2)

If we reduce the last coordinate by 1, we will get a sphere of radius 1
and the center at the origin. Thus

π̄ : R3 ⊃ S2
(0,0,0) − {(0, 0, 1)} −→ C , π̄(a, b, c) =

(
a

1− c
+ i · b

1− c

)
and

π̄−1(P ) = π̄−1(u+ iv) =
1

1 + u2 + v2
· (2u, 2v,−1 + u2 + v2)
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which doesn’t affect the distances on S2 ⊆ R3. So in order to prove (∗)
we set P = u+ iv , Q = x+ iy , p := x2 + y2 + 1 , q := u2 + v2 + 1 and
calculate

‖π̄−1(P )− π̄−1(Q)‖2
2 =

1

(pq)2
‖(2up− 2xq, 2vp− 2yq, (p− 2)q − (q − 2)p)‖2

2

=
4

(pq)2

(
(up− xq)2 + (vp− yq)2 + (p− q)2

)
=

4

(pq)2
(u2p2 + v2p2 + x2q2 + y2q2 − 2uxpq − 2vypq

+ p2 + q2 − 2pq)

=
4

(pq)2
(p2(u2 + v2 + 1) + q2(x2 + y2 + 1)

− 2pq(ux+ vy + 1))

=
4

(pq)2
(p2q + q2p− 2pq(ux+ vy + 1))

=
4

pq
(p+ q − 2(ux+ vy + 1))

=
4

pq
(x2 + y2 + u2 + v2 − 2ux− 2vy)

=
4

pq
‖(x− u) + i(y − v)‖2

2

= 4χ(P,Q)2

As χ can be expressed as a Euclidean distance, it is clear that the
triangle inequality holds. χ is positive definite and symmetric which is
more or less obvious. It is also clear that

χ(x, y) ≤ χ(x, z) + χ(z, y)

as soon as at least two of the points are at infinity. Hence it remains
to check the cases x =∞ or z =∞.
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• χ(x, y) ≤ χ(x,∞) + χ(∞, y).

χ(x, y) ≤ ‖x‖2√
1 + ‖x‖2

2

√
1 + ‖y‖2

2

+
‖y‖2√

1 + ‖x‖2
2

√
1 + ‖y‖2

2

=
‖x‖2√

1 + ‖x‖2
2

· 1√
1 + ‖y‖2

2

+
‖y‖2√

1 + ‖y‖2
2

· 1√
1 + ‖x‖2

2

≤ χ(y,∞) + χ(∞, x)

because
‖x‖2√

1 + ‖x‖2
2

,
‖y‖2√

1 + ‖y‖2
2

≤ 1.

• χ(∞, z) ≤ χ(∞, y) + χ(y, z).

Set y = a+ ib, z = u+ iv, p =
√

1 + |y|2, q =
√

1 + |z|2. Then

0 ≤ (av − bu)2 + (a− u)2 + (b− v)2

= a2 + b2 + u2 + v2 + a2v2 + b2u2 − 2abuv − 2au− 2bv

1 + a2u2 + b2v2 + 2abuv + 2au+ 2bv

≤ a2 + b2 + u2 + v2 + a2v2 + b2u2 + 1 + a2u2 + b2v2

So (1 + au+ bv)2 ≤ (1 + a2 + b2)(1 + u2 + v2) and

1 + au+ bv ≤ pq

2 + a2 + b2 + u2 + v2 − 2pq ≤ −2au− 2bv + a2 + b2 + u2 + v2

(p− q)2 = q2 + p2 − 2pq ≤ (a− u)2(b− v)2

p− q ≤ ‖y − z‖2

χ(∞, z)− χ(y,∞) =
1

q
− 1

p
≤ ‖y − z‖2

pq
= χ(y, z)

χ(∞, z) ≤ χ(∞, y) + χ(y, z)

C is compact if and only if it is sequentially compact. Let (zn)n∈N ⊆ C.

• Case 1: There is an N ∈ N such that (zn)n≥N is a bounded se-
quence in C.

In this case there is a convergent subsequence (znk
)nk≥N ⊆ (zn)n≥N ⊆

(C, ‖.‖2), say limk→∞ znk
= z. Thus

0 ≤ χ(znk
, z) =

‖znk
− z‖2√

1 + ‖znk
‖2

2

√
1 + ‖z‖2

2

≤ ‖znk
− z‖2

n→∞−→ 0
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and limk→∞ χ(znk
, z) = 0 by the sandwich principle, so (znk

)k∈N is
a convergent subsequence of (zn)n∈N in C, which had to be shown.

• Case 2: (zn)n≥N is for each N ∈ N an unbounded sequence in C
or contains {∞}.

In this case there is an N ≤ MN ∈ N such that ‖zMN
‖2 > N for

all N ∈ N. If zMN
= ∞ we write ‖zMN

‖2 = ∞. Now if we define
CN := max{Mk | 1 ≤ k ≤ N } we will get an increasing list of
natural numbers. Each natural number can occur at most finitely
often on this list, since MN ≥ N. Thus limN→∞CN =∞.

0 ≤ χ(zCN
,∞) =

0 if zCN
=∞

1√
1 + ‖zCN

‖2
2

if ‖zCN
‖2 6=∞

≤ 1√
1 +N2

N→∞−→ 0

and (zCN
)N∈N ⊆ (zn)n∈N is the subsequence we were looking for,

and which converges to 0 ∈ C.

7. (a) Calculate

∫
|z|=5

ez

z2 + π2
dz .

(b) Determine all z ∈ C such that

f(z) = ez
7(sin z)16 + z̄2

is complex differentiable.

Reason: Complex Integration And Differentiability.

Solution:

(a) We write D(z0, r) = { z ∈ C | |z − z0| < r } for a disk around z0

with radius r. The zeros of the denominator are z = ±iπ inside
D(0, 5). Let

Ω := D(0, 5)− (D(iπ, 1) ∪D(−iπ, 1))
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Then∫
|z|=5

ez

z2 + π2
dz =

∫
|z|=5

ez

(z − iπ)(z + iπ)
dz

=

∫
∂Ω

ez

(z − iπ)(z + iπ)
dz

+

∫
|z−iπ|=1

ez

(z − iπ)(z + iπ)
dz +

∫
|z+iπ|=1

ez

(z − iπ)(z + iπ)
dz

= 0 +

∫
|z−iπ|=1

ez

z+iπ

z − iπ
dz +

∫
|z+iπ|=1

ez

z−iπ

z + iπ
dz

= 2iπ

(
eiπ

iπ + iπ
+

e−iπ

−iπ − iπ

)
= eiπ − e−iπ

= 0

(b) If f(z) is complex differentiable, then g(z) := f(z)−ez7(sin z)16 = z̄2

is complex differentiable at z, too, since it is the composition of
two on C holomorphic functions.

g(z) = g(x+ iy) = x+ iy
2

= (x− iy)2 = x2 − y2︸ ︷︷ ︸
=:u(x,y)

+i (−2xy)︸ ︷︷ ︸
=:v(x,y)

For the Cauchy Riemann equations we check

ux = 2x , uy = −2y , vx = −2y , vy = −2x

Now ux = vy implies x = 0 and uy = −vx implies y = 0. Since all
derivatives are continuous on R2, the Cauchy Riemann equations
are not only necessary, but sufficient as well. Hence g(z) is only
complex differentiable at z = 0 and so is f(z).

8. Calculate ∫ ∞
1

1 + x2 − 2x2 log(x)

x(1 + x2)2
dx

Reason: Catalan’s Constant.

Solution: The square in the denominator reminds us on the quotient
rule, so we consider

f(x)

g(x)
=
f ′(x)g(x)− f(x)g′(x)

g(x)2
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and set g(x) = (x2 + 1). Hence

1 + x2 − 2x2 log(x)

x(1 + x2)2
=

1
x

+ x− 2x log(x)

(1 + x2)2

=
1
x
(1 + x2)− 2x log(x)

(1 + x2)2

=
f ′(x)(x2 + 1)− f(x)2x

(x2 + 1)2

so f(x) = log x gives the desired solution and∫ ∞
1

1 + x2 − 2x2 log(x)

x(1 + x2)2
dx =

[
log(x)

x2 + 1

]∞
1

= 0

The function f(x) =
log(x)

x2 + 1
has an interesting property:

∣∣∣∣∫ 1

0

f(x) dx

∣∣∣∣ =

∫ ∞
1

f(x) dx = C = 0.91596559417721901 . . .

where C is Catalan’s constant A006752 in the OEIS.

9. Determine the square root and the inverse matrix of

A =

 5 −4 2
−4 7 −8
1 −4 6


What is the dimension of the simple Lie algebra whose Cartan matrix√
A is?

Reason: Matrix Calculations.
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Solution:

√
A =

 2 −1 0
−1 2 −2
0 −1 2

 , A−1 =
1

4
·

10 16 18
16 28 32
9 16 19


The Cartan matrix

√
A belongs to the simple Lie algebra of type B3

which is the 21 dimensional orthogonal Lie algebra o(7,R) = so(7,R).

10. Let R be a commutative ring with 1. We define the nilradical N(R) =
N ⊆ R as intersection of all prime ideals of R, and the Jacobson radical
J(R) = J as intersection of all maximal ideals.

(a) Show that N(R) contains exactly all nilpotent Elements of R.

(b) Assume R is Artinian. Show that all prime ideals are maximal,
hence N(R) = J(R) in an Artinian ring.

(c) Assume R is Artinian. Show that N(R) is a nilpotent Ideal.

(d) Give an example of N(R) 6= J(R) if R is not Noetherian and thus
not Artinian either.

Reason: Ring Theory.

Solution:

(a) N(R) is the set of all nilpotent elements of R.

i. Let r ∈ R be nilpotent and P ⊆ R a prime ideal. Then
rn = 0 ∈ P for some n ∈ N and r ∈ P since P is prime. So
all nilpotent elements of R are contained in all prime ideals.

ii. Let r ∈ R be not nilpotent. We consider the set of ideals

Σ := { I E R |n > 0 =⇒ rn /∈ I}

Since 0 ∈ Σ we have Σ 6= ∅ and a maximal element M ∈ Σ
by inclusion as order and Zorn’s Lemma (AC). We must show
that M is a prime ideal, because from r /∈ M we get that
any non nilpotent element cannot be in all prime ideals. Let
x , y /∈M . Then we have to show that x · y /∈M .

M + (x),M + (y) ) M so they cannot belong to Σ for the
maximality of M . Thus there are numbers n,m > 0 with
rn ∈ M + (x) and rm ∈ M + (y) , i.e. rn+m = rn · rm ∈
M + (x · y) . As we have found a positive power of r which is
in an ideal M + (xy), we have shown that M + (xy) /∈ Σ, i.e.
xy /∈M ∈ Σ which had to be shown. In other words, we have
found a prime ideal M which doesn’t contain r, so r /∈ N(R) .
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(b) Let R be Artinian and P ⊆ R a prime ideal. Then S := R/P
is an Artinian integral domain. Let s ∈ S − {0}. Because of the
descending chain condition on ideals, we have (sn) = sn+1 for
some n ∈ N and thus sn = sn+1r or sn(sr − 1) = 0 . Since S is
an integral domain, we may conclude sr = 1 as sn 6= 0 . But this
means s is a unit, i.e. S is a field and P maximal.

(c) Let Nk = Nk+1 = . . . =: A / R for some 0 6= k ∈ N . Now
assume that A 6= 0, and consider the set Ξ of all ideals B such
that AB 6= 0 . Since A2 = A 6= 0 we have A ∈ Ξ 6= ∅, and because
R is Artinian we can choose a minimal ideal C ∈ Ξ . Then there
is an element x ∈ C such that Ax 6= 0. We even have (x) = C by
minimality of C. The same argument leads to Ax = (x), because
A(Ax) = A2x = Ax 6= 0 means Ax ∈ Ξ and Ax ⊆ AC ⊆ C,
so minimality of C implies x ∈ (x) = C = Ax . Thus there is an
element a ∈ A such that x = ax, hence x = ax = a2x = a3x =
. . . = anx = . . .
Now a ∈ A = Nk ⊆ N is nilpotent by the previous part, so x = 0
which contradicts Ax 6= 0 and our assumption A 6= 0 was wrong,
hence 0 = A = Nk and N(R) is nilpotent.

(d) Let R = R[x1, x2, . . .] be the ring of real polynomials with count-
ably infinite many indeterminates. This ring is neither Noetherian
(a.c.c.) as (x1) ( (x1, x2) ( (x1, x2, x3) ( . . . shows, nor Artinian
(d.c.c.) as (x1) ) (x2

1) ) (x3
1) ) . . . shows. (x1) is a prime

ideal, R/(x1) ∼= R is an integral domain, but no field and (x1)
not maximal. M := (x1, x2, . . .) is the unique maximal ideal, so
J(R) = M with R/J ∼= R . On the other hand R doesn’t con-
tain any nilpotent elements, so N(R) = 0 . Another way to see
it is, that

⋂
n∈N (xn) = 0 because there is no polynomial which is

divided by all indeterminates, or that the intersection of the two
prime ideals (x1) ∩ (1 + x1) = 0 is zero.

11. (HS-1) Prove that the geometric mean of two numbers is less or equal
the arithmetic mean of these numbers by three different methods.

Reason: Geometry - Algebra - Calculus.

Solution:

(a) Geometry.

The height h in a right triangle is square root of the product pq
of the two sections of the diameter it separates: h =

√
pq. The
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height is also less or equal the radius r of the surrounding circle,
which is r = p+q

2
and thus

√
pq ≤ p+q

2
.

(b) Algebra.

0 ≤ (p− q)2 = p2 − 2pq + q2

=⇒ 4pq ≤ p2 + 2pq + q2 = (p+ q)2

=⇒ √pq ≤ p+ q

2

(c) Calculus.

Assume a fixed length L such that L = p+q. We want to minimize

f(p) :=
p+ (L− p)

2
−
√
p(L− p) =

L

2
−
√
pL− p2

df

dp
= −1

2
· L− 2p√

pL− p2

d2f

dp2
=

1

4
· L2√

pL− p2
3

f ′(p) = 0 for p = L/2 and f ′′(L/2) > 0 so p = L/2 is a minimum,

i.e. f(L/2) = 0 ≤ f(p) =
p+ q

2
−√pq for any p.

12. (HS-2) Calculate the formula for the tangent at the unit circle at p =(
1
2
,
√

3
2

)
by three different methods, or better points of view.

Reason: Tangent Spaces.

Solution:

(a) The point lies in the first quadrant, so we can take y =
√

1− x2

as function for the circle segment. Then y′ = − x√
1− x2

and

y′(1/2) = −1/
√

3. Solving yT = − 1√
3
· x+ b for p results in

b =

√
3

2
+

1√
3
· 1

2
and yT = − 1√

3
· x+

2√
3

(b) The tangent is perpendicular to the (normal) position vector ~p,
hence has the direction ~t = ~p⊥ = (−

√
3/2 , 1/2). This results in

the straight

T : ~p+ s · ~t⇐⇒
[
x
y

]
=

1

2
·
[

1√
3

]
+
s

2
·
[
−
√

3
1

]
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(c) The circle is parameterizable by C =

(
1− s2

1 + s2
,

2s

1 + s2

)
. The cor-

responding parameter for p is sp = 1/
√

3.

DpC =

(
−4

s

(s2 + 1)2
, −2

s2 − 1

(s2 + 1)2

)
p

=

(
−3
√

3

4
,

3

4

)
∼ (−

√
3 , 1)

Thus we get the tangent

T : ~p+ s ·DpC ⇐⇒
[
x
y

]
=

1

2
·
[

1√
3

]
+

3s

4

[
−
√

3
1

]
13. (HS-3) We are looking for the number n = abc, where a is the maximal

number of rotations which are necessary to solve Rubik’s cube out of
any state, b is the largest natural number of Chicken McNuggets which
cannot be bought by the usual box sizes of 6, 9 or 20, and c is the
smallest three digit emirp number.

Reason: Riddle.

Solution: a = 20 , b = 43 , c = 107 , n = 92020.

14. (HS-4) Show that the following linear equation system with variables
x1, . . . , xn has always a unique solution:

x1 = 2xn−m+1 + 3xn−m+2 + b1

x2 = 4xn−m+2 + 9xn−m+3 + b2

. . . . . .

xm−1 = 2m−1xn−1 + 3m−1xn + bm−1

xm = 2mxn + bm

xm+1 = bm+1

. . . . . .

xn = bn

for all positive integers 1 ≤ m < n and any real numbers b1, . . . , bn.

Reason: Nilpotent Matrix.
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Solution: The coefficient matrix of the linear equation system is

1 0 . . . 0 −2 −3 0 . . . 0 0
0 1 . . . 0 0 −4 −9 . . . 0 0

. . . . . .
0 0 . . . 1 0 0 0 . . . −2m−1 −3m−1

0 0 . . . 0 1 0 0 . . . 0 −2m

0 0 . . . 0 0 1 0 . . . 0 0
0 0 . . . 0 0 0 1 . . . 0 0

. . . . . .
0 0 . . . 0 0 0 0 . . . 0 1


= 1 +N

with a nilpotent matrix N , i.e. Nm = 0. Now

1 = (1−N +N2 −N3 ± . . .+ (−1)m−1Nm−1)︸ ︷︷ ︸
=:M

·(1 +N)

The linear equation system now writes (1 +N)~x = ~b or ~x = M~b.

15. (HS-5) Calculate the following derivatives:

(a)
dy

dx
if y = 1 + yx

(b)
dy

dx
and

d2y

dx2
if y = x+ log y

(c)
dy

dx

∣∣∣∣
x=1

and
d2y

dx2

∣∣∣∣
x=1

if x2 − 2xy + y2 + x+ y − 2 = 0

Reason: Differentiation.

Solution:

(a)

y = 1 + yx =⇒ y′ = (yx)′ = (exp(x log y))′

= (exp(x log y)) · (x log y)′ = yx ·
(

log y + x · y
′

y

)
=⇒ y′

(
1− xyx

y

)
= yx log y

=⇒ dy

dx
= y′ =

yx log y

1− xyx−1
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(b)

y = x+ log y =⇒ y′ = 1 + (log y)′ = 1 +
y′

y

=⇒ dy

dx
= y′ =

y

y − 1

=⇒ y′′ = (y(y − 1)−1)′ = y′(y − 1)−1 − y(y − 1)−2y′

=
y(y − 1)

(y − 1)3
− y2

(y − 1)3
= − y

(y − 1)3

=⇒ d2y

dx2
= y′′ =

y

(1− y)3

(c)

x2 − 2xy + y2 + x+ y − 2 = 0 =⇒ (x− y)2 + (x+ y) = 2

=⇒ 0 = 2(x− y)(1− y′) + 1 + y′ = y′(1 + 2(y − x)) + 1 + 2(x− y)

=⇒ y′ =
2(y − x)− 1

2(y − x) + 1

At x = 1 we have 1− 2y+ y2 + 1 + y− 2 = 0 = y2− y = y(y− 1),
i.e. y = 0 or y = 1.

This is
dy

dx

∣∣∣∣
x=1

= y′(1) = 3 or
dy

dx

∣∣∣∣
x=1

= y′(1) = −1.

0 = y′(1 + 2(y − x)) + 1 + 2(x− y) =⇒
0 = y′′(1 + 2(y − x)) + y′(2(y′ − 1)) + 2(1− y′)

y′′ =
2(y′ − 1)2

2(x− y)− 1

At x = 1 we have (y, y′) = (0, 3) or (y, y′) = (1,−1).

This is
d2y

dx2

∣∣∣∣
x=1

= y′′(1) = 8 or
d2y

dx2

∣∣∣∣
x=1

= y′′(1) = −8.
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5 August 2020

1. Let F be a meromorphic function (holomorphic up to isolated poles)
in C with the following properties:

(a) F is holomorphic (complex differentiable) in the half plane H(0) =
{z ∈ C : <(z) > 0}.

(b) zF (z) = F (z + 1).

(c) F is bounded in the strip {z ∈ C : 1 ≤ <(z) ≤ 2}.

Show that F (z) = F (1)Γ(z).

Reason: Wielandt’s theorem.

Solution: The gamma function satisfies the first two properties and
the third follows from |Γ(z)| ≤ Γ(<(z)) and that Γ(x) is bounded on
the closed interval 1 ≤ x ≤ 2 since it is continuous.

Now consider
F0(z) := F (z)− F (1)Γ(z).

Then F0 fulfills all three conditions, too, and F0(1) = 0. The functional
equation F0(z) = F0(z+ 1)/z implies, that F0 is holomorphic at z = 0,
and that F0 is bounded on the strip S0 := {z ∈ C : 0 ≤ <(z) ≤ 1}.
Hence the function

Φ(z) := F0(z)F0(1− z)

is bounded in S0.. We have

Φ(z + 1) = F0(z + 1)F0(−z) = zF0(z)F0(−z) = −F0(z)F0(−z + 1) = −Φ(z)

This means that Φ is periodic with period 2 and bounded in entire C.
Now Φ is constant by Liouville’S theorem. The constant must equal
zero, as Φ(1) = −Φ(0). Hence 0 = F0(z)F0(1 − z) so F0 ≡ 0 and
F0(z) = 0 = F (z)− F (1)Γ(z).

2. Show that if f is any continuous real function and n any positive num-
ber,

I :=

∫ n

n−1

f

(
x+

1

x

)
log x

x
dx = 0.

Reason: Integration Trick.
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Solution:

I
y=1/x

=

∫ n−1

n

f

(
1

y
+ y

)
− log y

1/y

−dy
y2

=

∫ n−1

n

f

(
y +

1

y

)
log y

y
dy

= −
∫ n

n−1

f

(
y +

1

y

)
log y

y
dy

= −I

Since charR = 0 6= 2 we get I = 0.

3. (HS-1) Let a < b < c < d be real numbers. Sort x = ab + cd , y =
bc+ ad , z = ac+ bd and prove it.

Reason: Arithmetics.

Solution: We suppose from examples that y < z < x.

(a) y < z

This is equivalent to

bc+ ad < ac+ bd⇐⇒ (b− a)c < (b− a)d

⇐⇒ (b− a)(c− d) < 0

which is true as b− a > 0 and c− d < 0.

(b) z < x

This is equivalent to

ac+ bd < ab+ cd⇐⇒ (d− a)(b− c) < 0

which is true as d− a > 0 and b− c < 0.

4. (HS-2) Prove CP
2

= AP ·BP
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Reason: Geometry.

Solution: We connect the points AC and BC and define the angles
α = ^(BAC), β = ^(BPC), γ = ^(BCP )

If we connect CM and elongate it to a diameter CD then γ+^(DCB) =
90◦. Thales’ theorem now gives us ^(CDB) + ^(DCB) = 90◦ thus
γ = ^(CDB). As all periphery angles over the same chord CB are
equal (= 1/2^(CMB)), we get γ = α. So with β we have two identical
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angles in 4(PAC) and 4(PBC), i.e. they are similar. This means

AP

CP
=
CP

BP
⇐⇒ AP ·BP = CP

2

5. (HS-3) How big is the probability for two pocket aces in Texas Hold’em?
Assume we have seen a show down in a heads-up. How many possible
combinations are there, how many combinations of possible starting
hands can the opponents have? How many possible community cards?

Reason: Poker.

Solution: There are
(

4
2

)
= 6 possible pocket aces among

(
52
2

)
= 1, 326

possible hands, so the probability is 6
1,326

= 1
221
≈ 0.45%. We have(

52
9

)
= 3, 679, 075, 400 combinations total after a show down in a heads-

up. Community cards are
(

48
5

)
= 1, 712, 304 possibilities and

(
52
2

)
·
(

50
2

)
=

1, 624, 350 possible starting hands in a heads-up.

6. (HS-4) Everybody knows that Schrödinger’s cat is trapped in the box
since 1935. Not well known is the fact, that the radioactive material
was ten 14C isotopes. Calculate the probability that the cat is still
alive.

Reason: Radiation.

Solution: Half-life of 14C are 5, 730 years. The decay rate is thus

λ =
log 2

T1/2

≈ 1.21 · 10−4 a−1. The probability for a single isotope to

survive is P = exp(−λT ) ≈ 98.977%. The cat survived, if all ten
isotopes survived, i.e. with a probability of P 10. With significant figures
provided by a modern calculator, this results in

P 10 =

(
exp

(
−85 · log 2

5730

))10

= 0.902286772193 ≈ 90%

So the cat has a 9 : 10 chance to be still alive.

7. (HS-5) Show that there is no rational solution for p2 + q2 + r2 = 7.

Reason: Modular Arithmetic.

Solution: The equation can be transformed into an equivalent integer
equation x2 +y2 +z2 = 7w2 where gcd(x2 +y2 +z2, w2) = 1. Given any
integer n, then n2 ∈ {0̄, 1̄, 4̄} mod 8. If w2 ≡ 1̄ mod 8 then 7w2 ≡ 7̄
mod 8 but there is no way to get 7̄ as a result of three sums of elements
from {0̄, 1̄, 4̄}. Hence 4|w2 and w is even. Not all x, y, z can thus be odd.
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Assume x is even and y, z are odd: 4a2+(2b+1)2+(2c+1)2 ≡ 2̄ mod 4
but 7w2 ≡ 0̄ mod 4 which cannot be equal. So x, y, z are all even. But
now we have a divider 2 of x2 + y2 + z2 and of w2, in contradiction to
our assumption of a primitive equation.
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6 July 2020

1. Calculate the electrostatic potential U(a) of a surface S = { (x, y, z) ∈
R3 |x2 + y2 = z2, 0 ≤ z ≤ 1 } charged with a field of homogeneous
density ρ at the point a = (0, 0, 1).

Reason: Electrostatic Potential.

Solution: The general formula (Coulomb) for the potential is

U(a) =

∫ ∫
S

ρ

|x− a|
dO

With the parameterization Φ(t, ϕ) = (t cosϕ, t sinϕ, t) we get Φt =
(cosϕ, sinϕ, 1) and Φϕ = (−t sinϕ, t cosϕ, 0). The fundamental quan-
tities are

E = Φt · Φt , F = Φt · Φϕ , G = Φϕ · Φϕ

These are in our case E = 2, F = 0, G = t2 and the scalar surface
element is dO =

√
EG− F 2 dt dϕ =

√
2t dt dϕ since t ≥ 0. Thus

U(a) =

∫ 1

0

∫ 2π

0

ρ√
(t cosϕ− 0)2 + (t sinϕ− 0)2 + (t− 1)2

√
2t dt dϕ

=

∫ 1

0

dt

∫ 2π

0

dϕ

√
2ρ t√

t2 + (t− 1)2
= 2πρ

∫ 1

0

t√
t2 − t+ 1

2

dt

= 2πρ

∫ 1

0

1

2

 2t− 1√
t2 − t+ 1

2

+
1

2
√
t2 − t+ 1

2


= πρ

[√
t2 − t+

1

2

]1

0

+ πρ

∫ 1

0

dt√
t2 − t+ 1

2

τ=t−1/2
= πρ

∫ 1/2

−1/2

dτ√
τ 2 + 1

4

= πρ

∫ 1/2

−1/2

d(2τ)√
(2τ)2 + 1

= πρ [arsinh(2τ)]
1/2
−1/2 = πρ

[
log
(

2τ +
√

(2τ)2 + 1
)]1/2

−1/2

= πρ log

(
1 +
√

2

−1 +
√

2

)
= (log(3 + 2

√
2))πρ

2. (HS-1) Prove that the product of a finite number of sums of two integers
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squares is again a sum of two integers squared.

(a2
1 + b2

1) · (a2
2 + b2

2) · . . . · (a2
n + b2

n) = a2 + b2

Reason: Useful Trick.

Solution: We need to show that

n∏
k=1

(a2
k + b2

k) =
n∏
k=1

det

([
ak −bk
bk ak

])
= det

([
a −b
b a

])
= a2 + b2

which is true as the matrices of this form multiplied with each another
have again such a form:[

α −β
β α

]
·
[
γ −δ
δ γ

]
=

[
αγ − βδ −αδ − βγ
αδ + βγ αγ − βδ

]
and the determinant is a multiplicative function.

3. (HS-2) Given a positive integer in decimal representation without zeros.
We build a new integer by concatenation of the number of even digits,
the number of odd digits, and the number of all digits (the sum of the
former two). Then we proceed with that number.

Determine whether this algorithm always comes to a halt. What is or
should be the criterion to stop?

Reason: Algorithm.

Solution: Let |x| denote the number of digits of the integer x expressed
in the decimal system, i.e. for x =

∑n−1
k=0 xk · 10k we have |x| = n. Say

we have m even digits among the {xi}, then one step of our algorithm
transforms x to f(x) = m ·10|n|+|n−m|+(n−m) ·10|n|+n. Let us assume
n = |x| ≥ 4. Now |x| ≤ 1 + log10 x so

f(x) ≤ n · 102|n| + n · 10|n| + n

≤ n · 1001+log10 n + n · 101+log10 n + n

≤ 100n+ n3 + 10n+ n2 + n

= n3 + n2 + 111n

< 10n−1

≤ x

if n ≥ 4. Hence the algorithm decreases the input number on every
single step, as long as there are at least four digits. If n = 4, then
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f(x) ≤ 999 and we have a three digit number. This means f(x) =
100m+ 10(3−m) + 3 with m ∈ { 1, 2, 3 }. The last step is thus one of
the following: f(303) = f(213) = f(123) = 123, and 123 the stopping
criterion for the algorithm. Since this is an endless loop, the algorithm
doesn’t stop and needs a stopping command at 123.

It remains to show what will happen on numbers smaller than 100.

• n = 2 : The only possibilities are

f(x1x0) = (022) −→ (303) −→ (123)

or = ( 22) −→ (202) −→ (303) −→ (123)

f(x1x0) = (202) −→ (303) −→ (123)

f(x1x0) −→ (112) −→ (123)

• n = 1 : In this case we will get the previous cases, too. Either
f(x0) = (101) −→ (123) or f(x0) = (011) −→ (123) or if we do
not allow leading zeros f(x0) = (11) −→ (022) (see case n = 2).

4. (HS-3) List all real functions f : R −→ R with the following properties:

f(xy) = f(x)f(y)− f(x)− f(y) + 2

f(x+ y) = f(x) + f(y) + 2xy − 1

f(1) = 2

Reason: Real Function.

Solution: Let f be such that the conditions hold. Then

f(2) = f(1 + 1) = 2f(1) + 1 = 5

f(2x) = f(2)f(x)− f(2)− f(x) + 2 = 4f(x)− 3

f(2x) = f(x) + f(x) + 2x2 − 1 = 2f(x) + 2x2 − 1

0 = 2f(x)− 2x2 − 2

f(x) = x2 + 1

Conversely we have to check that this function fulfills the conditions:

(xy)2 + 1 = (x2 + 1)(y2 + 1)− x2 − 1− y2 − 1 + 2 X

(x+ y)2 + 1 = x2 + 1 + y2 + 1 + 2xy − 1 X

12 + 1 = 2 X
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5. (HS-4) Find all real solutions (x, y) such that

sin4 x = y4 + x2y2 − 4y2 + 4 , cos4 x = x4 + x2y2 − 4x2 + 1

Reason: Pigeon Hole Principle.

Solution:
sin4 x+ cos4 x = (x2 + y2 − 2)2 + 1 ≥ 1

The values of sine and cosine are all in [−1, 1], so sin4 x ≤ sin2 x and
cos4 x ≤ cos2 x. Hence sin4 x + cos4 x ≤ sin2 x + cos2 x = 1, which is
only possible if equality holds everywhere:

x2 + y2 = 2 , 0 = sin2 x(sin2 x− 1) = cos2 x(cos2 x− 1).

The equality of sines holds if and only if x = k · π/2 for some k ∈ Z.
Now k2 · π2/4 = x2 = 2 − y2 ≤ 2 or k2 ≤ 8/π2 < 1, i.e. k = 0. This
(0,±

√
2) are the only possible solutions. It is easy to check that both

points fulfill the given conditions.

6. (HS-5) Prove
(2n)!

(n!)2
>

4n

n+ 1

for all natural numbers n > 1.

Reason: Inequality.

Solution: We proceed by induction and check for n = 2 the inequality

(2 · 2)!

(2!)2
=

4!

4
= 3! = 6 >

16

3
=

42

2 + 1
.

Now let us assume that
(2k)!

(k!)2
>

4k

k + 1
.

(2(k + 1))!

((k + 1)!)2
=

(2k + 2)!

(k!(k + 1))2

=
(2k)!(2k + 1)(2k + 2)

(k!)2(k + 1)2

=
(2k)!

(k!)2
· 2(2k + 1)

k + 1

and

4k+1

(k + 1) + 1
=

4k

k + 1
· 4(k + 1)

k + 2
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From 4k2 + 10k + 4 = 2(2k + 1)(k + 2) > 4k2 + 8k + 4 = 4(k + 1)2 we
get

2(2k + 1)

k + 1
>

4(k + 1)

k + 2

Combining those we get

(2(k + 1))!

((k + 1)!)2
=

(2k)!

(k!)2
· 2(2k + 1)

k + 1

>
4k

k + 1
· 4(k + 1)

k + 2

=
4k+1

k + 2

what had to be shown.
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